1
|
Agaoglu NB, Doganay L. Concurrent pathogenic variations in patients with hereditary cancer syndromes. Eur J Med Genet 2021; 64:104366. [PMID: 34637943 DOI: 10.1016/j.ejmg.2021.104366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Cancer is a multifactorial disorder; however, 5-10% of all cancers show hereditary background. In recent years many targeted next generation sequencing panels comprising cancer predisposition genes have been developed and used for diagnostic purposes in patients with increased cancer risk. Screening multiple genes at a time allows multiple variants in different genes to be detected as well. This study aims to determine the cases with concurrent mutations in different hereditary cancer predisposition genes and how they are clinically affected. Here, we screened 1090 index cases by next generation sequencing based hereditary cancer panels and evaluated the reflection of multiple variations on the phenotype. We detected 11 (1%) cases with pathogenic variants in more than one gene. These concurrent variations occurred mostly in BRCA1/2 (7/11) accompanied with MUTYH, ATM, CHECK2, NBN, and RAD50. In addition, MUTYH&ATM, NBN&MSH6, MUTYH&CHEK2 double heterozygous cases were detected. Moreover, we identified a case with three heterozygous variations in CDH1, MUTYH, and CHEK2. These patients presented malignancies that were mostly related to pathogenic variations they carried. Although they are rare, defining double heterozygous cases is important for managing appropriate therapy and accurate genetic consulting for the patients and family members.
Collapse
Affiliation(s)
- Nihat Bugra Agaoglu
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey; Department of Medical Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
| | - Levent Doganay
- Genomic Laboratory (GLAB), Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
2
|
Five Italian Families with Two Mutations in BRCA Genes. Genes (Basel) 2020; 11:genes11121451. [PMID: 33287145 PMCID: PMC7761639 DOI: 10.3390/genes11121451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Double heterozygosity (DH) in BRCA1 and BRCA2 genes and double mutation (DM) in BRCA1 or BRCA2 are extremely rare events in the general population, and few cases have been reported worldwide so far. Here, we describe five probands, all women, with breast and/or ovarian cancer and their families. Particularly, we identified two probands with DH in the BRCA1/2 genes with a frequency of 0.3% and three probands with DM in the BRCA2 gene with a frequency of 0.5%. The DH BRCA1 c.547+2T>A (IVS8+2T>A)/BRCA2 c.2830A>T (p.Lys944Ter) and BRCA1 c.3752_3755GTCT (p.Ser1253fs)/BRCA2 c.425+2T>C (IVS4+2T>C) have not been described together so far. The DM in BRCA2, c.631G>A (p.Val211Ile) and c.7008-2A>T (IVS13-2A>T), found in three unrelated probands, was previously reported in further unrelated patients. Due to its peculiarity, it is likely that both pathogenic variants descend from a common ancestor and, therefore, are founder mutations. Interestingly, analyzing the tumor types occurring in DH and DM families, we observed ovarian cancer only in DH families, probably due to the presence in DH patients of BRCA1 pathogenic variants, which predispose one more to ovarian cancer onset. Furthermore, male breast cancer and pancreatic cancer ensued in families with DM but not with DH. These data confirm that BRCA2 pathogenic variants have greater penetrance to develop breast cancer in men and are associated with an increased risk of pancreatic cancer.
Collapse
|
3
|
Le Page C, Rahimi K, Rodrigues M, Heinzelmann-Schwarz V, Recio N, Tommasi S, Bataillon G, Portelance L, Golmard L, Meunier L, Tonin PN, Gotlieb W, Yasmeen A, Ray-Coquard I, Labidi-Galy SI, Provencher D, Mes-Masson AM. Clinicopathological features of women with epithelial ovarian cancer and double heterozygosity for BRCA1 and BRCA2: A systematic review and case report analysis. Gynecol Oncol 2019; 156:377-386. [PMID: 31753525 DOI: 10.1016/j.ygyno.2019.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Carriers of pathogenic variants in both BRCA1 and BRCA2 genes as a double mutation (BRCA1/2 DM) have been rarely reported in women with epithelial ovarian cancer (EOC). METHODS We reviewed the English literature and interrogated three repositories reporting EOC patients carrying BRCA1/2 DM. The clinicopathological parameters of 36 EOC patients carrying germline BRCA1/2 DM were compared to high-grade serous EOC women of the COEUR cohort with known germline BRCA1/BRCA2 mutation carrier status (n = 376 non-carriers, n = 65 BRCA1 and n = 38 BRCA2). Clinicopathological parameters evaluated were age at diagnosis, stage of disease, loss of heterozygosity, type of mutation, immunohistochemistry profile, progression occurrence and survival. RESULTS Median age at diagnosis of BRCA1/2 DM patients was 51.9 years, similar to BRCA1 mutation carriers (49.7 years, p = .58) and younger than BRCA2 mutation carriers (58.1 years, p = .02). Most patients were diagnosed at advanced stage (III-IV; 82%) and were carriers of founder/frequent mutations (69%). Tissue immunostainings revealed no progesterone receptor expression and low intraepithelial inflammation. The 5-year survival rate (60%) was significantly lower than that of BRCA2 mutation carriers (76%, p = .03) but not of BRCA1 mutation carriers (51%, p = .37). CONCLUSIONS Our data suggests some co-dominant effect of both mutations but the outcome of these patients more closely resembled that of BRCA1 mutation carriers with poor prognosis factors.
Collapse
Affiliation(s)
- Cécile Le Page
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada.
| | - Kurosh Rahimi
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada; Department of Pathology, Centre hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
| | - Manuel Rodrigues
- Institut Curie, PSL Research University, Paris, France; Department of Medical Oncology, INSERM U830 "Cancer, heterogeneity, instability and plasticity", Paris, France
| | - Viola Heinzelmann-Schwarz
- Gynecological Cancer Centre and Ovarian Cancer Research Group, University Hospital Basel and Department of Biomedicine, Basel, Switzerland
| | - Neil Recio
- Departments of Human Genetics, McGill University; Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Guillaume Bataillon
- Institut Curie, PSL Research University, Paris, France; Department of Biopathology, Paris, France
| | - Lise Portelance
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada
| | - Lisa Golmard
- Institut Curie, PSL Research University, Paris, France; Department of Genetics, Paris, France
| | - Liliane Meunier
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada
| | - Patricia N Tonin
- Departments of Human Genetics, McGill University; Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| | - Walter Gotlieb
- Segal Cancer Center, Lady Davis Institute of Medical research, McGill University, Montreal, QC, Canada
| | - Amber Yasmeen
- Segal Cancer Center, Lady Davis Institute of Medical research, McGill University, Montreal, QC, Canada
| | | | - S Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux Universitaires de Genève and Department of Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada; Division of Gynecology-Oncology, CHUM, QC, Canada; Department of Obstetrics and Gynecology, University of Montreal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montreal (CRCHUM), and Institut du cancer de Montréal, Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
4
|
Wangensteen T, Felde CN, Ahmed D, Mæhle L, Ariansen SL. Diagnostic mRNA splicing assay for variants in BRCA1 and BRCA2 identified two novel pathogenic splicing aberrations. Hered Cancer Clin Pract 2019; 17:14. [PMID: 31143303 PMCID: PMC6532242 DOI: 10.1186/s13053-019-0113-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background Pathogenic variants in BRCA1 and BRCA2 cause hereditary breast and ovarian cancer. Screening of these genes has become easily accessible in diagnostic laboratories. Sequencing and copy number analyses are used to detect pathogenic variants, but also lead to identification of variants of unknown clinical significance (VUS). If the effect of a VUS can be clarified, it has direct consequence for the clinical management of the patient and family members. A splicing assay is one of several tools that might help in the classification of VUS. We therefore established mRNA analyses for BRCA1 and BRCA2 in the diagnostic laboratory in 2015. We hereby report the results of mRNA analysis variants in BRCA1 and BRCA2 after three years. Methods Variants predicted to alter splicing and variants within the canonical splice sites were selected for splicing analyses. Splicing assays were performed by reverse transcription-PCR of patient RNA. A biallalic expression analysis was carried out whenever possible. Results Twenty-five variants in BRCA1 and BRCA2 were analyzed by splicing assays; nine showed altered transcripts and 16 showed normal splicing patterns. The two novel pathogenic variants in BRCA1 c.4484 + 3 A > C and c.5407–10G > A were characterized. Conclusions We conclude that mRNA analyses are useful in characterization of variants that may affect splicing. The results can guide classification of variants from unknown clinical significance to pathogenic or benign in a diagnostic laboratory, and thus be of direct clinical importance.
Collapse
Affiliation(s)
| | | | - Deeqa Ahmed
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lovise Mæhle
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
5
|
Double Heterozygosity for BRCA1 Pathogenic Variant and BRCA2 Polymorphic Stop Codon K3326X: A Case Report in a Southern Italian Family. Int J Mol Sci 2018; 19:ijms19010285. [PMID: 29346284 PMCID: PMC5796231 DOI: 10.3390/ijms19010285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/17/2022] Open
Abstract
Here, we describe a patient with bilateral breast cancer and melanoma, and with a concomitant double variant, namely p.Gln563Ter in BRCA1 and p.Lys3326Ter in BRCA2. The BRCA2 p.Lys3326Ter (K3326X) (rs11571833) mutation identified in our patient is a debated substitution of thymidine for adenine which is currently regarded as benign polymorphism in main gene databases. Recent studies, however, describe this variant as associated with breast and ovarian tumors. Based on the observation of the cancer’s earliest age of onset in this subject, our purpose was to reevaluate this variant according to recent papers indicating a role of powerful modifier of the genetic penetrance. Genetic testing was performed in all consenting patient’s relatives, and in the collection of the clinical data particular attention was paid to the age of onset of the neoplasia. Following our observation that the our patient with double heterozygosis had an early age of onset for cancer similar to a few rare cases of double mutation for BRCA1 and BRCA2, we also performed an extensive review of the literature relative to patients carrying a double heterozygosity for both genes. In line with previous studies relative to the rare double heterozygosity in both BRCA1/2 genes, we found the earlier onset of breast cancer in our patient with both BRCA1/2 mutations with respect to other relatives carrying the single BRCA1 mutation. The presence of the second K3326X variant in our case induces a phenotype characterized by early onset of the neoplasia in a manner similar to the other cases of double heterozygosity previously described. Therefore, we suggest that during the genetic counseling, it should be recommendable to evaluate the presence of the K3326X variant in association with other pathogenic mutations.
Collapse
|
6
|
Vallée MP, Di Sera TL, Nix DA, Paquette AM, Parsons MT, Bell R, Hoffman A, Hogervorst FBL, Goldgar DE, Spurdle AB, Tavtigian SV. Adding In Silico Assessment of Potential Splice Aberration to the Integrated Evaluation of BRCA Gene Unclassified Variants. Hum Mutat 2016; 37:627-39. [PMID: 26913838 PMCID: PMC4907813 DOI: 10.1002/humu.22973] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023]
Abstract
Clinical mutation screening of the cancer susceptibility genes BRCA1 and BRCA2 generates many unclassified variants (UVs). Most of these UVs are either rare missense substitutions or nucleotide substitutions near the splice junctions of the protein coding exons. Previously, we developed a quantitative method for evaluation of BRCA gene UVs—the “integrated evaluation”—that combines a sequence analysis‐based prior probability of pathogenicity with patient and/or tumor observational data to arrive at a posterior probability of pathogenicity. One limitation of the sequence analysis‐based prior has been that it evaluates UVs from the perspective of missense substitution severity but not probability to disrupt normal mRNA splicing. Here, we calibrated output from the splice‐site fitness program MaxEntScan to generate spliceogenicity‐based prior probabilities of pathogenicity for BRCA gene variants; these range from 0.97 for variants with high probability to damage a donor or acceptor to 0.02 for exonic variants that do not impact a splice junction and are unlikely to create a de novo donor. We created a database http://priors.hci.utah.edu/PRIORS/ that provides the combined missense substitution severity and spliceogenicity‐based probability of pathogenicity for BRCA gene single‐nucleotide substitutions. We also updated the BRCA gene Ex‐UV LOVD, available at http://hci‐exlovd.hci.utah.edu, with 77 re‐evaluable variants.
Collapse
Affiliation(s)
- Maxime P Vallée
- Department of Molecular Medicine, CHUQ Research Center, Quebec City, Canada
| | - Tonya L Di Sera
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - David A Nix
- ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew M Paquette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Russel Bell
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrea Hoffman
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Sean V Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
7
|
Jønson L, Ahlborn LB, Steffensen AY, Djursby M, Ejlertsen B, Timshel S, Nielsen FC, Gerdes AM, Hansen TVO. Identification of six pathogenic RAD51C mutations via mutational screening of 1228 Danish individuals with increased risk of hereditary breast and/or ovarian cancer. Breast Cancer Res Treat 2016; 155:215-22. [PMID: 26740214 DOI: 10.1007/s10549-015-3674-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/29/2015] [Indexed: 11/26/2022]
Abstract
Germ-line mutations in the RAD51C gene have recently been identified in families with breast and ovarian cancer and have been associated with an increased risk of ovarian cancer. In this study, we describe the frequency of pathogenic RAD51C mutations identified in Danish breast and/or ovarian cancer families. We screened the RAD51C gene in 1228 Danish hereditary breast and/or ovarian cancer families by next-generation sequencing analysis. The frequency of the identified variants was examined in the exome sequencing project database and in data from 2000 Danish exomes and the presumed significance of missense and intronic variants was predicted by in silico analysis. We identified six families with a pathogenic mutation in RAD51C, including three frameshift mutations, one nonsense mutation, and 2 missense mutations. Overall, pathogenic RAD51C mutations were identified in 0.5 % of Danish families with increased risk of hereditary breast and/or ovarian cancer. Moreover, we identified 24 additional RAD51C variants of which 14 have not been previously reported in the literature. In this study, we determine the prevalence of RAD51C mutations in Danish breast and/or ovarian cancer families. We identified six pathogenic RAD51C mutations as well as 23 variants of uncertain clinical significance and one benign variant. Together, the study extends our knowledge of the RAD51C mutation spectrum and supports that RAD51C should be included in gene panel testing of individuals with high risk of breast and ovarian cancer.
Collapse
Affiliation(s)
- Lars Jønson
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lise B Ahlborn
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Ane Y Steffensen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Malene Djursby
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Bent Ejlertsen
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Susanne Timshel
- Kennedy Center, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Thomas V O Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
8
|
Ahlborn LB, Steffensen AY, Jønson L, Djursby M, Nielsen FC, Gerdes AM, Hansen TVO. Identification of a breast cancer family double heterozygote for RAD51C and BRCA2 gene mutations. Fam Cancer 2015; 14:129-33. [PMID: 25154786 DOI: 10.1007/s10689-014-9747-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Next-generation sequencing has entered routine genetic testing of hereditary breast cancer. It has provided the opportunity to screen multiple genes simultaneously, and consequently has identified new complex genotypes. Here we report the first identification of a woman double heterozygote for mutations in the RAD51C and BRCA2 genes. The RAD51C missense mutation p.Arg258His has previously been identified in a homozygous state in a patient with Fanconi anemia. This mutation is known to affect the DNA repair function of the RAD51C protein. The BRCA2 p.Leu3216Leu synonymous mutation has not been described before and mini-gene splicing experiments revealed that the mutation results in skipping of exon 26 containing a part of the DNA-binding domain. We conclude that the woman has two potential disease-causing mutations and that predictive testing of family members should include both the RAD51C and BRCA2 mutation. This study illustrates the advantage of sequencing gene panels using next-generation sequencing in terms of genetic testing.
Collapse
Affiliation(s)
- Lise B Ahlborn
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
9
|
Ronowicz A, Janaszak-Jasiecka A, Skokowski J, Madanecki P, Bartoszewski R, Bałut M, Seroczyńska B, Kochan K, Bogdan A, Butkus M, Pęksa R, Ratajska M, Kuźniacka A, Wasąg B, Gucwa M, Krzyżanowski M, Jaśkiewicz J, Jankowski Z, Forsberg L, Ochocka JR, Limon J, Crowley MR, Buckley PG, Messiaen L, Dumanski JP, Piotrowski A. Concurrent DNA Copy-Number Alterations and Mutations in Genes Related to Maintenance of Genome Stability in Uninvolved Mammary Glandular Tissue from Breast Cancer Patients. Hum Mutat 2015. [PMID: 26219265 DOI: 10.1002/humu.22845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Somatic mosaicism for DNA copy-number alterations (SMC-CNAs) is defined as gain or loss of chromosomal segments in somatic cells within a single organism. As cells harboring SMC-CNAs can undergo clonal expansion, it has been proposed that SMC-CNAs may contribute to the predisposition of these cells to genetic disease including cancer. Herein, the gross genomic alterations (>500 kbp) were characterized in uninvolved mammary glandular tissue from 59 breast cancer patients and matched samples of primary tumors and lymph node metastases. Array-based comparative genomic hybridization showed 10% (6/59) of patients harbored one to 359 large SMC-CNAs (mean: 1,328 kbp; median: 961 kbp) in a substantial portion of glandular tissue cells, distal from the primary tumor site. SMC-CNAs were partially recurrent in tumors, albeit with considerable contribution of stochastic SMC-CNAs indicating genomic destabilization. Targeted resequencing of 301 known predisposition and somatic driver loci revealed mutations and rare variants in genes related to maintenance of genomic integrity: BRCA1 (p.Gln1756Profs*74, p.Arg504Cys), BRCA2 (p.Asn3124Ile), NCOR1 (p.Pro1570Glnfs*45), PALB2 (p.Ser500Pro), and TP53 (p.Arg306*). Co-occurrence of gross SMC-CNAs along with point mutations or rare variants in genes responsible for safeguarding genomic integrity highlights the temporal and spatial neoplastic potential of uninvolved glandular tissue in breast cancer patients.
Collapse
Affiliation(s)
- Anna Ronowicz
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Jarosław Skokowski
- The Central Bank of Tissues and Genetic Specimens, Medical University of Gdansk, Gdansk, Poland.,Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Madanecki
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Magdalena Bałut
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Seroczyńska
- The Central Bank of Tissues and Genetic Specimens, Medical University of Gdansk, Gdansk, Poland
| | - Kinga Kochan
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Adam Bogdan
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Alina Kuźniacka
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Wasąg
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gucwa
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Krzyżanowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Jaśkiewicz
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Lars Forsberg
- Department of Immunology, Genetics and Pathology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - J Renata Ochocka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Michael R Crowley
- Heflin Center for Genomic Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jan P Dumanski
- Department of Immunology, Genetics and Pathology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
10
|
Tamkovich SN, Voytsitskiy VE, Laktionov PP. Modern methods in breast cancer diagnostics. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s1990750814040106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Functional characterization of BRCA1 gene variants by mini-gene splicing assay. Eur J Hum Genet 2014; 22:1362-8. [PMID: 24667779 PMCID: PMC4231409 DOI: 10.1038/ejhg.2014.40] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/12/2014] [Accepted: 02/19/2014] [Indexed: 02/06/2023] Open
Abstract
Mutational screening of the breast cancer susceptibility gene BRCA1 leads to the identification of numerous pathogenic variants such as frameshift and nonsense variants, as well as large genomic rearrangements. The screening moreover identifies a large number of variants, for example, missense, silent, and intron variants, which are classified as variants of unknown clinical significance owing to the lack of causal evidence. Variants of unknown clinical significance can potentially have an impact on splicing and therefore functional examinations are warranted to classify whether these variants are pathogenic or benign. Here we validate a mini-gene splicing assay by comparing the results of 24 variants with previously published data from RT-PCR analysis on RNA from blood samples/lymphoblastoid cell lines. The analysis showed an overall concordance of 100%. In addition, we investigated 13 BRCA1 variants of unknown clinical significance or putative variants affecting splicing by in silico analysis and mini-gene splicing assay. Both the in silico analysis and mini-gene splicing assay classified six BRCA1 variants as pathogenic (c.80+1G>A, c.132C>T (p.=), c.213-1G>A, c.670+1delG, c.4185+1G>A, and c.5075-1G>C), whereas six BRCA1 variants were classified as neutral (c.-19-22_-19-21dupAT, c.302-15C>G, c.547+14delG, c.4676-20A>G, c.4987-21G>T, and c.5278-14C>G) and one BRCA1 variant remained unclassified (c.670+16G>A). In conclusion, our study emphasizes that in silico analysis and mini-gene splicing assays are important for the classification of variants, especially if no RNA is available from the patient. This knowledge is crucial for proper genetic counseling of patients and their family members.
Collapse
|
12
|
The ophthalmic experience: unanticipated primary findings in the era of next generation sequencing. J Genet Couns 2014; 23:588-93. [PMID: 24399093 DOI: 10.1007/s10897-013-9679-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Next generation sequencing (NGS) technology, with the ability to sequence many genomic regions at once, can provide clinicians with increased information, in the form of more mutations detected. Discussions on broad testing technology have largely been focused on incidental findings, or unanticipated results related to diseases beyond the primary indication for testing. By examining multiple genes that could be responsible for the patient's presentation, however, there is also the possibility of unexpected results that are related to the reason genetic testing was ordered. We present a case study where multiple potentially causative mutations were detected using NGS technology. This case raises questions of scientific uncertainty, and has important implications for medical management and secondary studies. Clinicians and genetic counselors should be aware of the potential for increased information to affect one's understanding of genetic risk, and the pre- and post-testing counseling process.
Collapse
|
13
|
Tamkovich S, Voytsitskiy V, Laktionov P. Modern approach of breast cancer diagnostics. ACTA ACUST UNITED AC 2014; 60:141-60. [DOI: 10.18097/pbmc20146002141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the review have been classified literature data concerning modern instrumental, microscopic and molecular (metabolomics, proteomics, genetics and epigenetics) approaches for early breast cancer diagnostics. The analytical performance and perspectives of their application in clinical practice also have been evaluated.
Collapse
Affiliation(s)
- S.N. Tamkovich
- Institute of chemical biology and fundamental medicine SB of RAS; Novosibirsk national research state university
| | | | - P.P. Laktionov
- Institute of chemical biology and fundamental medicine SB of RAS
| |
Collapse
|
14
|
Nomizu T, Matsuzaki M, Katagata N, Kobayashi Y, Sakuma T, Monma T, Saito M, Watanabe F, Midorikawa S, Yamaguchi Y. A case of familial breast cancer with double heterozygosity for BRCA1 and BRCA2 genes. Breast Cancer 2012; 22:557-61. [DOI: 10.1007/s12282-012-0432-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022]
|
15
|
Hansen TVO, Jønson L, Steffensen AY, Andersen MK, Kjaergaard S, Gerdes AM, Ejlertsen B, Nielsen FC. Screening of 1331 Danish breast and/or ovarian cancer families identified 40 novel BRCA1 and BRCA2 mutations. Fam Cancer 2011; 10:207-12. [PMID: 21318380 DOI: 10.1007/s10689-011-9422-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Germ-line mutations in the tumour suppressor genes BRCA1 and BRCA2 predispose to breast and ovarian cancer. Since 1999 we have performed mutational screening of breast and/or ovarian cancer patients in East Denmark. During this period we have identified 40 novel sequence variations in BRCA1 and BRCA2 in high risk breast and/or ovarian cancer families. The mutations were detected via pre-screening using dHPLC or high-resolution melting and direct sequencing. We identified 16 variants in BRCA1, including 9 deleterious frame-shift mutations, 2 intronic variants, 4 missense mutations, and 1 synonymous variant. The remaining 24 variants were identified in BRCA2, including 10 deleterious mutants (6 frame-shift and 4 nonsense), 2 intronic variants, 10 missense mutations and 2 synonymous variants. The frequency of the variants of unknown significance was examined in control individuals. Moreover, the presumed significance of the missense mutations was predicted in silico using the align GVGD algorithm. In conclusion, the mutation screening identified 40 novel variants in the BRCA1 and BRCA2 genes and thereby extends the knowledge of the BRCA1/BRCA2 mutation spectrum. Nineteen of the mutations were interpreted as pathogenic, 3 missense mutations were suggested to be pathogenic based on in silico analysis, 6 mutations were suggested to be benign since they were identified in patients together with a well-known disease-causing BRCA1/BRCA2 mutation, while 12 were variants of unknown significance.
Collapse
Affiliation(s)
- Thomas V O Hansen
- Genomic Medicine, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|