1
|
Dangoni GD, Teixeira ACB, da Costa SS, Scliar MO, Carvalho LML, Silva LN, Novak EM, Vince CSC, Maschietto MC, Sugayama SMM, Odone-Filho V, Krepischi ACV. Germline mutations in cancer predisposition genes among pediatric patients with cancer and congenital anomalies. Pediatr Res 2024; 95:1346-1355. [PMID: 38182823 DOI: 10.1038/s41390-023-03000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Childhood cancer has a poorly known etiology, and investigating the underlying genetic background may provide novel insights. A recognized association exists between non-chromosomal birth defects and childhood cancer susceptibility. METHODS We performed whole-exome sequencing and chromosomal microarray analysis in a cohort of childhood cancer (22 individuals, 50% with congenital anomalies) to unravel deleterious germline variants. RESULTS A diagnostic yield of 14% was found, encompassing heterozygous variants in bona fide dominant Cancer Predisposition Genes (CPGs). Considering candidate and recessive CPGs harboring monoallelic variants, which were also deemed to play a role in the phenotype, the yield escalated to 45%. Most of the deleterious variants were mapped in genes not conventionally linked to the patient's tumor type. Relevant findings were detected in 55% of the syndromic individuals, mostly variants potentially underlying both phenotypes. CONCLUSION We uncovered a remarkable prevalence of germline deleterious CPG variants, highlighting the significance of a comprehensive genetic analysis in pediatric cancer, especially when coupled with additional clinical signs. Moreover, our findings emphasized the potential for oligogenic inheritance, wherein multiple genes synergistically increase cancer risk. Lastly, our investigation unveiled potentially novel genotype-phenotype associations, such as SETD5 in neuroblastoma, KAT6A in gliomas, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. IMPACT Novel gene-phenotype associations and candidate genes for pediatric cancer were unraveled, such as KAT6A in gliomas, SETD5 in neuroblastoma, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. Our analysis revealed a high frequency of deleterious germline variants, particularly in cases accompanied by additional clinical signs, highlighting the importance of a comprehensive genetic evaluation in childhood cancer. Our findings also underscored the potential for oligogenic inheritance in pediatric cancer risk. Understanding the cancer etiology is crucial for genetic counseling, often influencing therapeutic decisions and offering valuable insights into molecular targets for the development of oncological therapies.
Collapse
Affiliation(s)
- Gustavo D Dangoni
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anne Caroline B Teixeira
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvia S da Costa
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marília O Scliar
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Laura M L Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana N Silva
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Estela M Novak
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Sofia M M Sugayama
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Vicente Odone-Filho
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Cristina V Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Xie X, Zhao Y, Du F, Cai B, Fang Z, Liu Y, Sang Y, Ma C, Liu Z, Yu X, Zhang C, Jiang J, Gao Z, Liu Y, Lin X, Jing H, Zhong X, Cong L, Dai H, Sha D, Shao N, Feng H, Li L, Liu J, Shang L. Pan-cancer analysis of the tumorigenic role of Fanconi anemia complementation group D2 (FANCD2) in human tumors. Genomics 2024; 116:110762. [PMID: 38104669 DOI: 10.1016/j.ygeno.2023.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Monoubiquitination of FANCD2 is a central step in the activation of the Fanconi anemia (FA) pathway after DNA damage. Defects in the FA pathway centered around FANCD2 not only lead to genomic instability but also induce tumorigenesis. At present, few studies have investigated FANCD2 in tumors, and no pan-cancer research on FANCD2 has been conducted. We conducted a comprehensive analysis of the role of FANCD2 in cancer using public databases and other published studies. Moreover, we evaluated the role of FANCD2 in the proliferation, migration and invasion of lung adenocarcinoma cells through in vitro and in vivo experiments, and explored the role of FANCD2 in cisplatin chemoresistance. We investigated the regulatory effect of FANCD2 on the cell cycle of lung adenocarcinoma cells by flow cytometry, and verified this effect by western blotting. FANCD2 expression is elevated in most TCGA tumors and shows a strong positive correlation with poor prognosis in tumor patients. In addition, FANCD2 expression shows strong correlations with immune infiltration, immune checkpoints, the tumor mutation burden (TMB), and microsatellite instability (MSI), which are immune-related features, suggesting that it may be a potential target of tumor immunotherapy. We further found that FANCD2 significantly promotes the proliferation, invasion, and migration abilities of lung adenocarcinoma cells and that its ability to promote cancer cell proliferation may be achieved by modulating the cell cycle. The findings indicate that FANCD2 is a potential biomarker and therapeutic target in cancer treatment by analyzing the oncogenic role of FANCD2 in different tumors.
Collapse
Affiliation(s)
- Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Yulong Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Fengying Du
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Baoshan Cai
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100000, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China
| | - Yaodong Sang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China
| | - Chenghao Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China
| | - Zhaodong Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xinshuai Yu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Chi Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Jiayu Jiang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Zi Gao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Yan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Haiyan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xiuming Zhong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Lei Cong
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Honghai Dai
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Dan Sha
- Department of Minimally Invasive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Na Shao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China.
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan 250000, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000 Jinan, China.
| |
Collapse
|
3
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
4
|
Cancer risk among RECQL4 heterozygotes. Cancer Genet 2022; 262-263:107-110. [DOI: 10.1016/j.cancergen.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 12/23/2022]
|
5
|
Badra Fajardo N, Taraviras S, Lygerou Z. Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy. Trends Cancer 2022; 8:467-481. [DOI: 10.1016/j.trecan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
6
|
Novel diagnostic approaches for Fanconi anemia (FA) by single-cell sequencing and capillary nano-immunoassay. BLOOD SCIENCE 2021; 3:20-25. [PMID: 35399206 PMCID: PMC8975085 DOI: 10.1097/bs9.0000000000000065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Next-generation sequencing technology has been widely utilized for the diagnosis of Fanconi anemia (FA). However, mixed cell sequencing and chimerism of FA patients may lead to unconfirmed genetic subtypes. Herein, we introduced two novel diagnostic methods, including single-cell sequencing and capillary nano-immunoassay. One FA case with FANCM c.4931G>A p.R1644Q and FANCD1 c.6325G>A p.V2109I was studied. The DNA of 28 cells was amplified and eight types of cells were observed after Sanger sequencing. There were two homozygous mutations (FANCM/FANCD1). Furthermore, the capillary nano-immunoassay was conducted to analyze the expression profile of FA-associated proteins. Abnormal FANCM and FANCD1 expressions simultaneously existed. This case was thus diagnosed as FA-D1/FA-M dual subtype. Compared with mixed cell sequencing, single-cell sequencing data shows more accuracy for the FA subtype evaluation, while the capillary nano-immunoassay is a good method to detect the expression profile of abnormal or modified FA protein.
Collapse
|
7
|
Pouliot GP, Degar J, Hinze L, Kochupurakkal B, Vo CD, Burns MA, Moreau L, Ganesa C, Roderick J, Peirs S, Menten B, Loh ML, Hunger SP, Silverman LB, Harris MH, Stevenson KE, Weinstock DM, Weng AP, Van Vlierberghe P, D’Andrea AD, Gutierrez A. Fanconi-BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia. PLoS One 2019; 14:e0221288. [PMID: 31721781 PMCID: PMC6853288 DOI: 10.1371/journal.pone.0221288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/02/2019] [Indexed: 01/03/2023] Open
Abstract
BRCA2 (also known as FANCD1) is a core component of the Fanconi pathway and suppresses transformation of immature T-cells in mice. However, the contribution of Fanconi-BRCA pathway deficiency to human T-cell acute lymphoblastic leukemia (T-ALL) remains undefined. We identified point mutations in 9 (23%) of 40 human T-ALL cases analyzed, with variant allele fractions consistent with heterozygous mutations early in tumor evolution. Two of these mutations were present in remission bone marrow specimens, suggesting germline alterations. BRCA2 was the most commonly mutated gene. The identified Fanconi-BRCA mutations encode hypomorphic or null alleles, as evidenced by their inability to fully rescue Fanconi-deficient cells from chromosome breakage, cytotoxicity and/or G2/M arrest upon treatment with DNA cross-linking agents. Disabling the tumor suppressor activity of the Fanconi-BRCA pathway is generally thought to require biallelic gene mutations. However, all mutations identified were monoallelic, and most cases appeared to retain expression of the wild-type allele. Using isogenic T-ALL cells, we found that BRCA2 haploinsufficiency induces selective hypersensitivity to ATR inhibition, in vitro and in vivo. These findings implicate Fanconi-BRCA pathway haploinsufficiency in the molecular pathogenesis of T-ALL, and provide a therapeutic rationale for inhibition of ATR or other druggable effectors of homologous recombination.
Collapse
Affiliation(s)
- Gayle P. Pouliot
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - James Degar
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Laura Hinze
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Bose Kochupurakkal
- Center for DNA Damage and Repair and Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Chau D. Vo
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Melissa A. Burns
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Lisa Moreau
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Center for DNA Damage and Repair and Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Chirag Ganesa
- Center for DNA Damage and Repair and Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Justine Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sofie Peirs
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bjorn Menten
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Mignon L. Loh
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Stephen P. Hunger
- Division of Oncology and the Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lewis B. Silverman
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Marian H. Harris
- Department of Pathology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Kristen E. Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Andrew P. Weng
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Alan D. D’Andrea
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Center for DNA Damage and Repair and Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Taylor AMR, Rothblum-Oviatt C, Ellis NA, Hickson ID, Meyer S, Crawford TO, Smogorzewska A, Pietrucha B, Weemaes C, Stewart GS. Chromosome instability syndromes. Nat Rev Dis Primers 2019; 5:64. [PMID: 31537806 PMCID: PMC10617425 DOI: 10.1038/s41572-019-0113-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 01/28/2023]
Abstract
Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.
Collapse
Affiliation(s)
- A Malcolm R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | | - Nathan A Ellis
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, and Paediatric and Adolescent Oncology, Institute of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Paediatric and Adolescent Haematology and Oncology, Royal Manchester Children's Hospital and The Christie NHS Trust, Manchester, UK
| | - Thomas O Crawford
- Department of Neurology and Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Corry Weemaes
- Department of Pediatrics (Pediatric Immunology), Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017; 3:840-856. [PMID: 29198440 DOI: 10.1016/j.trecan.2017.10.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
The extremely high cancer incidence associated with patients suffering from a rare human genetic disease, Fanconi anemia (FA), demonstrates the importance of FA genes. Over the course of human tumor development, FA genes perform critical tumor-suppression roles. In doing so, FA provides researchers with a unique genetic model system to study cancer etiology. Here, we review how aberrant function of the 22 FA genes and their signaling network contributes to malignancy. From this perspective, we will also discuss how the knowledge discovered from FA research serves basic and translational cancer research.
Collapse
Affiliation(s)
- Manoj Nepal
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Raymond Che
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Chi Ma
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
10
|
Meyer S, Stevens A, Paredes R, Schneider M, Walker MJ, Williamson AJK, Gonzalez-Sanchez MB, Smetsers S, Dalal V, Teng HY, White DJ, Taylor S, Muter J, Pierce A, de Leonibus C, Rockx DAP, Rooimans MA, Spooncer E, Stauffer S, Biswas K, Godthelp B, Dorsman J, Clayton PE, Sharan SK, Whetton AD. Acquired cross-linker resistance associated with a novel spliced BRCA2 protein variant for molecular phenotyping of BRCA2 disruption. Cell Death Dis 2017; 8:e2875. [PMID: 28617445 PMCID: PMC5520920 DOI: 10.1038/cddis.2017.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022]
Abstract
BRCA2 encodes a protein with a fundamental role in homologous recombination that is essential for normal development. Carrier status of mutations in BRCA2 is associated with familial breast and ovarian cancer, while bi-allelic BRCA2 mutations can cause Fanconi anemia (FA), a cancer predisposition syndrome with cellular cross-linker hypersensitivity. Cancers associated with BRCA2 mutations can acquire chemo-resistance on relapse. We modeled acquired cross-linker resistance with an FA-derived BRCA2-mutated acute myeloid leukemia (AML) platform. Associated with acquired cross-linker resistance was the expression of a functional BRCA2 protein variant lacking exon 5 and exon 7 (BRCA2ΔE5+7), implying a role for BRCA2 splicing for acquired chemo-resistance. Integrated network analysis of transcriptomic and proteomic differences for phenotyping of BRCA2 disruption infers impact on transcription and chromatin remodeling in addition to the DNA damage response. The striking overlap with transcriptional profiles of FA patient hematopoiesis and BRCA mutation associated ovarian cancer helps define and explicate the ‘BRCAness’ profile.
Collapse
Affiliation(s)
- Stefan Meyer
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric and Adolescent Oncology, Royal Manchester Children's Hospital, Manchester, UK.,Young Oncology Unit, Christie Hospital, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Roberto Paredes
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Marion Schneider
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Walker
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew J K Williamson
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Maria-Belen Gonzalez-Sanchez
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Stephanie Smetsers
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Vineet Dalal
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Hsiang Ying Teng
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Daniel J White
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Sam Taylor
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Joanne Muter
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew Pierce
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Chiara de Leonibus
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Davy A P Rockx
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Elaine Spooncer
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Stacey Stauffer
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Kajal Biswas
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Barbara Godthelp
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Josephine Dorsman
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter E Clayton
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Shyam K Sharan
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Anthony D Whetton
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Stoller Biomarker Discovery Centre, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Chang LX, Ren RR, Yang WY, Zhang JY, Wan Y, Liu TF, Zhang L, Chen XJ, Zhu S, Ruan M, Chen X, Liu XM, Qi BQ, Zhang RR, Zou Y, Chen YM, Zhu XF. [Association between clinical outcome and gene mutation in children with Fanconi anemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:742-745. [PMID: 27530793 PMCID: PMC7399524 DOI: 10.7499/j.issn.1008-8830.2016.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/16/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To investigate the association between clinical outcome and gene mutations in children with Fanconi anemia (FA). METHODS A retrospective analysis was performed for the clinical data of six children with the same severity of FA and receiving the same treatment. At first, single cell gel electrophoresis and chromosome breakage induced by mitomycin C were performed for diagnosis. Then the gene detection kit for congenital bone marrow failure diseases or complementation test was used for genotyping of FA. Finally the association between the clinical outcome at 3, 6, 9, or 12 months after treatment and gene mutation was analyzed. RESULTS Of all the six FA children, five had FANCA type disease, and one had FANCM type disease; four children carried two or more FA gene mutations. Among the children with the same severity of FA, those with more FA mutations had a younger age of onset and poorer response to medication, and tended to progress to a severe type. CONCLUSIONS Children carrying more than two FA mutations have a poor clinical outcome, and hematopoietic stem cell transplantation should be performed as soon as possible.
Collapse
Affiliation(s)
- Li-Xian Chang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Theruvath J, Russo A, Kron B, Paret C, Wingerter A, El Malki K, Neu MA, Alt F, Staatz G, Stein R, Seidmann L, Prawitt D, Faber J. Next-generation sequencing reveals germline mutations in an infant with synchronous occurrence of nephro- and neuroblastoma. Pediatr Hematol Oncol 2016; 33:264-75. [PMID: 27285993 DOI: 10.1080/08880018.2016.1184362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although neuro- and nephroblastoma are common solid tumors in children, the simultaneous occurrence is very rare and is often associated with syndromes. Here, we present a unique case of synchronous occurrence of neuro- and nephroblastoma in an infant with no signs of congenital anomalies or a syndrome. We performed genetic testing for possible candidate genes as underlying mutation using the next-generation sequencing (NGS) approach to target 94 genes and 284 single-nucleotide polymorphisms (SNPs) involved in cancer. We uncovered a novel heterozygous germline missense mutation p.F58L (c.172T→C) in the anaplastic lymphoma kinase (ALK) gene and one novel heterozygous rearrangement Q418Hfs(*)11 (c.1254_1264delins TTACTTAGTACAAGAACTG) in the Fanconi anemia gene FANCD2 leading to a truncated protein. Besides, several SNPs associated with the occurrence of neuroblastoma and/or nephroblastoma or multiple primary tumors were identified. The next-generation sequencing approach might in the future be useful not only in understanding tumor etiology but also in recognizing new genetic markers and targets for future personalized therapy.
Collapse
Affiliation(s)
- Johanna Theruvath
- a Department of Pediatric Hematology/Oncology , University Medical Center Mainz , Mainz , Germany
| | - Alexandra Russo
- a Department of Pediatric Hematology/Oncology , University Medical Center Mainz , Mainz , Germany
| | - Bettina Kron
- a Department of Pediatric Hematology/Oncology , University Medical Center Mainz , Mainz , Germany
| | - Claudia Paret
- a Department of Pediatric Hematology/Oncology , University Medical Center Mainz , Mainz , Germany
| | - Arthur Wingerter
- a Department of Pediatric Hematology/Oncology , University Medical Center Mainz , Mainz , Germany
| | - Khalifa El Malki
- a Department of Pediatric Hematology/Oncology , University Medical Center Mainz , Mainz , Germany
| | - Marie A Neu
- a Department of Pediatric Hematology/Oncology , University Medical Center Mainz , Mainz , Germany
| | - Francesca Alt
- a Department of Pediatric Hematology/Oncology , University Medical Center Mainz , Mainz , Germany
| | - Gundula Staatz
- b Department of Pediatric Radiology , University Medical Center Mainz , Mainz , Germany
| | - Raimund Stein
- c Department of Pediatric Urology , University Medical Center Mainz , Mainz , Germany
| | - Larissa Seidmann
- d Department of Pediatric Pathology , University Medical Center Mainz , Mainz , Germany
| | - Dirk Prawitt
- e Department of Molecular Pediatrics , Center for Pediatrics and Adolescent Medicine , University Medical Center Mainz , Mainz , Germany
| | - Jörg Faber
- a Department of Pediatric Hematology/Oncology , University Medical Center Mainz , Mainz , Germany
| |
Collapse
|
13
|
Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics 2015; 9:32. [PMID: 26596371 PMCID: PMC4657327 DOI: 10.1186/s40246-015-0054-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia (FA) is a recessively inherited disease manifesting developmental abnormalities, bone marrow failure, and increased risk of malignancies. Whereas FA has been studied for nearly 90 years, only in the last 20 years have increasing numbers of genes been implicated in the pathogenesis associated with this genetic disease. To date, 19 genes have been identified that encode Fanconi anemia complementation group proteins, all of which are named or aliased, using the root symbol “FANC.” Fanconi anemia subtype (FANC) proteins function in a common DNA repair pathway called “the FA pathway,” which is essential for maintaining genomic integrity. The various FANC mutant proteins contribute to distinct steps associated with FA pathogenesis. Herein, we provide a review update of the 19 human FANC and their mouse orthologs, an evolutionary perspective on the FANC genes, and the functional significance of the FA DNA repair pathway in association with clinical disorders. This is an example of a set of genes––known to exist in vertebrates, invertebrates, plants, and yeast––that are grouped together on the basis of shared biochemical and physiological functions, rather than evolutionary phylogeny, and have been named on this basis by the HUGO Gene Nomenclature Committee (HGNC).
Collapse
Affiliation(s)
- Hongbin Dong
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, CB10 1SD, UK
| | - David C Thompson
- Department of Clinical Practice, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Hans Joenje
- Department of Clinical Genetics and the Cancer Center Amsterdam/VUmc Institute for Cancer and Immunology, VU University Medical Center, NL-1081 BT, Amsterdam, The Netherlands
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA.
| |
Collapse
|
14
|
Shen Y, Zhang J, Yu H, Fei P. Advances in the understanding of Fanconi Anemia Complementation Group D2 Protein (FANCD2) in human cancer. CANCER CELL & MICROENVIRONMENT 2015; 2:e986. [PMID: 26640811 PMCID: PMC4667986 DOI: 10.14800/ccm.986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare human genetic disease, resulting from dysfunction in any of 17 known complementation proteins: FANC-A, B, C, D1, D2, E, F, G, I, J, L, M, N, O, P, Q & S, and other unknowns. Besides the severe bone marrow failure, an extremely high incidence of cancer as well as many other clinic symptoms associated with FA patients, FA cells are known of insufficiency in homologous recombination, DNA mismatch repair, nucleotide excision repair, translesion DNA synthesis, and other molecular defects, leading to genome instability. Those similar molecular and cellular/tissue features show that all FA proteins function in one common signaling pathway, namely, the FA pathway. The monoubiquitination of FANCD2 is the central step of the FA pathway activation upon DNA damage or during DNA replication. The molecular functions of FANCD2 emerge as a very attractive filed of investigation in cancer research. Herein, we review the recent progresses in FANCD2 functions at these rapidly progressed aspects.
Collapse
Affiliation(s)
- Yihang Shen
- Divisions of Cancer Biology University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, MN, USA
| | - Herbert Yu
- Divisions of Epidemiology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Peiwen Fei
- Divisions of Cancer Biology University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
15
|
Zhang J, Barbaro P, Guo Y, Alodaib A, Li J, Gold W, Adès L, Keating BJ, Xu X, Teo J, Hakonarson H, Christodoulou J. Utility of next-generation sequencing technologies for the efficient genetic resolution of haematological disorders. Clin Genet 2015; 89:163-72. [PMID: 25703294 DOI: 10.1111/cge.12573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/01/2015] [Accepted: 02/12/2015] [Indexed: 12/22/2022]
Abstract
Next-generation sequencing (NGS) has now evolved to be a relatively affordable and efficient means of detecting genetic mutations. Whole genome sequencing (WGS) or whole exome sequencing (WES) offers the opportunity for rapid diagnosis in many paediatric haematological conditions, where phenotypes are variable and either a large number of genes are involved, or the genes are large making sanger sequencing expensive and labour-intensive. NGS offers the potential for gene discovery in patients who do not have mutations in currently known genes. This report shows how WES was used in the diagnosis of six paediatric haematology cases. In four cases (Diamond-Blackfan anaemia, congenital neutropenia (n = 2), and Fanconi anaemia), the diagnosis was suspected based on classical phenotype, and NGS confirmed those suspicions. Mutations in RPS19, ELANE and FANCD2 were found. The final two cases (MYH9 associated macrothrombocytopenia associated with multiple congenital anomalies; atypical juvenile myelomonocytic leukaemia associated with a KRAS mutation) highlight the utility of NGS where the diagnosis is less certain, or where there is an unusual phenotype. We discuss the advantages and limitations of NGS in the setting of these cases, and in haematological conditions more broadly, and discuss where NGS is most efficiently used.
Collapse
Affiliation(s)
- J Zhang
- T-Life Research Center, Fudan University, Shanghai, 200433, China.,Department of BioMedical Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - P Barbaro
- Haematology Department, The Children's Hospital at Westmead, Sydney, Australia.,Cancer Research Unit, Children's Medical Research Institute, Westmead, Australia
| | - Y Guo
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A Alodaib
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - J Li
- Department of BioMedical Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - W Gold
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - L Adès
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Clinical Genetics Department, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| | - B J Keating
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Human Genetics Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - X Xu
- Department of BioMedical Research, BGI-Shenzhen, Shenzhen, 518083, China.,Shenzhen Key Laboratory of Genomics, Shenzhen, China.,The Guangdong Enterprise Key Laboratory of Human Disease Genomics, Shenzhen, China
| | - J Teo
- Haematology Department, The Children's Hospital at Westmead, Sydney, Australia
| | - H Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Human Genetics Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Schneider M, Chandler K, Tischkowitz M, Meyer S. Fanconi anaemia: genetics, molecular biology, and cancer - implications for clinical management in children and adults. Clin Genet 2014; 88:13-24. [DOI: 10.1111/cge.12517] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 01/30/2023]
Affiliation(s)
- M. Schneider
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
| | - K. Chandler
- Manchester Academic Health Science Centre; Manchester UK
- Department of Genetic Medicine; University of Manchester, St Mary's Hospital; Manchester UK
| | - M. Tischkowitz
- Department of Medical Genetics; University of Cambridge, Addenbrooke's Hospital; Cambridge UK
| | - S. Meyer
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
- Department of Paediatric Haematology and Oncology; Royal Manchester Children's Hospital; Manchester UK
- Department of Paediatric and Adolescent Oncology; Young Oncology Unit, The Christie NHS Foundation Trust; Manchester UK
| |
Collapse
|
17
|
Chang L, Yuan W, Zeng H, Zhou Q, Wei W, Zhou J, Li M, Wang X, Xu M, Yang F, Yang Y, Cheng T, Zhu X. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients. BMC Med Genomics 2014; 7:24. [PMID: 24885126 PMCID: PMC4038598 DOI: 10.1186/1755-8794-7-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. METHODS We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. RESULTS Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients' clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. CONCLUSIONS Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | | |
Collapse
|
18
|
Stintzing S, Lenz HJ. Molecular pathways: turning proteasomal protein degradation into a unique treatment approach. Clin Cancer Res 2014; 20:3064-70. [PMID: 24756373 DOI: 10.1158/1078-0432.ccr-13-3175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer treatment regimens have evolved from single cytotoxic substances affecting all proliferative tissues toward antibodies and kinase inhibitors targeting tumor-specific pathways. Treatment efficacy and cancer survival have improved overall, and side effects have become less frequent. The ubiquitin-proteasome system-mediated proteasomal protein degradation is the most critical pathway to regulate the quantity of signal proteins involved in carcinogenesis and tumor progression. These processes are, as well as protein recycling, highly regulated and offer targets for biomarker and drug development. Unspecific proteasome inhibitors such as bortezomib and carfilzomib have shown clinical efficacy and are approved for clinical use. Inhibitors of more substrate-specific enzymes of degradation processes are being developed and are now in early clinical trials. The novel compounds focus on the degradation of key regulatory proteins such as p53, p27(Kip1), and ß-catenin, and inhibitors specific for growth factor receptor kinase turnover are in preclinical testing.
Collapse
Affiliation(s)
- Sebastian Stintzing
- Authors' Affiliation: USC/Norris Comprehensive Cancer Center, Keck School of Medicine, Sharon Carpenter Laboratory, Los Angeles, California
| | - Heinz-Josef Lenz
- Authors' Affiliation: USC/Norris Comprehensive Cancer Center, Keck School of Medicine, Sharon Carpenter Laboratory, Los Angeles, California
| |
Collapse
|
19
|
Meyer S, Tischkowitz M, Chandler K, Gillespie A, Birch JM, Evans DG. Fanconi anaemia, BRCA2 mutations and childhood cancer: a developmental perspective from clinical and epidemiological observations with implications for genetic counselling. J Med Genet 2013; 51:71-5. [PMID: 24259538 DOI: 10.1136/jmedgenet-2013-101642] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fanconi anaemia (FA) is an inherited condition characterised by congenital and developmental abnormalities and a strong cancer predisposition. In around 3-5% of cases FA is caused by biallelic mutations in the BRCA2 gene. Individuals heterozygous for BRCA2 mutations have an increased risk of inherited breast and ovarian cancer. We reviewed the mutation spectrum in BRCA2-associated FA, and the spectrum and frequency of BRCA2 mutations in distinct populations. The rarity of FA due to biallelic BRCA2 mutations supports a fundamental role of BRCA2 for prevention of malignant transformation during development. The spectrum of malignancies seen associated with FA support the concept of a tissue selectivity of BRCA2 mutations for development of FA-associated cancers. This specificity is illustrated by the distinct FA-associated BRCA2 mutations that appear to predispose to specific brain or haematological malignancies. For some populations, the number of FA-patients with biallelic BRCA2 disruption is smaller than that expected from the carrier frequency, and this implies that some pregnancies with biallelic BRCA2 mutations do not go to term. The apparent discrepancy between expected and observed incidence of BRCA2 mutation-associated FA in high-frequency carrier populations has important implications for the genetic counselling of couples with recurrent miscarriages from high-risk populations.
Collapse
Affiliation(s)
- Stefan Meyer
- Department of Paediatric and Adolescent Oncology, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|