1
|
Jin S, Na H, Jeon H, Park J, Choe CP. egfl6 expression in the pharyngeal pouch is dispensable for craniofacial development. Anim Cells Syst (Seoul) 2021; 25:255-263. [PMID: 34745432 PMCID: PMC8567925 DOI: 10.1080/19768354.2021.1970018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epidermal growth factor-like domain multiple 6 (Egfl6) is a basement membrane protein and plays an important role in hair follicle morphogenesis, angiogenesis, notochord development in vertebrates. Although egfl6 expression in the developing head was observed in zebrafish, its role for craniofacial development and the determination of the pharyngeal region expressing egfl6, have not been reported yet. Here, we report the expression patterns and function of egfl6 in craniofacial development in zebrafish. egfl6 was expressed sequentially in the developing pharyngeal pouches that are key epithelial structures governing the development of the vertebrate head. However, loss-of-function mutations in egfl6 did not cause any craniofacial defects, including the pouches as well as the thymus and facial cartilages whose development is contingent upon appropriate pouch formation. egfl6 was unlikely redundant with egfl7 expressed in a distinct pharyngeal region from that of egfl6 in craniofacial development because reduction of egfl7 with a MO in egfl6 mutants did not affect craniofacial development. In addition, we found that egfl6 carried an endogenous start loss mutation in the wild-type Tübingen strain, implying egfl6 would be a non-functional gene. Taken all together, we suggest that egfl6 expression in the pharyngeal pouches is not required for craniofacial development in zebrafish.
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Hyejee Na
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jangwon Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea.,Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
2
|
Okumura A, Hayashi T, Ebisawa M, Yoshimura M, Sasagawa Y, Nikaido I, Umesono Y, Mochii M. Cell type-specific transcriptome analysis unveils secreted signaling molecule genes expressed in apical epithelial cap during appendage regeneration. Dev Growth Differ 2019; 61:447-456. [PMID: 31713234 DOI: 10.1111/dgd.12635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Abstract
Wound epidermis (WE) and the apical epithelial cap (AEC) are believed to trigger regeneration of amputated appendages such as limb and tail in amphibians by producing certain secreted signaling molecules. To date, however, only limited information about the molecular signatures of these epidermal structures is available. Here we used a transgenic Xenopus laevis line harboring the enhanced green fluorescent protein (egfp) gene under control of an es1 gene regulatory sequence to isolate WE/AEC cells by performing fluorescence-activated cell sorting during the time course of tail regeneration (day 1, day 2, day 3 and day 4 after amputation). Time-course transcriptome analysis of these isolated WE/AEC cells revealed that more than 8,000 genes, including genes involved in signaling pathways such as those of reactive oxygen species, fibroblast growth factor (FGF), canonical and non-canonical Wnt, transforming growth factor β (TGF β) and Notch, displayed dynamic changes of their expression during tail regeneration. Notably, this approach enabled us to newly identify seven secreted signaling molecule genes (mdk, fstl, slit1, tgfβ1, bmp7.1, angptl2 and egfl6) that are highly expressed in tail AEC cells. Among these genes, five (mdk, fstl, slit1, tgfβ1 and bmp7.1) were also highly expressed in limb AEC cells but the other two (angptl2 and egfl6) are specifically expressed in tail AEC cells. Interestingly, there was no expression of fgf8 in tail WE/AEC cells, whose expression and pivotal role in limb AEC cells have been reported previously. Thus, we identified common and different properties between tail and limb AEC cells.
Collapse
Affiliation(s)
- Akinori Okumura
- Graduate School of Life Science, University of Hyogo, Akou-gun, Hyogo, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Masashi Ebisawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, RIKEN, Saitama, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Ibaraki, Japan
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, Akou-gun, Hyogo, Japan
| | - Makoto Mochii
- Graduate School of Life Science, University of Hyogo, Akou-gun, Hyogo, Japan
| |
Collapse
|
3
|
Chang CC, Sung WW, Hsu HT, Yeh CM, Lee CH, Chen YL, Liu TC, Yeh KT. Validation of EGFL6 expression as a prognostic marker in patients with lung adenocarcinoma in Taiwan: a retrospective study. BMJ Open 2018; 8:e021385. [PMID: 29934389 PMCID: PMC6020984 DOI: 10.1136/bmjopen-2017-021385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Lung adenocarcinoma is a non-small cell lung cancer, a common cancer in both genders, and has poor clinical outcome. Our aim was to evaluate the role of epidermal growth factor (EGF)-like domain multiple 6 (EGFL6) and its prognostic significance in lung adenocarcinoma. METHODS EGFL6 expression was studied by immunohistochemical staining of specimens from 150 patients with lung adenocarcinoma. The correlation between clinicopathological features and EGFL6 expression was quantitatively analysed. We used Kaplan-Meier analysis and Cox proportional hazard models to examine the prognostic value of EGFL6 in terms of overall survival. RESULTS No significant correlation was found between EGFL6 expression and clinical parameters. However, patients with high levels of EGFL6 expression showed a tendency towards poor prognosis, with borderline statistical significance. Grouping the patients according to a medium age value revealed a significant association between high EGFL6 expression and poor clinical outcome in young patients. This finding was further confirmed by grouping the patients into three groups according to age. HR in patients with high EGFL6 expression was higher in younger patients than in older patients. CONCLUSION High EGFL6 expression may serve as a marker for poor prognosis of lung adenocarcinoma, especially in younger patients.
Collapse
Affiliation(s)
- Chun-Chi Chang
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ting Hsu
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Chien-Hsun Lee
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ya-Ling Chen
- Department of Nursing, Changhua Christian Hospital, Changhua, Taiwan
| | - Ta-Chih Liu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Tu Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
4
|
Wang X, Yuan W, Wang X, Qi J, Qin Y, Shi Y, Zhang J, Gong J, Dong Z, Liu X, Sun C, Chai R, Le Noble F, Liu D. The somite-secreted factor Maeg promotes zebrafish embryonic angiogenesis. Oncotarget 2018; 7:77749-77763. [PMID: 27780917 PMCID: PMC5363618 DOI: 10.18632/oncotarget.12793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/12/2016] [Indexed: 01/06/2023] Open
Abstract
MAM and EGF containing gene (MAEG), also called Epidermal Growth Factor-like domain multiple 6 (EGFL6), belongs to the epidermal growth factor repeat superfamily. The role of Maeg in zebrafish angiogenesis remains unclear. It was demonstrated that maeg was dynamically expressed in zebrafish developing somite during a time window encompassing many key steps in embryonic angiogenesis. Maeg loss-of-function embryos showed reduced endothelial cell number and filopodia extensions of intersegmental vessels (ISVs). Maeg gain-of-function induced ectopic sprouting evolving into a hyperbranched and functional perfused vasculature. Mechanistically we demonstrate that Maeg promotes angiogenesis dependent on RGD domain and stimulates activation of Akt and Erk signaling in vivo. Loss of Maeg or Itgb1, augmented expression of Notch receptors, and inhibiting Notch signaling or Dll4 partially rescued angiogenic phenotypes suggesting that Notch acts downstream of Itgb1. We conclude that Maeg acts as a positive regulator of angiogenic cell behavior and formation of functional vessels.
Collapse
Affiliation(s)
- Xin Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Yuan
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xueqian Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Jialing Qi
- Medical College, Nantong University, Nantong, China
| | - Yinyin Qin
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yunwei Shi
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Jie Zhang
- Medical College, Nantong University, Nantong, China
| | - Jie Gong
- School of life science, Nantong University, Nantong, China
| | - Zhangji Dong
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Chen Sun
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ferdinand Le Noble
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
5
|
Lv F, Zhu C, Yan X, Wang X, Liu D. Generation of a mef2aa:EGFP transgenic zebrafish line that expresses EGFP in muscle cells. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:287-294. [PMID: 27632017 DOI: 10.1007/s10695-016-0286-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Transgenesis is an important tool for exploring gene expression and function. The myocyte enhancer factor 2a (mef2a) gene encodes a member of the Mef2 protein family that is involved in vertebrate skeletal, cardiac, and smooth muscle development and differentiation during myogenesis. According to studies on human and animal models, mef2a is highly expressed in the heart and somites. To explore the potential of mef2a as a tool for selective labeling of muscle cells in living zebrafish embryos, we constructed a transgene mef2aa:EGFP to induce the expression of green fluorescent protein (GFP) under the control of mef2a promoter. A ~2-kb DNA fragment, upstream of the translational start site of mef2aa, was identified to drive muscle-specific expression of EGFP in zebrafish embryos. Interestingly, the cranial muscles, abductor muscle, and adductor muscle were clearly labeled with EGFP in the established line Tg(mef2aa:EGFP) ntu803 . In addition, we showed that mef2aa mRNA was highly present in adult zebrafish heart, but not the skeleton muscle, whereas it was expressed in both embryonic heart and myotome, suggesting that mef2a is vital to the function of adult heart in vertebrates.
Collapse
Affiliation(s)
- Feng Lv
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, China
- Nantong Science and Technology College, Qingnian Middle Road 136, Nantong, 226006, China
| | - Chenwen Zhu
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Xinghong Yan
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, China.
| | - Xin Wang
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Qixiu Road 19, Nantong, 226001, China
| | - Dong Liu
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Qixiu Road 19, Nantong, 226001, China.
| |
Collapse
|
6
|
Shi YW, Yuan W, Wang X, Gong J, Zhu SX, Chai LL, Qi JL, Qin YY, Gao Y, Zhou YL, Fan XL, Ji CY, Wu JY, Wang ZW, Liu D. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish. Sci Rep 2016; 6:30189. [PMID: 27452835 PMCID: PMC4958954 DOI: 10.1038/srep30189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7-9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4.
Collapse
Affiliation(s)
- Yun-Wei Shi
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Wei Yuan
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Xin Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Jie Gong
- School of life science, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Shun-Xing Zhu
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Lin-Lin Chai
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Jia-Ling Qi
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Yin-Yin Qin
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Yu Gao
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Yu-Ling Zhou
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Xiao-Le Fan
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Chun-Ya Ji
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Jia-Yi Wu
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Zhi-Wei Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC.,Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| |
Collapse
|