1
|
Dong Y, Wang X, Wei L, Liu Z, Zhou J, Zhao H, Wang J, Liu W, Li X. Uncoordinated 51-like kinase 1a/b and 2 in fish Megalobrama amblycephala: Molecular cloning, functional characterization, and their potential roles in glucose metabolism. Int J Biol Macromol 2024; 265:130985. [PMID: 38518944 DOI: 10.1016/j.ijbiomac.2024.130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
Uncoordinated (Unc) 51-like kinase (ulk1) and ulk2 are closely involved in autophagy activation, but little is known about their roles in regulating glucose homeostasis. In this study, the genes of ulk1a, ulk1b and ulk2 were cloned and characterized in fish Megalobrama amblycephala. All the three genes shared the approximate N-terminal kinase domain and the C-terminal Atg1-like_tMIT domain structure, while the amino acid sequence identity of them are different between M. amblycephala and other vertebrates. Their transcripts were widely observed in various tissues (brain, muscle, gill, heart, spleen, eye, liver, intestine, abdominal adipose and kidney), but differed in tissue expression patterns. During the glucose tolerance test and the insulin tolerance test, the up-regulated transcriptions of ulk1a, ulk1b and ulk2 were all found despite some differences in the temporal patterns. At the same time, the activities of glycolytic enzymes like hexokinase and phosphofructokinase both showed parallel increases. Furthermore, the feeding of a high-carbohydrate diet decreased the transcriptions of ulk1a, ulk1b and ulk2. Collectively, this study demonstrated that ulk1a, ulk1b and ulk2 in M. amblycephala had similar molecular characterizations, but with different conservation and tissue expression patterns. In addition, ulk1/2 might play important roles in maintaining the glucose homeostasis in fish through regulating the glycolytic pathway.
Collapse
Affiliation(s)
- Yanzou Dong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Luyao Wei
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Zishang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Jingyu Zhou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Hanjing Zhao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Jianfeng Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, People's Republic of China.
| |
Collapse
|
2
|
Xu C, Li XF, Tian HY, Shi HJ, Zhang DD, Abasubong KP, Liu WB. Metformin improves the glucose homeostasis of Wuchang bream fed high-carbohydrate diets: a dynamic study. Endocr Connect 2019; 8:182-194. [PMID: 30703066 PMCID: PMC6391905 DOI: 10.1530/ec-18-0517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 01/03/2023]
Abstract
After a 12-week feeding trial, the glucose tolerance test was performed in Megalobrama amblycephala to evaluate the effects of metformin on the metabolic responses of glycolipids. Plasma insulin peaked at 2 h, then decreased to the basal value at 8-12 h post-injection. Plasma triglyceride levels and liver glycogen contents of the control group was decreased significantly during the first 2 and 1 h, respectively. Then, they returned to basal values at 12 h. During the whole sampling period, the high-carbohydrate groups had significantly higher levels of plasma metabolites and liver glycogen than those of the control group, and metformin supplementation enhanced these changes (except insulin levels). Glucose administration lowered the transcriptions of ampk α1, ampk α2, pepck, g6pase, fbpase, cpt IA and aco, the phosphorylation of Ampk α and the activities of the gluconeogenic enzymes during the first 2-4 h, while the opposite was true of glut 2, gs, gk, pk, accα and fas. High-carbohydrate diets significantly increased the transcriptions of ampk α1, ampk α2, glut 2, gs, gk, pk, accα and fas, the phosphorylation of Ampk α and the activities of the glycolytic enzymes during the whole sampling period, while the opposite was true for the remaining indicators. Furthermore, metformin significantly upregulated the aforementioned indicators (except accα and fas) and the transcriptions of cpt IA and aco. Overall, metformin benefits the glucose homeostasis of Megalobrama amblycephala fed high-carbohydrate diets through the activation of Ampk and the stimulation of glycolysis, glycogenesis and fatty acid oxidation, while depressing gluconeogenesis and lipogenesis.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Yan Tian
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Province Jiangsu, China
| | - Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Correspondence should be addressed to W-B Liu:
| |
Collapse
|