1
|
Pietsch C, Konrad J, Wernicke von Siebenthal E, Pawlak P. Multiple faces of stress in the zebrafish ( Danio rerio) brain. Front Physiol 2024; 15:1373234. [PMID: 38711953 PMCID: PMC11070943 DOI: 10.3389/fphys.2024.1373234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
The changing expressions of certain genes as a consequence of exposure to stressors has not been studied in detail in the fish brain. Therefore, a stress trial with zebrafish was conducted, aiming at identifying relevant gene regulation pathways in different regions of the brain. As acute stressors within this trial, feed rewarding, feed restriction, and air exposure have been used. The gene expression data from the experimental fish brains have been analyzed by means of principal component analyses (PCAs), whereby the individual genes have been compiled according to the regulation pathways in the brain. The results did not indicate a mutual response across the treatment and gender groups. To evaluate whether a similar sample structure belonging to a large sample size would have allowed the classification of the gene expression patterns according to the treatments, the data have been bootstrapped and used for building random forest models. These revealed a high accuracy of the classifications, but different genes in the female and male zebrafish were found to have contributed to the classification algorithms the most. These analyses showed that less than eight genes are, in most cases, sufficient for an accurate classification. Moreover, mainly genes belonging to the stress axis, to the isotocin regulation pathways, or to the serotonergic pathways had the strongest influence on the outcome of the classification models.
Collapse
Affiliation(s)
- Constanze Pietsch
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Jonathan Konrad
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Elena Wernicke von Siebenthal
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Paulina Pawlak
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Li YF, Lin YT, Wang YQ, Ni JY, Power DM. Ioxynil and diethylstilbestrol impair cardiac performance and shell growth in the mussel Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166834. [PMID: 37717744 DOI: 10.1016/j.scitotenv.2023.166834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 09/02/2023] [Indexed: 09/19/2023]
Abstract
The herbicide ioxynil (IOX) and the synthetic estrogen diethylstilbestrol (DES) are environmentally relevant contaminants that act as endocrine disruptors (EDCs) and have recently been shown to be cardiovascular disruptors in vertebrates. Mussels, Mytilus coruscus, were exposed to low doses of IOX (0.37, 0.037 and 0.0037 mg/L) and DES (0.27, 0.027 and 0.0027 mg/L) via the water and the effect monitored by generating whole animal transcriptomes and measuring cardiac performance and shell growth. One day after IOX (0.37 and 0.037 mg/L) and DES (0.27 and 0.027 mg/L) exposure heart rate frequency was decreased in both groups and 0.27 mg/L DES significantly reduced heart rate frequency with increasing time of exposure (P < 0.05) and no acclimatization occurred. The functional effects were coupled to significant differential expression of genes of the serotonergic synapse pathway and cardiac-related genes at 0.027 mg/L DES, which suggests that impaired heart function may be due to interference with neuroendocrine regulation and direct cardiac effect genes. Multiple genes related to detoxifying xenobiotic substances were up regulated and genes related to immune function were down regulated in the DES group (vs. control), indicating that detoxification processes were enhanced, and the immune response was depressed. In contrast, IOX had a minor disrupting effect at a molecular level. Of note was a significant suppression (P < 0.05) by DES of shell growth in juveniles and lower doses (< 0.0027 mg/L) had a more severe effect. The shell growth depression in 0.0027 mg/L DES-treated juveniles was not accompanied by abundant differential gene expression, suggesting that the effect of 0.0027 mg/L DES on shell growth may be direct. The results obtained in the present study reveal for the first time that IOX and DES may act as neuroendocrine disrupters with a broad spectrum of effects on cardiac performance and shell growth, and that DES exposure had a much more pronounced effect than IOX in a marine bivalve.
Collapse
Affiliation(s)
- Yi-Feng Li
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal.
| | - Yue-Tong Lin
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yu-Qing Wang
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ji-Yue Ni
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal.
| |
Collapse
|
3
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
4
|
Chabenat A, Bidel F, Knigge T, Bellanger C. Alteration of predatory behaviour and growth in juvenile cuttlefish by fluoxetine and venlafaxine. CHEMOSPHERE 2021; 277:130169. [PMID: 33794438 DOI: 10.1016/j.chemosphere.2021.130169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Antidepressants in coastal waters may affect ontogeny of predatory behaviour in cuttlefish, which may, as a result, affect growth of newly-hatched cuttlefish. We investigated the effects of two of the most prescribed antidepressants, fluoxetine (FLX) and venlafaxine (VEN) in environmentally realistic concentrations on the predatory behaviour of hatchlings of Sepia officinalis. Newly-hatched cuttlefish were exposed from 1 h (i.e., day 1) to 5 days after hatching to either FLX alone (5 ng·L-1) or combined with VEN (2.5 ng·L-1 or 5 ng·L-1 each) to simulate an environmentally realistic exposure scenario. Their predatory behaviour was analysed through several parameters: prey detection, feeding motivation and success in catching the prey. All parameters improved in control animals over the first five days. The combination of FLX and VEN at 5 ng·L-1 each altered the predatory behaviour of the hatchlings by increasing the latency before attacking the prey, i.e., reducing feeding motivation, as well as by reducing the number of successful attacks. The changes in predatory behaviour tended to reduce food intake and affected growth significantly at 28 days post-hatching. Exposures to either FLX at 5 ng·L-1 or FLX and VEN in mixture at 2.5 ng·L-1 each tended to produce similar effects, even though they were not statistically significant. It is likely that the antidepressants affect maturation of the predatory behaviour and/or learning processes associated with the development of this behaviour. The slightest delay in maturation processes may have detrimental consequences for growth and population fitness.
Collapse
Affiliation(s)
- Apolline Chabenat
- NORMANDIE UNIV, UNICAEN, UNIV RENNES, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-14000, Caen, France; NORMANDIE UNIV, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I02, Environmental Stress and Biomonitoring of Aquatic Environments (SEBIO), 76600, Le Havre, France
| | - Flavie Bidel
- NORMANDIE UNIV, UNICAEN, UNIV RENNES, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-14000, Caen, France; Department of Neurobiology, Silberman Institute of Life Sciences, Hebrew University, Jerusalem, 9190401, Israel
| | - Thomas Knigge
- NORMANDIE UNIV, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I02, Environmental Stress and Biomonitoring of Aquatic Environments (SEBIO), 76600, Le Havre, France
| | - Cécile Bellanger
- NORMANDIE UNIV, UNICAEN, UNIV RENNES, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-14000, Caen, France.
| |
Collapse
|
5
|
Roy J, Larroquet L, Surget A, Lanuque A, Sandres F, Terrier F, Corraze G, Chung-Yung Lee J, Skiba-Cassy S. Impact on cerebral function in rainbow trout fed with plant based omega-3 long chain polyunsaturated fatty acids enriched with DHA and EPA. FISH & SHELLFISH IMMUNOLOGY 2020; 103:409-420. [PMID: 32473359 DOI: 10.1016/j.fsi.2020.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Characterization and modulation of cerebral function by ω-3 long chain polyunsaturated fatty acids (ω-3 LC-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) enrichment in plant based-diet were studied in rainbow trout (Oncorhynchus mikyss). We hypothesized that ω-3 LC-PUFAs are involved in the regulation of cerebral function in fish. During nine weeks, we examined the growth performance of rainbow trout for three experimental plant based-diets containing distinct levels of EPA and DHA. Using RT-qPCR, we assessed mRNA genes related to feeding behavior regulated by the central nervous system of humans, rodents and fish. These include markers of neuropeptides, indicators of cellular specification, animal stress, oxidant status, cytokines and genes regulating animal behaviour. ω-3 LC-PUFAs enrichment decreased daily food intake and induced a simultaneous mRNA expression increase in orexigenic transcript npy peptide and a decrease in anorexigen transcript pomcA peptide in the hypothalamus. Overall transcript genes related to proinflammatory cytokines, inflammation, antioxidant status, cortisol pathway, serotoninergic pathways and dopaminergic pathways were down-regulated in the juveniles fed the high ω-3 LC-PUFAs diet. However, the mRNA expression of transcripts related to cell specification were down regulated, namely tmem119 markers of microglial cell in forebrain and midbrain, gfap markers of astrocyte in the midbrain, and rbfox3 markers of neurons in the midbrain and hindbrain in juveniles fed high ω-3 experimental diet. In conclusion, this study revealed that a diet rich in ω-3 LC-PUFAs affected a relatively high proportion of the brain function in juvenile rainbow trout through mechanisms comparable to those characterized previously in mammals.
Collapse
Affiliation(s)
- Jérôme Roy
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France.
| | - Laurence Larroquet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Anne Surget
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Franck Sandres
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Geneviève Corraze
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | | | - Sandrine Skiba-Cassy
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
6
|
Dorelle LS, Da Cuña RH, Sganga DE, Rey Vázquez G, López Greco L, Lo Nostro FL. Fluoxetine exposure disrupts food intake and energy storage in the cichlid fish Cichlasoma dimerus (Teleostei, Cichliformes). CHEMOSPHERE 2020; 238:124609. [PMID: 31524604 DOI: 10.1016/j.chemosphere.2019.124609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Human pharmaceuticals are pollutants of special concern due to their widespread consumption over the last decades, their high persistence in the environment, and the reported alterations produced on non-target organism. The antidepressant fluoxetine (FLX) exerts its effect by inhibiting serotonin (5-HT) reuptake at the presynaptic membrane, thus increasing brain serotonergic activity. In vertebrates, there is a clear inverse relationship between hypothalamic 5-HT levels and food intake, therefore we hypothesized that FLX would inhibit food intake, and in consequence alter energy metabolism in freshwater fish. The aim of this study was to analyze the effect of FLX on feeding behavior and energy storage of the cichlid fish Cichlasoma dimerus. Adult fish were intraperitoneally injected daily with 2 or 20 μg.g-1 FLX or saline for a 5-day period, during which the 20 μg.g-1 FLX-injected fish exhibited a marked reduction in food intake, consistent with a decrease in total body weight and total hepatocyte area observed at the end of the experiment. Although not statistically significant, a marked 50% decrease in glycogen and lipid content and an increase in protein levels in liver was observed for the 20 μg.g-1 FLX dose. This was evidenced histochemically by a weak PAS positive reaction and an intense Coomasie Blue stain. Taken together, these results suggest that the SSRI antidepressant FLX produces an anorectic effect in adults of C. dimerus, which could alter normal physiological function and, in consequence, have a negative impact on fish growth, reproduction, and population success.
Collapse
Affiliation(s)
- Luciana S Dorelle
- CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina
| | - Rodrigo H Da Cuña
- CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Argentina
| | - Daniela E Sganga
- CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), Laboratorio de Biología de la Reproducción, Crecimiento y Nutrición de Crustáceos Decápodos, Buenos Aires, Argentina
| | - Graciela Rey Vázquez
- CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Argentina
| | - Laura López Greco
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), Laboratorio de Biología de la Reproducción, Crecimiento y Nutrición de Crustáceos Decápodos, Buenos Aires, Argentina
| | - Fabiana L Lo Nostro
- CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Argentina.
| |
Collapse
|
7
|
Luo H, Liang XF, Li J, Zhang Y, Xiao Q, Peng B, Zhang Z. Effect of long-chain saturated and unsaturated fatty acids on hypothalamic fatty acid sensing in Chinese perch (Siniperca chuatsi). Comp Biochem Physiol B Biochem Mol Biol 2019; 241:110395. [PMID: 31887407 DOI: 10.1016/j.cbpb.2019.110395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
Abstract
In order to evaluate fatty acid (FA) sensing systems based on binding to FAT/CD36 in hypothalamus of Chinese perch (Siniperca chuatsi) and its sensitivity to FAs with the same chain length and different unsaturation levels. The effects of Stearate (SA; C18:0), oleate (OA; C18:1 n-9), linoleic acid (LA; C18:2 n-6), and α-linolenic acid (ALA; C18:3 n-3) on hypothalamic FA sensing were evaluated by intracerebroventricular (ICV) administration. Food intake was assessed after 2, 4, 6, 8 and 12 h. Gene expression associated with FA sensing mechanism such as cd36, pparα and srebp1c, and neuropeptides controlling appetite such as pomca, cart, agrp2 and npy were assessed after 6 h. The ICV treatment of OA, LA and ALA activated FAT/CD36 and PPARα, rather than SA, and modulated gene expression levels of hypothalamic neuropeptides associated with appetite. And then, OA, LA and ALA inhibited food intake, which was consistent with the activation of hypothalamus FA sensing. Our data indicated some mechanisms of the hypothalamic FA sensing systems also existed in Chinese perch. It's worth noting that polyunsaturated fatty acids (PUFA) could also activate hypothalamic FA sensing mechanisms in Chinese perch. The unsaturation of FA appears to be extremely important for FA sensing mechanisms, since no major influences in Chinese perch after SA treatment. Our findings will contribute to the study of long-chain FAs sensing mechanisms in fish hypothalamus and highlight the importance of PUFAs in fish species.
Collapse
Affiliation(s)
- Haocan Luo
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China.
| | - Jiao Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Qianqian Xiao
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Binbin Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Zhilu Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
8
|
Lv L, Liang XF, Huang K, He S. Effect of agmatine on food intake in mandarin fish (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1709-1716. [PMID: 31140073 DOI: 10.1007/s10695-019-00659-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Agmatine, an endogenous biogenic amine, is considered to be a central neurotransmitter. And it plays an important role in mammal feeding behavior. However, there were few studies on the effect of agmatine on feeding behavior in fishes. Here, we investigated the impact of intracerebroventricular (ICV) injections of agmatine (1.25-20 nmol/fish) on food intake in mandarin fish (Siniperca chuatsi). At 1-h post-injection, food intake showed a significant decrease in agmatine-treated fishes compared with the saline treated. Furthermore, the food intake in agmatine treatment mostly did not differ from that in saline treatment at 4--24-h post-injection as well as the results of genes expression of neuropeptide Y (NPY), agouti-regulated peptide (AgRP), and anorexigenic melanocortin 4 receptor (MC4R). In accordance with the insulin level increasing in liver, the gene expression of insulin receptor substrate (IRS2) was significantly higher in agmatine treatment compared to saline treatment at 1-h post-injection. Thus, the anorexigenic effect of agmatine is likely to decrease NPY and AgRP expression levels and increase MC4R and IRS2 levels which was coupled with stimulation of insulin secretion. Although these initial findings are limited in dose, the data firstly provides evidence for the anorectic effects of agmatine in fish.
Collapse
Affiliation(s)
- Liyuan Lv
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Kang Huang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
9
|
Shi W, Han Y, Guan X, Rong J, Du X, Zha S, Tang Y, Liu G. Anthropogenic Noise Aggravates the Toxicity of Cadmium on Some Physiological Characteristics of the Blood Clam Tegillarca granosa. Front Physiol 2019; 10:377. [PMID: 31001147 PMCID: PMC6456685 DOI: 10.3389/fphys.2019.00377] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Widespread applications of cadmium (Cd) in various products have caused Cd contamination in marine ecosystems. Meanwhile, human activities in the ocean have also generated an increasing amount of noise in recent decades. Although anthropogenic noise and Cd contaminants could be present simultaneously in marine environments, the physiological responses of marine bivalve mollusks upon coexposure to anthropogenic noise and toxic metal contaminants, including Cd remain unclear. Therefore, the combined effects of anthropogenic noise and Cd on the physiological characteristics of the blood clam Tegillarca granosa were investigated in this study. The results showed that 10 days of coexposure to anthropogenic noise and Cd can enhance adverse impacts on metabolic processes, as indicated by the clearance rate, respiration rate, ammonium excretion rate, and O:N ratio of T. granosa. In addition, both the ATP content, ATP synthase activity and genes encoding important enzymes in ATP synthesis significantly declined after coexposures to anthropogenic noise and Cd, which have resulted from reduced feeding activity and respiration. Furthermore, the expressions of neurotransmitter-related genes (MAO, AChE, and mAChR3) were all significantly down-regulated after coexposure to anthropogenic noise and Cd, which suggests an enhanced neurotoxicity under coexposure. In conclusion, our study demonstrated that anthropogenic noise and Cd would have synergetic effects on the feeding activity, metabolism, and ATP synthesis of T. granosa, which may be due to the add-on of stress responses and neurotransmitter disturbances.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yu Han
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaofan Guan
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jiahuan Rong
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xueying Du
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shanjie Zha
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yu Tang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Guangxu Liu
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Mandic S, Volkoff H. The effects of fasting and appetite regulators on catecholamine and serotonin synthesis pathways in goldfish ( Carassius auratus ). Comp Biochem Physiol A Mol Integr Physiol 2018; 223:1-9. [DOI: 10.1016/j.cbpa.2018.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/09/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
|
11
|
Conde-Sieira M, Chivite M, Míguez JM, Soengas JL. Stress Effects on the Mechanisms Regulating Appetite in Teleost Fish. Front Endocrinol (Lausanne) 2018; 9:631. [PMID: 30405535 PMCID: PMC6205965 DOI: 10.3389/fendo.2018.00631] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
The homeostatic regulation of food intake relies on a complex network involving peripheral and central signals that are integrated in the hypothalamus which in turn responds with the release of orexigenic or anorexigenic neuropeptides that eventually promote or inhibit appetite. Under stress conditions, the mechanisms that control food intake in fish are deregulated and the appetite signals in the brain do not operate as in control conditions resulting in changes in the expression of the appetite-related neuropeptides and usually a decreased food intake. The effect of stress on the mechanisms that regulate food intake in fish seems to be mediated in part by the corticotropin-releasing factor (CRF), an anorexigenic neuropeptide involved in the activation of the HPI axis during the physiological stress response. Furthermore, the melanocortin system is also involved in the connection between the HPI axis and the central control of appetite. The dopaminergic and serotonergic systems are activated during the stress response and they have also been related to the control of food intake. In addition, the central and peripheral mechanisms that mediate nutrient sensing capacity and hence implicated in the metabolic control of appetite are inhibited in fish under stress conditions. Finally, stress also affects peripheral endocrine signals such as leptin. In the present minireview, we summarize the knowledge achieved in recent years regarding the interaction of stress with the different mechanisms that regulate food intake in fish.
Collapse
|