1
|
Sudo R, Asakura T, Ishikawa T, Hatakeyama R, Fujiwara A, Inoue K, Mochida K, Nomura K. Transcriptome analysis of the Japanese eel (Anguilla japonica) during larval metamorphosis. BMC Genomics 2024; 25:585. [PMID: 38862878 PMCID: PMC11165803 DOI: 10.1186/s12864-024-10459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Anguillid eels spend their larval period as leptocephalus larvae that have a unique and specialized body form with leaf-like and transparent features, and they undergo drastic metamorphosis to juvenile glass eels. Less is known about the transition of leptocephali to the glass eel stage, because it is difficult to catch the metamorphosing larvae in the open ocean. However, recent advances in rearing techniques for the Japanese eel have made it possible to study the larval metamorphosis of anguillid eels. In the present study, we investigated the dynamics of gene expression during the metamorphosis of Japanese eel leptocephali using RNA sequencing. RESULTS During metamorphosis, Japanese eels were classified into 7 developmental stages according to their morphological characteristics, and RNA sequencing was used to collect gene expression data from each stage. A total of 354.8 million clean reads were generated from the body and 365.5 million from the head, after the processing of raw reads. For filtering of genes that characterize developmental stages, a classification model created by a Random Forest algorithm was built. Using the importance of explanatory variables feature obtained from the created model, we identified 46 genes selected in the body and 169 genes selected in the head that were defined as the "most characteristic genes" during eel metamorphosis. Next, network analysis and subsequently gene clustering were conducted using the most characteristic genes and their correlated genes, and then 6 clusters in the body and 5 clusters in the head were constructed. Then, the characteristics of the clusters were revealed by Gene Ontology (GO) enrichment analysis. The expression patterns and GO terms of each stage were consistent with previous observations and experiments during the larval metamorphosis of the Japanese eel. CONCLUSION Genome and transcriptome resources have been generated for metamorphosing Japanese eels. Genes that characterized metamorphosis of the Japanese eel were identified through statistical modeling by a Random Forest algorithm. The functions of these genes were consistent with previous observations and experiments during the metamorphosis of anguillid eels.
Collapse
Affiliation(s)
- Ryusuke Sudo
- Fisheries Technology Institute, Minamiizu Field Station, Japan Fisheries Research and Education Agency, Minamiizu, Kamo, Shizuoka, 415-0156, Japan.
| | - Taiga Asakura
- Fisheries Resources Institute, Yokohama Field Station, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, 236-8648, Japan
| | - Takashi Ishikawa
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie, 516-0193, Japan
| | - Rui Hatakeyama
- Fisheries Technology Institute, Minamiizu Field Station, Japan Fisheries Research and Education Agency, Minamiizu, Kamo, Shizuoka, 415-0156, Japan
| | - Atushi Fujiwara
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie, 516-0193, Japan
| | - Komaki Inoue
- RIKEN Center for Sustainable Resource Science, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Tsurumi-Ku, Yokohama, 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
- RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kazuharu Nomura
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie, 516-0193, Japan.
| |
Collapse
|
2
|
Tian H, Ba W, Zhang X, Wang X, Dong Y, Li X, Ru S. mRNA-miRNA sequencing reveals mechanisms of 2,2'-dipyridyl disulfide-induced thyroid disruption in Japanese flounder (Paralichthys olivaceus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106191. [PMID: 35576717 DOI: 10.1016/j.aquatox.2022.106191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to evaluate the thyroid-disrupting effects of 2,2'-dipyridyl disulfide using Japanese flounder (Paralichthys olivaceus) as an animal model and to reveal the underlying mechanisms from the perspective of miRNA-mRNA interactions. The results indicated that 2,2'-dipyridyl disulfide exposure decelerated the metamorphic progress of P. olivaceus, suggesting its thyroid-disrupting property as an antagonist. Furthermore, radioimmunoassays, thyroid histological observation, real-time polymerase chain reaction, and mRNA sequencing showed that 2,2'-dipyridyl disulfide exposure exerted its thyroid-disrupting effects on larval and juvenile P. olivaceus by targeting multiple processes and pathways involved in the thyroid system, including peripheral metabolism of thyroid hormones, the thyroid hormone synthesis pathway, and the thyroid hormone/thyroid hormone receptor signaling pathway. In particular, global upregulation of the gene expression of three deiodinases caused decreases in thyroid hormone levels after 2,2'-dipyridyl disulfide exposure that are believed to be responsible for the inhibition of metamorphosis in P. olivaceus. Finally, miRNA sequencing suggested that several evolutionarily conserved miRNAs play important roles in the mechanism of 2,2'-dipyridyl disulfide-induced thyroid disruption. Specifically, overexpression of pny-miR-723a and pny-miR-216a resulted in upregulation of deiodinase 1 mRNA levels in the 2,2'-dipyridyl disulfide exposure group. This study provides the first evidence that 2,2'-dipyridyl disulfide has thyroid-disrupting properties and is also the first study remarking on the roles of miRNA-mRNA interactions in the action mechanisms of thyroid disruptors.
Collapse
Affiliation(s)
- Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Wanyu Ba
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xue Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yifei Dong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
3
|
Li Y, Hu Y, Cheng P, Chen S. Identification of Potential Blind-Side Hypermelanosis-Related lncRNA–miRNA–mRNA Regulatory Network in a Flatfish Species, Chinese Tongue Sole (Cynoglossus semilaevis). Front Genet 2022; 12:817117. [PMID: 35186018 PMCID: PMC8850641 DOI: 10.3389/fgene.2021.817117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Blind-side hypermelanosis has emerged as a major concern in commercial rearing environments of the flatfish aquaculture industry. To date, the underlying molecular mechanisms are not well understood. To fill this gap, in this study, whole transcriptomic sequencing and analyses were performed using normal skins and hypermelanic skins of the blind side of Chinese tongue sole (Cynoglossus semilaevis). Differentially expressed long non-coding RNAs (DElncRNAs), miRNAs (DEmiRNAs), and differentially expressed genes as well as their competing endogenous RNA (ceRNA) networks were identified. A total of 34 DElncRNAs, 226 DEmiRNAs, and 610 DEGs were identified. Finally, lncRNA–miRNA–mRNA regulatory networks (involving 29 DElncRNAs, 106 DEmiRNAs, and 162 DEGs) associated with blind-side hypermelanosis were constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of 162 DEGs in ceRNA networks identified DEGs (e.g., oca2, mc1r, and ihhb) in pigmentation-related biological processes and DEGs (e.g., ca4, glul, and fut9) in nitrogen metabolism, glycosphingolipid biosynthesis, and folate biosynthesis pathways, as well as their corresponding DElncRNAs and DEmiRNAs to potentially play key regulatory roles in blind-side hypermelanosis. In conclusion, this is the first study on the ceRNA regulatory network associated with blind-side hypermelanosis in flatfish. These new findings expand the spectrum of non-coding regulatory mechanisms underpinning blind-side hypermelanosis, which facilitates the further exploration of molecular regulatory mechanisms of malpigmentation in flatfish.
Collapse
Affiliation(s)
- Yangzhen Li
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Yangzhen Li,
| | - Yuanri Hu
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Peng Cheng
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Songlin Chen
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Zhang JS, Xu HY, Fang JC, Yin BZ, Wang BB, Pang Z, Xia GJ. Integrated microRNA-mRNA analysis reveals the roles of microRNAs in the muscle fat metabolism of Yanbian cattle. Anim Genet 2021; 52:598-607. [PMID: 34350996 DOI: 10.1111/age.13126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Fat deposition is an important economic trait in farm animals. However, it is difficult to genetically improve intramuscular fat deposition via trait-based cattle breeding. The main objectives of this study were to analyze the factors about beef flavor, and to detect functional microRNA (miRNA, miR) associated with intramuscular fat deposition in Yanbian cattle. Longissimus dorsi samples from six steers were separated into high- and low-fat groups (n = 3 each) based on the marbling score, and transcriptomic analysis was performed using miRNA sequencing. A total of 33 miRNAs and 38 genes were found to be differentially expressed in the high- and low-fat groups. Quantitative real-time polymerase chain reaction was performed to validate the sequencing results. Integrated miRNA-mRNA analysis revealed that miRNA-associated target genes were primarily associated with skeletal muscle development. However, some of the miRNAs (miR-424 etc.) and genes (ATF3 etc.) were also associated with fat metabolism. A targeted relationship between miR-22-3p and the WFIKKN2 gene and its involvement in adipocyte differentiation were confirmed experimentally. The study findings may provide potential candidate molecular targets for the selection of cattle with improved meat quality.
Collapse
Affiliation(s)
- J S Zhang
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - H Y Xu
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - J C Fang
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - B Z Yin
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - B B Wang
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Z Pang
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - G J Xia
- College of Agriculture, Yanbian University, Yanji, 133002, China.,Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China
| |
Collapse
|