1
|
Slaby S, Geffard A, Fisson C, Bonnevalle-Normand M, Allonier-Fernandes AS, Amara R, Bado-Nilles A, Bonnard I, Bonnard M, Burlion-Giorgi M, Cant A, Catteau A, Chaumot A, Costil K, Coulaud R, Delahaut L, Diop M, Duflot A, Geffard O, Jestin E, Le Foll F, Le Guernic A, Lopes C, Palos-Ladeiro M, Peignot Q, Poret A, Serpentini A, Tremolet G, Turiès C, Xuereb B. Advancing environmental monitoring across the water continuum combining biomarker analysis in multiple sentinel species: A case study in the Seine-Normandie Basin (France). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120784. [PMID: 38603847 DOI: 10.1016/j.jenvman.2024.120784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Nowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua. Notably, the statistical establishment of reference values and thresholds enabled the discrimination of contamination effects in environmental conditions, allowed interspecies comparisons, and eliminated the need of a reference site. The aim of this work was to study freshwater-estuarine-coastal water continua by applying biomarker measurements in multi-species caged organisms. During two campaigns, eight sentinel species, encompassing fish, mollusks, and crustaceans, were deployed to cover 25 sites from rivers to the sea. As much as possible, a common methodology was employed for biomarker measurements (DNA damage and phagocytosis efficiency) and data interpretation based on guidelines established using reference values and induction/inhibition thresholds (establishment of three effect levels). The methodology was successfully implemented and allowed us to assess the environmental quality. Employing multiple species per site enhances confidence in observed trends. The results highlight the feasibility of integrating biomarker-based environmental monitoring programs across a continuum scale. Biomarker results align with Water Framework Directive indicators in cases of poor site quality. Additionally, when discrepancies arise between chemical and ecological statuses, biomarker findings offer a comprehensive perspective to elucidate the disparities. Presented as a pilot project, this work contributes to gain insights into current biomonitoring needs, providing new questions and perspectives.
Collapse
Affiliation(s)
- Sylvain Slaby
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Cédric Fisson
- GIP Seine-Aval, Hangar C - Espace des Marégraphes, CS 41174, 76176, Rouen, Cedex 1, France.
| | - Matthieu Bonnevalle-Normand
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | | | - Rachid Amara
- Université Littoral Côte d'Opale, Université Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Wimereux, France.
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Mayélé Burlion-Giorgi
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Amélie Cant
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Arnaud Chaumot
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625, Villeurbanne Cedex, France.
| | - Katherine Costil
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen Normandie UNICAEN, Sorbonne Université, MNHN, UPMC Univ Paris 06, UA, CNRS 8067, IRD 207, Esplanade de la paix, Caen F-14032, France.
| | - Romain Coulaud
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Mamadou Diop
- Université Littoral Côte d'Opale, Université Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Wimereux, France.
| | - Aurélie Duflot
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Olivier Geffard
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625, Villeurbanne Cedex, France.
| | - Emmanuel Jestin
- Agence de l'eau Seine-Normandie, 12 rue de l'Industrie CS 80148 92416 Courbevoie Cedex, France.
| | - Frank Le Foll
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Antoine Le Guernic
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Christelle Lopes
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 69622, Villeurbanne, France.
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Quentin Peignot
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Agnès Poret
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Antoine Serpentini
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen Normandie UNICAEN, Sorbonne Université, MNHN, UPMC Univ Paris 06, UA, CNRS 8067, IRD 207, Esplanade de la paix, Caen F-14032, France.
| | - Gauthier Tremolet
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Cyril Turiès
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Benoît Xuereb
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| |
Collapse
|
2
|
Slaby S, Catteau A, Le Cor F, Cant A, Dufour V, Iurétig A, Turiès C, Palluel O, Bado-Nilles A, Bonnard M, Cardoso O, Dauchy X, Porcher JM, Banas D. Chemical occurrence of pesticides and transformation products in two small lentic waterbodies at the head of agricultural watersheds and biological responses in caged Gasterosteus aculeatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166326. [PMID: 37591395 DOI: 10.1016/j.scitotenv.2023.166326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Recent monitoring campaigns have revealed the presence of mixtures of pesticides and their transformation products (TP) in headwater streams situated within agricultural catchments. These observations were attributed to the use of various agrochemicals in surrounding regions. The aim of this work was to compare the application of chemical and ecotoxicological tools for assessing environmental quality in relation to pesticide and TP contamination. It was achieved by deploying these methodologies in two small lentic water bodies located at the top of two agricultural catchments, each characterized by distinct agricultural practices (ALT: organic, CHA: conventional). Additionally, the results make it possible to assess the impact of contamination on fish caged in situ. Pesticides and TP were measured in water using active and passive samplers and suspended solid particles. Eighteen biomarkers (innate immune responses, oxidative stress, biotransformation, neurotoxicity, genotoxicity, and endocrine disruption) were measured in Gasterosteus aculeatus encaged in situ. More contaminants were detected in CHA, totaling 25 compared to 14 in ALT. Despite the absence of pesticide application in the ALT watershed for the past 14 years, 7 contaminants were quantified in 100 % of the water samples. Among these contaminants, 6 were TPs (notably atrazine-2-hydroxy, present at a concentration exceeding 300 ng·L-1), and 1 was a current pesticide, prosulfocarb, whose mobility should prompt more caution and new regulations to protect adjacent ecosystems and crops. Regarding the integrated biomarker response (IBRv2), caged fish was similarly impacted in ALT and CHA. Variations in biomarker responses were highlighted depending on the site, but the results did not reveal whether one site is of better quality than the other. This outcome was likely attributed to the occurrence of contaminant mixtures in both sites. The main conclusions revealed that chemical and biological tools complement each other to better assess the environmental quality of wetlands such as ponds.
Collapse
Affiliation(s)
- Sylvain Slaby
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France.
| | - Audrey Catteau
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | - François Le Cor
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France; ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, F-54000 Nancy, France.
| | - Amélie Cant
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Vincent Dufour
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France.
| | - Alain Iurétig
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France.
| | - Cyril Turiès
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France.
| | - Olivier Cardoso
- OFB, Direction de la Recherche et de l'Appui Scientifique, 9 avenue Buffon, F-45071 Orléans, France.
| | - Xavier Dauchy
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, F-54000 Nancy, France.
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | - Damien Banas
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France.
| |
Collapse
|
3
|
Cant A, Bado-Nilles A, Porcher JM, Bolzan D, Prygiel J, Catteau A, Turiès C, Geffard A, Bonnard M. Application of the Fpg-modified comet assay on three-spined stickleback in freshwater biomonitoring: toward a multi-biomarker approach of genotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30756-6. [PMID: 37989949 DOI: 10.1007/s11356-023-30756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Aquatic species are exposed to a wide spectrum of substances, which can compromise their genomic integrity by inducing DNA damage or oxidative stress. Genotoxicity biomarkers as DNA strand breaks and chromosomal damages developed on sentinel species have already proved to be relevant in aquatic biomonitoring. However, these biomarkers do not reflect DNA oxidative lesions, i.e., the 8-oxodG, recognized as pre-mutagenic lesion if not or mis-repaired in human biomonitoring. The relevance to include the measure of these lesions by using the Fpg-modified comet assay on erythrocytes of the three-spined stickleback was investigated. An optimization step of the Fpg-modified comet assay considering enzyme buffer impact, Fpg concentration, and incubation time has been performed. Then, this measure was integrated in a battery of genotoxicity and cytotoxicity biomarkers (considering DNA strand breaks, DNA content variation, and cell apoptosis/necrosis and density) and applied in a freshwater monitoring program on six stations of the Artois Picardie watershed (3-week caging of control fish). These biomarkers allowed to discriminate the stations regarding the genotoxic potential of water bodies and specifically by the measure of oxidative DNA lesions, which seem to be a promising tool in environmental genotoxicity risk assessment.
Collapse
Affiliation(s)
- Amélie Cant
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Anne Bado-Nilles
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Dorothée Bolzan
- Agence de L'Eau Artois-Picardie, Centre Tertiaire de L'Arsenal, BP 80818, 59508, Douai Cedex, France
| | - Jean Prygiel
- Agence de L'Eau Artois-Picardie, Centre Tertiaire de L'Arsenal, BP 80818, 59508, Douai Cedex, France
| | - Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Cyril Turiès
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France.
| |
Collapse
|
4
|
Mit C, Beaudouin R, Palluel O, Turiès C, Daniele G, Giroud B, Bado-Nilles A. Exposure and hazard of bisphenol A, S and F: a multi-biomarker approach in three-spined stickleback. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28462-4. [PMID: 37436621 DOI: 10.1007/s11356-023-28462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
Due to the estrogenic behavior of bisphenol (BP) A, industries have developed many substitutes, such as BPS and BPF. However, due to their structural similarities, adverse effects on reproduction are currently observed in various organisms, including fish. Even if new results have shown impacts of these bisphenols on many other physiological functions, their mode of action remains unclear. In this context, we proposed to better understand the impact of BPA, BPS, and BPF on immune responses (leucocyte sub-populations, cell death, respiratory burst, lysosomal presence, and phagocytic activity) and on biomarkers of metabolic detoxification (ethoxyresorufin-O-deethylase, EROD, and glutathione S-transferase, GST) and oxidative stress (glutathione peroxidase, GPx, and lipid peroxidation with thiobarbituric acid reactive substance method, TBARS) in an adult sentinel fish species, the three-spined stickleback. In order to enhance our understanding of how biomarkers change over time, it is essential to determine the internal concentration responsible for the observed responses. Therefore, it is necessary to explore the toxicokinetics of bisphenols. Thus, sticklebacks were exposed either to 100 μg/L of BPA, BPF or BPS for 21 days, or for seven days to 10 and 100 μg/L of BPA or BPS followed by seven days of depuration. Although BPS has very different TK, due to its lower bioaccumulation compared to BPA and BPF, BPS affect oxidative stress and phagocytic activity in the same way. For those reasons, the replacement of BPA by any substitute should be made carefully in terms of risk assessment on aquatic ecosystems.
Collapse
Affiliation(s)
- Corentin Mit
- Experimental Toxicology and Modelling Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Rémy Beaudouin
- Experimental Toxicology and Modelling Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Olivier Palluel
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Cyril Turiès
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France
| | - Gaëlle Daniele
- CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Barbara Giroud
- CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Anne Bado-Nilles
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, 65550, Verneuil en Halatte, France.
| |
Collapse
|
5
|
Mit C, Bado-Nilles A, Turiès C, Daniele G, Giroud B, Beaudouin R. PBTK-TD model of the phagocytosis activity in three-spined stickleback exposed to BPA. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106608. [PMID: 37364301 DOI: 10.1016/j.aquatox.2023.106608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/09/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Due to the high production volume and persistence in the environment of bisphenol A (BPA) and its substitutes, realistic exposure scenarii were proposed in some species to better understand the relationship between external and internal concentrations. For example, a recent PBTK model has been developed and adapted to BPA ADME (Absorption, Distribution, Metabolization, and Excretion) processes in three-spined stickleback. These substances have an impact on organism physiology including reproductive and immune functions. In this context, physiologically-based toxicokinetic models coupled with toxicodynamics (PBTK-TD) have proven to be valuable tools to fill the knowledge gap between external exposure and effect dynamics. The aim of the current work was to explain the impact of BPA on the immune response by determining its temporality. In addition, the relationship between BPA dose and these responses was investigated using a PBTK-TD model. Two experiments were performed on stickleback to characterize their biomarker responses, (i) a short exposure (14 days) at 0, 10 and 100 µg/L, including a depuration phase (7 days), and (ii) a long exposure (21 days) at 100 µg/L to measure the immunomarker dynamic over a long period. The fish spleens were sampled to analyze immune responses of stickleback at various times of exposure and depuration: leucocyte distribution, phagocytic capacity and efficiency, lysosomal presence and leucocyte respiratory burst index. At the same date, blood, muscle, and liver were sampled to quantify BPA and their metabolites (BPA monoglucuronide and BPA monosulfate). All these data enabled the development of the indirect pharmacodynamic models (PBTK-TD) by implementing the responses of biomarkers in the existing BPA PBTK of stickleback. The results shown a high induction of phagocytosis activity by BPA in the two exposure conditions. Furthermore, the immunomarkers exhibit very different temporal dynamics. This study demonstrates the need of a thorough characterization of biomarker response for a further use in Environmental Biomonitoring.
Collapse
Affiliation(s)
- Corentin Mit
- Experimental Toxicology and Modeling Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France; Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Anne Bado-Nilles
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Cyril Turiès
- Ecotoxicology of Substances and Fields Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Gaëlle Daniele
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Barbara Giroud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Rémy Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France.
| |
Collapse
|
6
|
Kumari K, Swamy S. Field validated biomarker (ValidBIO) based assessment of impacts of various pollutants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5347-5370. [PMID: 36414892 DOI: 10.1007/s11356-022-24006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The sensitivity of fish towards pollutants serves as an excellent tool for the analysis of water pollution. The effluents generated from various anthropogenic activities may contain heavy metals, pesticides, microplastics, and persistent organic pollutants (POPs) and ultimately find its way to aquatic environment. The enzymatic activities of fish collected from water bodies near major cities, oil spillage sites, agricultural land, and intensively industrialized areas have been reported to be significantly impacted in various field studies. These significant alterations in enzymatic activities act as a biomarker for monitoring purposes. The use of biomarkers not only helps in the identification of known and unknown pollutants and their detrimental health impacts, but also identifies the interaction between pollutants and organisms. The conventional method majorly used is physicochemical analysis, which is recognized as the backbone of the system for monitoring water quality. In physicochemical monitoring, major problems exist in assessing or predicting biological effects from chemical or physical data. Xenobiotic-induced enzymatic changes in fish may serve as an intuitive and efficient biomarker for determining contaminants in water bodies. Therefore, field validated biomarker (ValidBIO) approach needs to be integrated in water quality monitoring program for environmental health risk assessment of aquatic life impacted due to various point and non-point sources of water pollution.
Collapse
Affiliation(s)
- Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, West Bengal, 700107, India.
| | - Senerita Swamy
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| |
Collapse
|
7
|
Beghin M, Paris-Palacios S, Mandiki SNM, Schmitz M, Palluel O, Gillet E, Bonnard I, Nott K, Robert C, Porcher JM, Ronkart S, Kestemont P. Integrative multi-biomarker approach on caged rainbow trout: A biomonitoring tool for wastewater treatment plant effluents toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155912. [PMID: 35588819 DOI: 10.1016/j.scitotenv.2022.155912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The complex mixtures of contaminants released in wastewater treatment plant (WWTP) effluents are a major source of pollution for aquatic ecosystems. The present work aimed to assess the environmental risk posed by WWTP effluents by applying a multi-biomarker approach on caged rainbow trout (Oncorhynchus mykiss) juveniles. Fish were caged upstream and downstream of a WWTP for 21 days. To evaluate fish health, biomarkers representing immune, reproductive, nervous, detoxification, and antioxidant functions were assayed. Biomarker responses were then synthesized using an Integrated Biomarker Response (IBR) index. The IBR highlighted similar response patterns for the upstream and downstream sites. Caged juvenile females showed increased activities of innate immune parameters (lysozyme and complement), histological lesions and reduced glycogen content in the hepatic tissue, and higher muscle cholinergic metabolism. However, the intensity of the observed effects was more severe downstream of the WWTP. The present results suggest that the constitutive pollution level of the Meuse River measured upstream from the studied WWTP can have deleterious effects on fish health condition, which are exacerbated by the exposure to WWTP effluents. Our results infer that the application of IBR index is a promising tool to apply with active biomonitoring approaches as it provides comprehensive information about the biological effects caused by point source pollution such as WWTP, but also by the constitutive pollutions levels encountered in the receiving environment.
Collapse
Affiliation(s)
- Mahaut Beghin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium.
| | - Séverine Paris-Palacios
- Université de Reims Champagne-Ardennes, Research unity "Stress Environnementaux et BIOsurveillance des milieux aquatiques" (SEBIO), Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Mélodie Schmitz
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Olivier Palluel
- Institut national de l'environnement industriel et des risques (INERIS), URM-I-02 SEBIO, BP n°2, 60550 Verneuil en Halatte, France
| | - Erin Gillet
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardennes, Research unity "Stress Environnementaux et BIOsurveillance des milieux aquatiques" (SEBIO), Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Katherine Nott
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Christelle Robert
- Centre d'Economie Rurale, Health Department, 8 Rue Point du Jour, B-6900 Marloie, Belgium
| | - Jean-Marc Porcher
- Institut national de l'environnement industriel et des risques (INERIS), URM-I-02 SEBIO, BP n°2, 60550 Verneuil en Halatte, France
| | - Sébastien Ronkart
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
8
|
Integration of Genotoxic Biomarkers in Environmental Biomonitoring Analysis Using a Multi-Biomarker Approach in Three-Spined Stickleback (Gasterosteus aculeatus Linnaeus, 1758). TOXICS 2022; 10:toxics10030101. [PMID: 35324726 PMCID: PMC8950626 DOI: 10.3390/toxics10030101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Water is impacted by a variety of increasing pressures, such as contaminants, including genotoxic pollutants. The proposed multi-biomarker approach at a sub-individual level gives a complementary indicator to the chemical and ecological parameters of the Water Framework Directive (WFD, 2000/60/EC). By integrating biomarkers of genotoxicity and erythrocyte necrosis in the sentinel fish species the three-spined stickleback (Gasterosteus aculeatus) through active biomonitoring of six stations of the Artois-Picardie watershed, north France, our work aimed to improve the already existing biomarker approach. Even if fish in all stations had high levels of DNA strand breaks, the multivariate analysis (PCA), followed by hierarchical agglomerative clustering (HAC), improved discrimination among stations by detecting an increase of nuclear DNA content variation (Etaing, St Rémy du Nord, Artres and Biache-St-Vaast) and erythrocyte necrosis (Etaing, St Rémy du Nord). The present work highlighted that the integration of these biomarkers of genotoxicity in a multi-biomarker approach is appropriate to expand physiological parameters which allow the targeting of new potential effects of contaminants.
Collapse
|
9
|
Catteau A, Porcher JM, Bado-Nilles A, Bonnard I, Bonnard M, Chaumot A, David E, Dedourge-Geffard O, Delahaut L, Delorme N, François A, Garnero L, Lopes C, Nott K, Noury P, Palluel O, Palos-Ladeiro M, Quéau H, Ronkart S, Sossey-Alaoui K, Turiès C, Tychon B, Geffard O, Geffard A. Interest of a multispecies approach in active biomonitoring: Application in the Meuse watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152148. [PMID: 34864038 DOI: 10.1016/j.scitotenv.2021.152148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
A biomonitoring approach based on a single model species cannot be representative of the contaminations impacts on the ecosystem overall. As part of the Interreg DIADeM program ("Development of an integrated approach for the diagnosis of the water quality of the River Meuse"), a study was conducted to establish the proof of concept that the use of a multispecies active biomonitoring approach improves diagnostic of aquatic systems. The complementarity of the biomarker responses was tested in four model species belonging to various ecological compartments: the bryophyte Fontinalis antipyretica, the bivalve Dreissena polymorpha, the amphipod Gammarus fossarum and the fish Gasterosteus aculeatus. The species have been caged upstream and downstream from five wastewater treatment plants (WWTPs) in the Meuse watershed. After the exposure, a battery of biomarkers was measured and results were compiled in an Integrated Biomarker Response (IBR) for each species. A multispecies IBR value was then proposed to assess the quality of the receiving environment upstream the WWTPs. The effluent toxicity was variable according to the caged species and the WWTP. However, the calculated IBR were high for all species and upstream sites, suggesting that the water quality was already downgraded upstream the WWTP. This contamination of the receiving environment was confirmed by the multispecies IBR which has allowed to rank the rivers from the less to the most contaminated. This study has demonstrated the interest of the IBR in the assessment of biological impacts of a point-source contamination (WWTP effluent) but also of the receiving environment, thanks to the use of independent references. Moreover, this study has highlighted the complementarity between the different species and has emphasized the interest of this multispecies approach to consider the variability of the species exposition pathway and sensibility as well as the mechanism of contaminants toxicity in the final diagnosis.
Collapse
Affiliation(s)
- Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France.
| | - Jean-Marc Porcher
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Elise David
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Adeline François
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Laura Garnero
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Christelle Lopes
- Université de Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne 69622, France
| | - Katherine Nott
- La société wallonne des eaux, rue de la Concorde 41, 4800 Verviers, Belgium
| | - Patrice Noury
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Olivier Palluel
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Hervé Quéau
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Sébastien Ronkart
- La société wallonne des eaux, rue de la Concorde 41, 4800 Verviers, Belgium
| | - Khadija Sossey-Alaoui
- Département des Sciences et Gestion de L'environnement (Arlon Campus Environnement), Eau, Environnement, Développement Sphères Bât. BE-009 Eau, Environnement, Développement, Avenue de Longwy 185, 6700 Arlon, Belgium
| | - Cyril Turiès
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Bernard Tychon
- Département des Sciences et Gestion de L'environnement (Arlon Campus Environnement), Eau, Environnement, Développement Sphères Bât. BE-009 Eau, Environnement, Développement, Avenue de Longwy 185, 6700 Arlon, Belgium
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France.
| |
Collapse
|
10
|
Defo MA, Mercier L, Beauvais C, Brua RB, Tétreault G, Fontaine A, Couture P, Verreault J, Houde M. Time-dependent biological responses of juvenile yellow perch (Perca flavescens) exposed in situ to a major urban effluent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112483. [PMID: 34237640 DOI: 10.1016/j.ecoenv.2021.112483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Municipal wastewater treatment plant (WWTP) effluents are significant sources of organic and inorganic pollutants to aquatic ecosystems. Several studies have shown that the health of aquatic organisms can be adversely impacted following exposure to these complex chemical mixtures. The objective of this study was to examine the effects of in situ exposure in the St. Lawrence River (QC, Canada) of juvenile yellow perch (Perca flavescens) to a major WWTP effluent. Perch were caged at a reference site in the St. Lawrence River and downstream of a WWTP effluent-influenced site for one, three, and six weeks. Fish kept in controlled laboratory setting were also examined at the beginning of the experiment to evaluate the potential effect of caging on fish. Liver metabolites and gill oxidative stress biomarkers as well as body condition of perch were investigated at four time points (zero, one, three, and six weeks). Nitrogen (δ15N) and carbon (δ13C) stable isotopes as well as tissue concentrations of halogenated flame retardants and trace metals were also analyzed. Results indicated that body condition of perch caged in the effluent increased after three and six weeks of exposure compared to that of reference fish. Perch caged at the WWTP effluent-influenced site also had higher muscle δ13C and slightly depleted muscle δ15N after three and six weeks of exposure, suggesting differences in sewage-derived nutrient assimilation between sites. Concentrations of Σ34 polybrominated diphenyl ether (PBDE) were 2-fold greater in perch exposed downstream of the WWTP compared to those caged at the reference site. Metal concentrations in kidney of perch after three weeks of exposure were significantly lower at the effluent-influenced site. Kidney concentrations of Cd, Cu, Se, As, Zn and Fe were, however, higher after six weeks of exposure, supporting that metal accumulation is time- and element-specific. The metabolomes of perch from the effluent-influenced and reference sites were similar, but were distinct from the laboratory control fish, suggesting a caging effect on fish. Seven liver metabolites (glucose, malate, fumarate, glutamate, creatinine, histamine, and oxypurinol) were significantly more abundant in perch from cages than in the laboratory control perch. The combination of metabolomics and physiological variables provides a powerful tool to improve our understanding of the mechanisms of action of complex environmental pollutant mixtures in wild fish.
Collapse
Affiliation(s)
- Michel A Defo
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada.
| | - Laurie Mercier
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada
| | - Conrad Beauvais
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada
| | - Robert B Brua
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, Canada
| | - Gerald Tétreault
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| | - Anthony Fontaine
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - Patrice Couture
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada
| |
Collapse
|
11
|
Hani YMI, Prud'Homme SM, Nuzillard JM, Bonnard I, Robert C, Nott K, Ronkart S, Dedourge-Geffard O, Geffard A. 1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116048. [PMID: 33190982 DOI: 10.1016/j.envpol.2020.116048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières "CM" in France, Namur "Nam" and Charleroi "Cr" in Belgium). The aim was to test 1H-NMR metabolomics for the assessment of water bodies' quality. The metabolomic approach was combined with a more "classical" one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and 1H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Place du Dr Peyneau, 33120, Arcachon, France.
| | - Sophie Martine Prud'Homme
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | | | - Katherine Nott
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Sébastien Ronkart
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| |
Collapse
|
12
|
Catteau A, Bado-Nilles A, Beaudouin R, Tebby C, Joachim S, Palluel O, Turiès C, Chrétien N, Nott K, Ronkart S, Geffard A, Porcher JM. Water quality of the Meuse watershed: Assessment using a multi-biomarker approach with caged three-spined stickleback (Gasterosteus aculeatus L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111407. [PMID: 33068981 DOI: 10.1016/j.ecoenv.2020.111407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
The use of a multi-biomarker approach with three-spined sticklebacks (Gasterosteus aculeatus) through an active biomonitoring strategy appears to be a promising tool in water quality assessment. The present work proposes to assess the efficiency of these tools in the discrimination of some sites in a large scale on the Meuse basin in Europe. The study was part of an EU program which aims to assess water quality in the Meuse across the French-Belgian border. Sticklebacks were caged 21 days upstream and downstream from the wastewater treatment plants (WWTPs) of Namur (Belgium), Charleville-Mézières (France), Bouillon (Belgium) and Avesnes-sur-Helpe (France). First, the state of a variety of physiological functions was assessed using a battery of biomarkers that represented innate immunity (leucocyte mortality and distribution, phagocytosis activity, respiratory burst), antioxidant system (GPx, CAT, SOD and total GSH content), oxidative damages to the membrane lipids (TBARS), biotransformation enzymes (EROD, GST), synaptic transmission (AChE) and reproduction system (spiggin and vitellogenin concentration). The impacts of the effluents were first analysed for each biomarker using a mixed model ANOVA followed by post-hoc analyses. Secondly, the global river contamination was assessed using a principal component analysis (PCA) followed by a hierarchical agglomerative clustering (HAC). The results highlighted a small number of effects of WWTP effluents on the physiological parameters in caged sticklebacks. Despite a significant effect of the "localisation" factor (upstream/downstream) in the mixed ANOVA for several biomarkers, post-hoc analyses revealed few differences between upstream and downstream of the WWTPs. Only a significant decrease of innate immune responses was observed downstream from the WWTPs of Avesnes-sur-Helpe and Namur. Other biomarker responses were not impacted by WWTP effluents. However, the multivariate analyses (PCA and HAC) of the biomarker responses helped to clearly discriminate the different study sites from the reference but also amongst themselves. Thus, a reduction of general condition (condition index and HSI) was observed in all groups of caged sticklebacks, associated with a weaker AChE activity in comparison with the reference population. A strong oxidative stress was highlighted in fish caged in the Meuse river at Charleville-Mézières whereas sticklebacks caged in the Meuse river at Namur exhibited weaker innate immune responses than others. Conversely, sticklebacks caged in the Helpe-Majeure river at Avesnes-sur-Helpe exhibited higher immune responses. Furthermore, weak defence capacities were recorded in fish caged in the Semois river at Bouillon. This experiment was the first to propose an active biomonitoring approach using three-spined stickleback to assess such varied environments. Low mortality and encouraging results in site discrimination support the use of this tool to assess the quality of a large number of water bodies.
Collapse
Affiliation(s)
- Audrey Catteau
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France.
| | - Anne Bado-Nilles
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Rémy Beaudouin
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Cleo Tebby
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Sandrine Joachim
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Olivier Palluel
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Cyril Turiès
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Nina Chrétien
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Katherine Nott
- La société wallonne des eaux, rue de la Concorde 41, 4800 Verviers, Belgium
| | - Sébastien Ronkart
- La société wallonne des eaux, rue de la Concorde 41, 4800 Verviers, Belgium
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|