1
|
Zhang D, Li S, Tian T, Du J, Lei C, Zhu T, Han L, Song H. Effects of 17α-methyltestosterone and letrozole on growth and gonadal development in largemouth bass ( Micropterus salmodies). Front Physiol 2024; 15:1444918. [PMID: 39355150 PMCID: PMC11442391 DOI: 10.3389/fphys.2024.1444918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Abstract
In order to optimize the parameters for reversing masculinization and establish the techniques for sex induction of pseudo-males and creation of all-female fry in largemouth bass (Micropterus salmodies, LMB), 15-day-old LMB (1.00 ± 0.10 cm in length, 0.10 ± 0.01 g in weight) were fed a diet supplemented with either 17α-methyltestosterone (MT) or letrozole (LE) and their combination. The experimental groups were M20 (20 mg/kg MT), L20 (20 mg/kg LE) and M10L10 (10 mg/kg MT and 10 mg/kg LE). The control group, named C, was not feed MT or LE. After 60 days, exogenous hormone in the diets was stopped and the effects of MT and LE on growth, male ratio, and gonadal development in LMB were evaluated. At 12-month-old, blood and gonadal tissue samples were collected to measure sex steroid hormones levels, analyze expression levels of dmrt1 and cyp19a1a genes, as well as examine the gonads morphology. The results showed no significant differences in growth between the experimental groups and the control group after a 60-day feeding period with the formulated diet (p > 0.05). The sex reversal ratio of M20, L20, M10L10 were 95.00%, 80.00%, 76.47%, respectively. The gonadal tissue sections showed that the gonadal structure of masculinized fish morphologic resembled that of control male fish. At 12-month-old, the sex reversal ratio in M20, L20, M10L10 and C groups were 100%, 86.67%, 73.33% and 50.00%, respectively. The testicular of pseudo-male fish in the M20 group exhibited well-developed morphology similarities to that of the control group males. However, the testes of pseudo-male fish in the L20 and M10L10 groups were smaller size Estradiol (E2) levels in the experimental groups was significantly lower than those in the control group females (p < 0.05), while testosterone (T) levels were significantly higher than that of the control group (p < 0.05). Compared to the female fish in the control group, pseudo-male fish from all experimental groups showed significantly upregulated expression of dmrt1 (p < 0.05), and significantly downregulated expression of cyp19a1a (p < 0.05). Pseudo-males selected from group M20 exhibited a significantly higher proportion of female offspring (92.00%) compared to the control group (46.50%). In summary, 20 mg/kg MT was the optimal inducing concentration.
Collapse
Affiliation(s)
- Dongyun Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Life Science, Huzhou University, Huzhou, China
| | - Shengjie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Taihang Tian
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- College Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jinxing Du
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Caixia Lei
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Tao Zhu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Linqiang Han
- Guangdong Province Liangshi Aquaculture Seed Industry, Foshan, China
| | - Hongmei Song
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
2
|
Huang H, Liu Y, Wang Q, Dong C, Dong L, Zhang J, Yang Y, Hao X, Li W, Rosa IF, Doretto LB, Cao X, Shao C. Molecular and Physiological Effects of 17α-methyltestosterone on Sex Differentiation of Black Rockfish, Sebastes schlegelii. Genes (Basel) 2024; 15:605. [PMID: 38790234 PMCID: PMC11120931 DOI: 10.3390/genes15050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
It is widely known that all-female fish production holds economic value for aquaculture. Sebastes schlegelii, a preeminent economic species, exhibits a sex dimorphism, with females surpassing males in growth. In this regard, achieving all-female black rockfish production could significantly enhance breeding profitability. In this study, we utilized the widely used male sex-regulating hormone, 17α-methyltestosterone (MT) at three different concentrations (20, 40, and 60 ppm), to produce pseudomales of S. schlegelii for subsequent all-female offspring breeding. Long-term MT administration severely inhibits the growth of S. schlegelii, while short term had no significant impact. Histological analysis confirmed sex reversal at all MT concentrations; however, both medium and higher MT concentrations impaired testis development. MT also influenced sex steroid hormone levels in pseudomales, suppressing E2 while increasing T and 11-KT levels. In addition, a transcriptome analysis revealed that MT down-regulated ovarian-related genes (cyp19a1a and foxl2) while up-regulating male-related genes (amh) in pseudomales. Furthermore, MT modulated the TGF-β signaling and steroid hormone biosynthesis pathways, indicating its crucial role in S. schlegelii sex differentiation. Therefore, the current study provides a method for achieving sexual reversal using MT in S. schlegelii and offers an initial insight into the underlying mechanism of sexual reversal in this species.
Collapse
Affiliation(s)
- Haijun Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Caichao Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Le Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Jingjing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Yu Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Xiancai Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Weijing Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Ivana F. Rosa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil;
| | - Lucas B. Doretto
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Xuebin Cao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Liu Q, Hu J, Lin Y, Wu X, Feng Y, Ye J, Zhang K, Zheng S. Effects of exogenous steroid hormones on growth, body color, and gonadal development in the Opsariichthys bidens. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:449-461. [PMID: 38079050 DOI: 10.1007/s10695-023-01275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/24/2023] [Indexed: 04/17/2024]
Abstract
To investigate the effects of exogenous steroid hormones on growth, body color, and gonadal development in the Opsariichthys bidens (O. bidens), synthetic methyltestosterone (MT) and 17β-estradiol (E2) were used for 28 days' treatment of 4-month-old O. bidens before the breeding season. Our results suggested that MT had a significant growth-promoting effect (P < 0.05), whereas E2 played an inhibitory role. On the body surface, the females in the MT group showed gray stripes, and the fish in other groups showed no obvious stripes. The males with MT treatment displayed brighter blue-green stripes compared to the CK and E2 groups. The histological analysis showed that the MT significantly promoted testes development in males, blocked oocyte development, and caused massive apoptosis in females, whereas the E2 group promoted ovarian development and inhibited testes development. Based on qRT-PCR analysis, in females, the expression of igf-1, dmrt1, and cyp19a1a genes revealed that E2 treatment resulted in down-regulation of igf-1 expression and up-regulation of cyp19a1a expression. In males, igf-1 and dmrt1 were significantly up-regulated after MT treatment, and E2 treatment led to down-regulation of igf-1. Therefore, this study demonstrates that MT and E2 play an important role in reversing the morphological sex characteristics of females and males.
Collapse
Affiliation(s)
- Qingyuan Liu
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Jinchun Hu
- Quzhou Aquatic Technology Promotion Station, Quzhou, China
| | - Yurui Lin
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Xinrui Wu
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Yujun Feng
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Jiazheng Ye
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Kai Zhang
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Shanjian Zheng
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China.
| |
Collapse
|
4
|
Liang WK, Zhang LB, Xu JL. Dietary steroids promote body weight growth and induce gametogenesis by increasing the expressions of genes related to cell proliferation of sea cucumber (Apostichopus japonicus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101191. [PMID: 38237259 DOI: 10.1016/j.cbd.2024.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/07/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024]
Abstract
Steroids play a vital role in animal survival, promoting growth and development when administered appropriate concentration exogenously. However, it remains unclear whether steroids can induce gonadal development and the underlying mechanism. This study assessed sea cucumber weights post-culturing, employing paraffin sections and RNA sequencing (RNA-seq) to explore gonadal changes and gene expression in response to exogenous steroid addition. Testosterone and cholesterol, dissolved in absolute ethanol, were incorporated into sea cucumber diets. After 30 days, testosterone and cholesterol significantly increased sea cucumber weights, with the total weight of experimental groups surpassing the control. The testosterone-fed group exhibited significantly higher eviscerated weight than the control group. In addition, dietary steroids influenced gonad morphology and upregulated genes related to cell proliferation,such as RPL35, PC, eLF-1, MPC2, ADCY10 and CYP2C18. Thees upregulated differentially expressed genes were significantly enriched in the organic system, metabolism, genetic information and environmental information categories. These findings imply that steroids may contribute to the growth and the process of genetic information translation and protein synthesis essential for gonadal development and gametogenesis.
Collapse
Affiliation(s)
- Wen-Ke Liang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li-Bin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Jia-Lei Xu
- Zhongke Tonhe (Shandong) Marine Technology Co., Ltd, Dongying 257200, China
| |
Collapse
|
5
|
Lal J, Biswas P, Singh SK, Debbarma R, Deb S, Yadav NK, Patel AB. Effects of dietary aromatase inhibitors on masculinization of rosy barb (Pethia conchonius): Evidence from growth, coloration and gonado-physiological changes. PLoS One 2023; 18:e0287934. [PMID: 37922256 PMCID: PMC10624304 DOI: 10.1371/journal.pone.0287934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/15/2023] [Indexed: 11/05/2023] Open
Abstract
The objective of this study was to reveal the growth, colouration and gonado-physiological changes due to the exogenous aromatase inhibitor (AIs) in an ornamental fish. 17α-methyltestosterone (MT) and letrozole (LET) were used as potential AIs. The AI were supplemented with a gel-based feed (LET: 50, 100, 150 and MT: 12.5, 25, 37.5 mg/kg feed) in Rosy barb, Pethia conchonius fry. The fishes were reared in a 45-L glass tank using AI treated gel-based feed for 3 months. Growth in AI-based diets was reduced but the reduction was minimal compared to the control. At 25 mg/kg feed of 17 MT, the highest male proportion (84.72% 6.05%) was recorded, which was significantly higher (P≤0.05) than other groups. L*, a*, and b* values showed that 17α-MT-fed groups had brighter coloration (P≤0.05). Histological sections showed that LET-17α-MT suppressed ovarian development, causing atretic oocytes. Testicular development was unaffected. 25 mg/kg-treated feed increased SOD, CAT, GST, and GPX. The AI (MT) at 25 mg/kg gel-based feed could therefore be utilised for musculinization without impacting growth, colour, and antioxidant activity of rosy barb, which serves the entire male population in the ornamental fish sector.
Collapse
Affiliation(s)
- Jham Lal
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, India
| | - Pradyut Biswas
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, India
| | - Soibam Khogen Singh
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, India
| | - Reshmi Debbarma
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, India
| | - Suparna Deb
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, India
| | - Nitesh Kumar Yadav
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, India
| | - Arun Bhai Patel
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, India
| |
Collapse
|
6
|
Expression and Characterization of the Spats1 Gene and Its Response to E2/MT Treatment in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Animals (Basel) 2022; 12:ani12141858. [PMID: 35883403 PMCID: PMC9311554 DOI: 10.3390/ani12141858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Spats1 (spermatogenesis-associated, serinerich 1) has been characterized as a male-biased gene which acts an important role in the germ cell differentiation of mammals. Nevertheless, the function of Spats1 in the Chinese soft-shelled turtle (P. sinensis) has not yet been reported. To initially explore the expression of Spats1 in P. sinensis and its response to sex steroid treatment, we cloned the CDS of Spats1 for the first time and analyzed its expression profile in different tissues, including the testes in different seasons. The Spats1 cDNA fragment is 1201 base pairs (bp) in length and contains an open reading frame (ORF) of 849 bp, which codes for 283 amino acids. Spats1 mRNA was highly expressed in the testes (p < 0.01) and barely detectable in other tissues. In P. sinensis, the relative expression of Spats1 also responsive to seasonal changes in testis development. In summer (July) and autumn (October), Spats1 gene expression was significantly higher in the testes than in other seasons (p < 0.05). Spats1 mRNA was found to be specifically expressed in germ cells by chemical in situ hybridization (CISH), and it was mainly located in primary spermatocytes (Sc1), secondary spermatocytes (Sc2) and spermatozoa (St). Spats1 expression in embryos was not significantly changed after 17α-methyltestosterone (MT)and 17β-estradiol (E2) treatment. In adults, MT significantly induced Spats1 expression in male P. sinensis. However, the expression of Spats1 in testes was not responsive to E2 treatment. In addition, the expression of Spats1 in females was not affected by either MT or E2 treatment. These results imply that Spats1 is a male-specific expressed gene that is mainly regulated by MT and is closely linked to spermatogenesis and release in P. sinensis.
Collapse
|
7
|
Zhou T, Chen G, Chen M, Wang Y, Zou G, Liang H. Direct Full-Length RNA Sequencing Reveals an Important Role of Epigenetics During Sexual Reversal in Chinese Soft-Shelled Turtle. Front Cell Dev Biol 2022; 10:876045. [PMID: 35399508 PMCID: PMC8990255 DOI: 10.3389/fcell.2022.876045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Sex dimorphism is a key feature of Chinese soft-shelled turtle (Pelodiscus sinensis). The males (M) have higher econosmic value than females (F) due to wider calipash and faster growth. Exogenous hormones like estradiol and methyltestosterone can induce sexual reversal to form new phenotypes (pseudo-female, PF; pseudo-male, PM) without changing the genotype. The possibility of inducing sexual reversal is particularly important in aquaculture breeding, but the underlying biological mechanisms remain unclear. Here we applied a direct RNA sequencing method with ultralong reads using Oxford Nanopore Technologies to study the transcriptome complexity in P. sinensis. Nanopore sequencing of the four gender types (M, F, PF, and PM) showed that the distribution of read length and gene expression was more similar between same-sex phenotypes than same-sex genotypes. Compared to turtles with an M phenotype, alternative splicing was more pronounced in F turtles, especially at alternative 3′ splice sites, alternative 5′ splice sites, and alternative first exons. Furthermore, the two RNA methylation modifications m5C and m6A were differentially distributed across gender phenotypes, with the M type having more modification sites in coding sequence regions, but fewer modification sites in 3′UTR regions. Quantitative analysis of enriched m6A RNAs revealed that the N6-methylated levels of Odf2, Pacs2, and Ak1 were significantly higher in M phenotype individuals, while the N6-methylated levels of Ube2o were reduced after sexual reversal from both M and F phenotypes. Taken together, these findings reveal an important role of epigenetics during sexual reversal in Chinese soft-shelled turtles.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Yubin Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- *Correspondence: Guiwei Zou, ; Hongwei Liang,
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- *Correspondence: Guiwei Zou, ; Hongwei Liang,
| |
Collapse
|