1
|
Gajda Ł, Daszkowska-Golec A, Świątek P. Discovery and characterization of the α-amylases cDNAs from Enchytraeus albidus shed light on the evolution of "Enchytraeus-Eisenia type" Amy homologs in Annelida. Biochimie 2024; 221:38-59. [PMID: 38242278 DOI: 10.1016/j.biochi.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/02/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Although enchytraeids have gained popularity in scientific research, fundamental questions regarding their feeding ecology and biology remain largely unexplored. This study investigates α-amylases, major digestive enzymes responsible for hydrolyzing starch and similar polysaccharides into sugars, in Enchytraeus albidus. Genetic data related to α-amylases is currently lacking for the family Enchytraeidae but also for the entire Annelida. To detect and identify coding sequences of the expressed α-amylase genes in COI-monohaplotype culture (PL-A strain) of E. albidus, we used classical "gene fishing" and transcriptomic approaches. We also compared coding sequence variants of α-amylase retrieved from transcriptomic data related to freeze-tolerant strains. Our results reveal that E. albidus possesses two distinct α-amylase genes (Amy I and Amy II) that are homologs to earthworm Eisenia fetida Ef-Amy genes. Different strains of E. albidus possess distinctive alleles of α-amylases with unique SNP patterns specific to a particular strain. Unlike Amy II, Amy I seems to be a highly polymorphic and multicopy gene. The domain architecture of the putative Amy proteins was found the same as for classical animal α-amylases with ABC-domains. A characteristic feature of Amy II is the lack of GHGA motif in the flexible loop region, similarly to many insect amylases. We identified "Enchytraeus-Eisenia type" α-amylase homologs in other clitellates and polychaetes, indicating the ancestral origin of Amy I/II proteins in Annelida. This study provides the first insight into the endogenous non-proteolytic digestive enzyme genes in potworms, discusses the evolution of Amy α-amylases in Annelida, and explores phylogenetic implications.
Collapse
Affiliation(s)
- Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
2
|
Da Lage JL, Fontenelle A, Filée J, Merle M, Béranger JM, Almeida CE, Folly Ramos E, Harry M. Evidence that hematophagous triatomine bugs may eat plants in the wild. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104059. [PMID: 38101706 DOI: 10.1016/j.ibmb.2023.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Blood feeding is a secondary adaptation in hematophagous bugs. Many proteins are secreted in the saliva that are devoted to coping with the host's defense and to process the blood meal. Digestive enzymes that are no longer required for a blood meal would be expected to be eventually lost. Yet, in many strictly hematophagous arthropods, α-amylase genes, which encode the enzymes that digest starch from plants, are still present and transcribed, including in the kissing bug Rhodnius prolixus (Hemiptera, Reduviidae) and its related species, which transmit the Chagas disease. We hypothesized that retaining α-amylase could be advantageous if the bugs occasionally consume plant tissues. We first checked that the α-amylase protein of Rhodnius robustus retains normal amylolytic activity. Then we surveyed hundreds of gut DNA extracts from the sylvatic R. robustus to detect traces of plants. We found plant DNA in 8% of the samples, mainly identified as Attalea palm trees, where R. robustus are usually found. We suggest that although of secondary importance in the blood-sucking bugs, α-amylase may be needed during occasional plant feeding and thus has been retained.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
| | - Alice Fontenelle
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jonathan Filée
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Marie Merle
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jean-Michel Béranger
- Département Systématique and Evolution, Muséum National d'Histoire Naturelle, Paris, France; IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Carlos Eduardo Almeida
- Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Zoologia, Rio de Janeiro, Brazil
| | - Elaine Folly Ramos
- Departamento de Engenharia e Meio Ambiente - DEMA, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Myriam Harry
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Rhimi M, Da Lage JL, Haser R, Feller G, Aghajari N. Structural and Functional Characterization of Drosophila melanogaster α-Amylase. Molecules 2023; 28:5327. [PMID: 37513201 PMCID: PMC10384113 DOI: 10.3390/molecules28145327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Insects rely on carbohydrates such as starch and glycogen as an energy supply for growth of larvae and for longevity. In this sense α-amylases have essential roles under extreme conditions, e.g., during nutritional or temperature stress, thereby contributing to survival of the insect. This makes them interesting targets for combating insect pests. Drosophila melanogaster α-amylase, DMA, which belongs to the glycoside hydrolase family 13, sub family 15, has been studied from an evolutionary, biochemical, and structural point of view. Our studies revealed that the DMA enzyme is active over a broad temperature and pH range, which is in agreement with the fluctuating environmental changes with which the insect is confronted. Crystal structures disclosed a new nearly fully solvated metal ion, only coordinated to the protein via Gln263. This residue is only conserved in the subgroup of D. melanogaster and may thus contribute to the enzyme adaptive response to large temperature variations. Studies of the effect of plant inhibitors and the pseudo-tetrasaccharide inhibitor acarbose on DMA activity, allowed us to underline the important role of the so-called flexible loop on activity/inhibition, but also to suggest that the inhibition modes of the wheat inhibitors WI-1 and WI-3 on DMA, are likely different.
Collapse
Affiliation(s)
- Moez Rhimi
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| | - Jean-Luc Da Lage
- Evolution, Génomes, Comportement, Ecologie, UMR 9191 University Paris-Saclay-CNRS-IRD, F-91190 Gif-sur-Yvette, France
| | - Richard Haser
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, Institute of Chemistry B6a, University of Liège, B-4000 Liège, Belgium
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| |
Collapse
|
4
|
Nguyen HQ, Kim Y, Jang Y. De Novo Transcriptome Analysis Reveals Potential Thermal Adaptation Mechanisms in the Cicada Hyalessa fuscata. Animals (Basel) 2021; 11:ani11102785. [PMID: 34679807 PMCID: PMC8532856 DOI: 10.3390/ani11102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In metropolitan Seoul and its vicinity, cicadas of the species Hyalessa fuscata living in warmer areas could tolerate the heat better than those living in cooler areas, but genetic mechanisms involved in better heat tolerance remained unclear. In this study, we examined differences in gene expression of cicadas living in a warm urban area, a cool urban area and a suburban area in three experimental treatments: no heating, 10 min heating and heating until the cicadas lost their mobility. Cicadas from the warm urban area changed their gene expressions the most. Activated genes were mostly related to heat shock, energy metabolism, and detoxification. These results suggested that under heat stress, cicadas inhabiting warm areas could differentially express genes to increase their thermal tolerance. Abstract In metropolitan Seoul, populations of the cicada Hyalessa fuscata in hotter urban heat islands (“high UHIs”) exhibit higher thermal tolerance than those in cooler UHIs (“low UHIs”). We hypothesized that heat stress may activate the expression of genes that facilitate greater thermal tolerance in high-UHI cicadas than in those from cooler areas. Differences in the transcriptomes of adult female cicadas from high-UHI, low-UHI, and suburban areas were analyzed at the unheated level, after acute heat stress, and after heat torpor. No noticeable differences in unheated gene expression patterns were observed. After 10 min of acute heat stress, however, low-UHI and suburban cicadas expressed more heat shock protein genes than high-UHI counterparts. More specifically, remarkable changes in the gene expression of cicadas across areas were observed after heat torpor stimulus, as represented by a large number of up- and downregulated genes in the heat torpor groups compared with the 10 min acute heat stress and control groups. High-UHI cicadas expressed the most differentially expressed genes, followed by the low-UHI and suburban cicadas. There was a notable increase in the expression of heat shock, metabolism, and detoxification genes; meanwhile, immune-related, signal transduction, and protein turnover genes were downregulated in high-UHI cicadas versus the other cicada groups. These results suggested that under heat stress, cicadas inhabiting high-UHIs could rapidly express genes related to heat shock, energy metabolism, and detoxification to protect cells from stress-induced damage and to increase their thermal tolerance toward heat stress. The downregulation of apoptosis mechanisms in high-UHI cicadas suggested that there was less cellular damage, which likely contributed to their high tolerance of heat stress.
Collapse
Affiliation(s)
- Hoa Quynh Nguyen
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
- Institute of Chemistry, Vietnam Academy of Science and Technology, No. 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 10072, Vietnam
| | - Yuseob Kim
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
| | - Yikweon Jang
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
- Correspondence:
| |
Collapse
|
5
|
Feller G, Bonneau M, Da Lage JL. Amyrel, a novel glucose-forming α-amylase from Drosophila with 4-α-glucanotransferase activity by disproportionation and hydrolysis of maltooligosaccharides. Glycobiology 2021; 31:1134-1144. [PMID: 33978737 DOI: 10.1093/glycob/cwab036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/12/2022] Open
Abstract
The α-amylase paralogue Amyrel present in true flies (Diptera Muscomorpha) has been classified as a glycoside hydrolase in CAZy family GH13 on the basis of its primary structure. Here we report that, in fact, Amyrel is currently unique amongst Animals as it possesses both the hydrolytic α-amylase activity (EC 3.2.1.1) and a 4-α-glucanotransferase (EC 2.4.1.25) transglycosylation activity. Amyrel reacts specifically on α-(1-4) glycosidic bonds of starch and related polymers but produces a complex mixture of maltooligosaccharides, in sharp contrast with canonical animal α-amylases. With model maltooligosaccharides G2 (maltose) to G7, the Amyrel reaction starts by a disproportionation leading to Gn-1 and Gn + 1 products, which become themselves substrates for new disproportionation cycles. As a result, all detectable odd- and even-numbered maltooligosaccharides at least up to G12 were observed. However, hydrolysis of these products proceeds simultaneously, as shown by p-nitrophenyl-tagged oligosaccharides and microcalorimetry, and upon prolonged reaction, glucose is the major end product followed by maltose. The main structural determinant of these atypical activities was found to be a Gly-His-Gly-Ala deletion in the so-called flexible loop bordering the active site. Indeed, engineering this deletion in pig pancreatic and D. melanogaster α-amylases results in reaction patterns similar to those of Amyrel. It is proposed that this deletion provides more freedom to the substrate for subsites occupancy and allows a less constrained action pattern resulting in versatile activities at the active site.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, B-4000 Liège-Sart Tilman, Belgium
| | - Magalie Bonneau
- UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
| | - Jean-Luc Da Lage
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, B-4000 Liège-Sart Tilman, Belgium.,UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Da Lage JL. The Amylases of Insects. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2018; 10:1179543318804783. [PMID: 30305796 PMCID: PMC6176531 DOI: 10.1177/1179543318804783] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 05/26/2023]
Abstract
Alpha-amylases are major digestive enzymes that act in the first step of maltopolysaccharide digestion. In insects, these enzymes have long been studied for applied as well as purely scientific purposes. In many species, amylases are produced by multiple gene copies. Rare species are devoid of Amy gene. They are predominantly secreted in the midgut but salivary expression is also frequent, with extraoral activity. Enzymological parameters are quite variable among insects, with visible trends according to phylogeny: Coleopteran amylases have acidic optimum activity, whereas dipteran amylases have neutral preference and lepidopteran ones have clear alkaline preference. The enzyme structure shows interesting variations shaped by evolutionary convergences, such as the recurrent loss of a loop involved in substrate handling. Many works have focused on the action of plant amylase inhibitors on pest insect amylases, in the frame of crop protection by transgenesis. It appears that sensitivity or resistance to inhibitors is finely tuned and very specific and that amylases and their inhibitors have coevolved. The multicopy feature of insect amylases appears to allow tissue-specific or stage-specific regulation, but also to broaden enzymological abilities, such as pH range, and to overcome plant inhibitory defenses.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- UMR 9191 Évolution, Génomes, Comportement, Écologie,
CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette,
France
| |
Collapse
|
7
|
Pimentel AC, Barroso IG, Ferreira JMJ, Dias RO, Ferreira C, Terra WR. Molecular machinery of starch digestion and glucose absorption along the midgut of Musca domestica. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:11-20. [PMID: 29803861 DOI: 10.1016/j.jinsphys.2018.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Until now there is no molecular model of starch digestion and absorption of the resulting glucose molecules along the larval midgut of Musca domestica. For addressing to this, we used RNA-seq analyses from seven sections of the midgut and carcass to evaluate the expression level of the genes coding for amylases, maltases and sugar transporters (SP). An amylase related protein (Amyrel) and two amylase sequences, one soluble and one with a predicted GPI-anchor, were identified. Three highly expressed maltase genes were correlated with biochemically characterized maltases: one soluble, other glycocalyx-associated, and another membrane-bound. SPs were checked as being apical or basal by proteomics of microvillar preparations and those up-regulated by starch were identified by real time PCR. From the 9 SP sequences with high expression in midgut, two are putative sugar sensors (MdSP4 and MdSP5), one is probably a trehalose transporter (MdSP8), whereas MdSP1-3, MdSP6, and MdSP9 are supposed to transport glucose into cells, and MdSP7 from cells to hemolymph. MdSP1, MdSP7, and MdSP9 are up-regulated by starch. Based on the data, starch is at first digested by amylase and maltases at anterior midgut, with the resulting glucose units absorbed at middle midgut. At this region, low pH, lysozyme, and cathepsin D open the ingested bacteria and fungi cells, freeing sugars and glycogen. This and the remaining dietary starch are digested by amylase and maltases at the end of middle midgut and up to the middle part of the posterior midgut, with resulting sugars being absorbed along the posterior midgut.
Collapse
Affiliation(s)
- André C Pimentel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Ignacio G Barroso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Jéssica M J Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Renata O Dias
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Clélia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
8
|
Chen D, Chen F, Chen C, Chen X, Mao Y. Transcriptome analysis of three cotton pests reveals features of gene expressions in the mesophyll feeder Apolygus lucorum. SCIENCE CHINA-LIFE SCIENCES 2017; 60:826-838. [PMID: 28730342 DOI: 10.1007/s11427-017-9065-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/05/2017] [Indexed: 11/27/2022]
Abstract
The green mirid bug Apolygus lucorum is an agricultural pest that is known to cause damage to more than 150 plant species. Here, we report the transcriptomes of A. lucorum at three different developmental stages (the second and fifth instar nymphs and adults). A total of 98,236 unigenes with an average length of 1,335 nt was obtained, of which 50,640 were annotated, including those encoding digestive enzymes and cytochrome P450s. Comparisons with cotton bollworm and cotton aphid transcriptomes revealed distinct features of A. lucorum as a mesophyll feeder. The gene expression dynamics varied during development from young nymphs to adults. The high-quality transcriptome data and the gene expression dynamics reported here provide valuable data for a more comprehensive understanding of the physiology and development of mirid bugs, and for mining targets for their control.
Collapse
Affiliation(s)
- Dianyang Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangyan Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyu Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yingbo Mao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
9
|
Claisse G, Feller G, Bonneau M, Da Lage JL. A single amino-acid substitution toggles chloride dependence of the alpha-amylase paralog amyrel in Drosophila melanogaster and Drosophila virilis species. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:70-77. [PMID: 27312592 DOI: 10.1016/j.ibmb.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
In animals, most α-amylases are chloride-dependent enzymes. A chloride ion is required for allosteric activation and is coordinated by one asparagine and two arginine side chains. Whereas the asparagine and one arginine are strictly conserved, the main chloride binding arginine is replaced by a glutamine in some rare instances, resulting in the loss of chloride binding and activation. Amyrel is a distant paralogue of α-amylase in Diptera, which was not characterized biochemically to date. Amyrel shows both substitutions depending on the species. In Drosophila melanogaster, an arginine is present in the sequence but in Drosophila virilis, a glutamine occurs at this position. We have investigated basic enzymological parameters and the dependence to chloride of Amyrel of both species, produced in yeast, and in mutants substituting arginine to glutamine or glutamine to arginine. We found that the amylolytic activity of Amyrel is about thirty times weaker than the classical Drosophila α-amylase, and that the substitution of the arginine by a glutamine in D. melanogaster suppressed the chloride-dependence but was detrimental to activity. In contrast, changing the glutamine into an arginine rendered D. virilis Amyrel chloride-dependent, and interestingly, significantly increased its catalytic efficiency. These results show that the chloride ion is not mandatory for Amyrel but stimulates the reaction rate. The possible phylogenetic origin of the arginine/glutamine substitution is also discussed.
Collapse
Affiliation(s)
- Gaëlle Claisse
- UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, F-91198 Gif-sur-Yvette, France; Univ. Paris-Sud, F-91405 Orsay Cedex, France
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering, University of Liège, B-4000 Liège-Sart Tilman, Belgium
| | - Magalie Bonneau
- UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, F-91198 Gif-sur-Yvette, France; Univ. Paris-Sud, F-91405 Orsay Cedex, France
| | - Jean-Luc Da Lage
- UMR 9191 Evolution, Génomes, Comportement et Ecologie, CNRS, F-91198 Gif-sur-Yvette, France; Univ. Paris-Sud, F-91405 Orsay Cedex, France.
| |
Collapse
|
10
|
Da Lage JL, Binder M, Hua-Van A, Janeček S, Casane D. Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial α-amylase gene to Basidiomycetes. BMC Evol Biol 2013; 13:40. [PMID: 23405862 PMCID: PMC3584928 DOI: 10.1186/1471-2148-13-40] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing genome data show that introns, a hallmark of eukaryotes, already existed at a high density in the last common ancestor of extant eukaryotes. However, intron content is highly variable among species. The tempo of intron gains and losses has been irregular and several factors may explain why some genomes are intron-poor whereas other are intron-rich. RESULTS We studied the dynamics of intron gains and losses in an α-amylase gene, whose product breaks down starch and other polysaccharides. It was transferred from an Actinobacterium to an ancestor of Agaricomycotina. This gene underwent further duplications in several species. The results indicate a high rate of intron insertions soon after the gene settled in the fungal genome. A number of these oldest introns, regularly scattered along the gene, remained conserved. Subsequent gains and losses were lineage dependent, with a majority of losses. Moreover, a few species exhibited a high number of both specific intron gains and losses in recent periods. There was little sequence conservation around insertion sites, then probably little information for splicing, whereas splicing sites, inside introns, showed typical and conserved patterns. There was little variation of intron size. CONCLUSIONS Since most Basidiomycetes have intron-rich genomes and this richness was ancestral in Fungi, long before the transfer event, we suggest that the new gene was shaped to comply with requirements of the splicing machinery, such as short exon and intron sizes, in order to be correctly processed.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Laboratoire Evolution, génomes et spéciation UPR 9034 CNRS, 91198 Gif-sur-Yvette, and Université Paris-Sud, Orsay, 91405, France.
| | | | | | | | | |
Collapse
|
11
|
Evolutionary History of Eukaryotic α-Glucosidases from the α-Amylase Family. J Mol Evol 2013; 76:129-45. [DOI: 10.1007/s00239-013-9545-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/25/2013] [Indexed: 11/26/2022]
|
12
|
Chen W, Xie T, Shao Y, Chen F. Phylogenomic relationships between amylolytic enzymes from 85 strains of fungi. PLoS One 2012; 7:e49679. [PMID: 23166747 PMCID: PMC3499471 DOI: 10.1371/journal.pone.0049679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/12/2012] [Indexed: 01/09/2023] Open
Abstract
Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH) from the Carbohydrate-Active enZymes (CAZy) Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α- amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions.
Collapse
Affiliation(s)
- Wanping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Ting Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yanchun Shao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei Province, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Fusheng Chen
- National Key Laboratory of Agro-Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei Province, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
13
|
Shukle RH, Subramanyam S, Williams CE. Effects of antinutrient proteins on Hessian fly (Diptera: Cecidomyiidae) larvae. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:41-8. [PMID: 21983260 DOI: 10.1016/j.jinsphys.2011.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 05/03/2023]
Abstract
One strategy to enhance the durability of Hessian fly resistance (R) genes in wheat is to combine them with transgenes for resistance. To identify potential transgenes for resistance a protocol for rapidly screening the proteins they encode for efficacy toward resistance is required. However, the Hessian fly is an obligate parasite of wheat and related grasses. Consequently, no protocol for in vitro delivery of antinutrient or toxic proteins to feeding larvae is available. We report here the development of a Hessian fly in plantatranslocation (HIT) feeding assay and the evaluation of eight lectins and the Bowman-Birk serine proteinase inhibitor for potential in transgenic resistance. Of the antinutrient proteins evaluated, Galanthus nivalis L. agglutinin (GNA), commonly termed snowdrop lectin, was the most efficacious. Ingestion of GNA caused a significant reduction in growth of Hessian fly larvae, disruption of midgut microvilli, and changes in transcript level of genes involved in carbohydrate metabolism, digestion, detoxification, and stress response. These effects of GNA are discussed from the perspective of larval Hessian fly physiology.
Collapse
Affiliation(s)
- Richard H Shukle
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
14
|
Celorio-Mancera MDLP, Courtiade J, Muck A, Heckel DG, Musser RO, Vogel H. Sialome of a generalist lepidopteran herbivore: identification of transcripts and proteins from Helicoverpa armigera labial salivary glands. PLoS One 2011; 6:e26676. [PMID: 22046331 PMCID: PMC3203145 DOI: 10.1371/journal.pone.0026676] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/30/2011] [Indexed: 01/17/2023] Open
Abstract
Although the importance of insect saliva in insect-host plant interactions has been acknowledged, there is very limited information on the nature and complexity of the salivary proteome in lepidopteran herbivores. We inspected the labial salivary transcriptome and proteome of Helicoverpa armigera, an important polyphagous pest species. To identify the majority of the salivary proteins we have randomly sequenced 19,389 expressed sequence tags (ESTs) from a normalized cDNA library of salivary glands. In parallel, a non-cytosolic enriched protein fraction was obtained from labial salivary glands and subjected to two-dimensional gel electrophoresis (2-DE) and de novo peptide sequencing. This procedure allowed comparison of peptides and EST sequences and enabled us to identify 65 protein spots from the secreted labial saliva 2DE proteome. The mass spectrometry analysis revealed ecdysone, glucose oxidase, fructosidase, carboxyl/cholinesterase and an uncharacterized protein previously detected in H. armigera midgut proteome. Consistently, their corresponding transcripts are among the most abundant in our cDNA library. We did find redundancy of sequence identification of saliva-secreted proteins suggesting multiple isoforms. As expected, we found several enzymes responsible for digestion and plant offense. In addition, we identified non-digestive proteins such as an arginine kinase and abundant proteins of unknown function. This identification of secreted salivary gland proteins allows a more comprehensive understanding of insect feeding and poses new challenges for the elucidation of protein function.
Collapse
Affiliation(s)
| | - Juliette Courtiade
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Alexander Muck
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Richard O. Musser
- Department of Biological Sciences, Western Illinois University, Macomb, Illinois, United States of America
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail:
| |
Collapse
|
15
|
Da Lage JL, Maczkowiak F, Cariou ML. Phylogenetic distribution of intron positions in alpha-amylase genes of bilateria suggests numerous gains and losses. PLoS One 2011; 6:e19673. [PMID: 21611157 PMCID: PMC3096672 DOI: 10.1371/journal.pone.0019673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 04/03/2011] [Indexed: 11/19/2022] Open
Abstract
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Laboratoire Evolution, génomes et spéciation, UPR 9034 CNRS, Gif sur Yvette, France.
| | | | | |
Collapse
|
16
|
Gabriško M, Janeček Š. Characterization of Maltase Clusters in the Genus Drosophila. J Mol Evol 2010; 72:104-18. [DOI: 10.1007/s00239-010-9406-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
|
17
|
Gabriško M, Janeček Š. Looking for the ancestry of the heavy-chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 α-amylase family. FEBS J 2009; 276:7265-78. [DOI: 10.1111/j.1742-4658.2009.07434.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Pytelková J, Hubert J, Lepsík M, Sobotník J, Sindelka R, Krízková I, Horn M, Mares M. Digestive alpha-amylases of the flour moth Ephestia kuehniella--adaptation to alkaline environment and plant inhibitors. FEBS J 2009; 276:3531-46. [PMID: 19476481 DOI: 10.1111/j.1742-4658.2009.07074.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The digestive tract of lepidopteran insects is extremely alkaline. In the present work, molecular adaptation of amylolytic enzymes to this environment was investigated in the flour moth Ephestia kuehniella, an important stored-product pest. Three digestive alpha-amylases [Ephestia kuehniella alpha-amylase isoenzymes 1-3 (EkAmy1-3)] with an alkaline pH optimum were purified from larvae and biochemically characterized. These isoenzymes differ significantly in their sensitivity to alpha-amylase inhibitors of plant origin that are directed against herbivores as antifeedants. Such functional variability renders the amylolytic system less vulnerable to suppression by plant defensive molecules. Moreover, we found that expression of alpha-amylases is upregulated in larvae feeding on a diet enriched with an alpha-amylase inhibitor. The alpha-amylases are secreted into the larval midgut by an exocytotic mechanism, as revealed by immunogold microscopy. The cDNA sequence of EkAmy3 was determined, and a homology model of EkAmy3 was built in order to analyze the structural features responsible for adaptation to alkaline pH. First, the overall fold was found to be stabilized by remodeling of ion pairs. Second, molecular simulations supported by activity measurements showed that EkAmy3 does not bind a Cl(-), owing to an Arg-to-Gln mutation in a conserved binding site. The Cl(-)-binding residues are in contact with the catalytic residues, and this change might help to fine-tune the catalytic pK(a) values to an alkaline pH optimum. We conclude that lepidopteran alpha-amylases are evolutionarily adapted in terms of structure and expression dynamics for effective functioning in the digestive system.
Collapse
Affiliation(s)
- Jana Pytelková
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Praha, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Da Lage JL, Kergoat GJ, Maczkowiak F, Silvain JF, Cariou ML, Lachaise D. A phylogeny of Drosophilidae using the Amyrel gene: questioning the Drosophila melanogaster species group boundaries. J ZOOL SYST EVOL RES 2007. [DOI: 10.1111/j.1439-0469.2006.00389.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|