1
|
Ravel S, Séré M, Manangwa O, Kagbadouno M, Mahamat MH, Shereni W, Okeyo WA, Argiles-Herrero R, De Meeûs T. Developing and quality testing of microsatellite loci for four species of Glossina. INFECTION GENETICS AND EVOLUTION 2020; 85:104515. [PMID: 32861909 DOI: 10.1016/j.meegid.2020.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022]
Abstract
Microsatellite loci still represent valuable resources for the study of the population biology of non-model organisms. Discovering or adapting new suitable microsatellite markers in species of interest still represents a useful task, especially so for non-model organisms as tsetse flies (genus Glossina), which remain a serious threat to the health of humans and animals in sub-Saharan Africa. In this paper, we present the development of new microsatellite loci for four species of Glossina: two from the Morsitans group, G. morsitans morsitans (Gmm) from Zimbabwe, G. pallidipes (Gpalli) from Tanzania; and the other two from the Palpalis group, G. fuscipes fuscipes (Gff) from Chad, and G. palpalis gambiensis (Gpg) from Guinea. We found frequent short allele dominance and null alleles. Stuttering could also be found and amended when possible. Cryptic species seemed to occur frequently in all taxa but Gff. This explains why it may be difficult finding ecumenical primers, which thus need adaptation according to each taxonomic and geographic context. Amplification problems occurred more often in published old markers, and Gmm and Gpg were the most affected (stronger heterozygote deficits). Trinucleotide markers displayed selection signature in some instances (Gmm). Combining old and new loci, for Gmm, eight loci can be safely used (with correction for null alleles); and five seem particularly promising; for Gpalli, only five to three loci worked well, depending on the clade, which means that the use of loci from other species (four morsitans loci seemed to work well), or other new primers will need to be used; for Gff, 14 loci behaved well, but with null alleles, seven of which worked very well; and for G. palpalis sl, only four loci, needing null allele and stuttering corrections seem to work well, and other loci from the literature are thus needed, including X-linked markers, five of which seem to work rather well (in females only), but new markers will probably be needed. Finally, the high proportion of X-linked markers (around 30%) was explained by the non-Y DNA quantity and chromosome structure of tsetse flies studied so far.
Collapse
Affiliation(s)
- Sophie Ravel
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | - Modou Séré
- University of Dédougou, Dédougou B.P. 176, Burkina Faso
| | - Oliver Manangwa
- Vector and Vector Borne Disease Research Institute, P.O.Box 1026, Tanga, Tanzania
| | - Moise Kagbadouno
- Programme National de Lutte contre la THA (PNLTHA), Conakry, Guinea
| | | | - William Shereni
- Ministry of Lands, Agriculture, Water and Rural Resettlement, Harare, Zimbabwe
| | | | - Rafael Argiles-Herrero
- Insect Pest Control Sub-Programme, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Programme of Nuclear Techniques in Food and Agriculture, Vienna A-1400, Austria
| | | |
Collapse
|
2
|
Mayoke A, Muya SM, Bateta R, Mireji PO, Okoth SO, Onyoyo SG, Auma JE, Ouma JO. Genetic diversity and phylogenetic relationships of tsetse flies of the palpalis group in Congo Brazzaville based on mitochondrial cox1 gene sequences. Parasit Vectors 2020; 13:253. [PMID: 32410644 PMCID: PMC7227191 DOI: 10.1186/s13071-020-04120-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/06/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite the morphological characterization established in the 1950s and 1960s, the identity of extant taxa that make up Glossina fuscipes (s.l.) in the Congo remains questionable. Previous claims of overlap between G. fuscipes (believed to be G. f. quanzensis) and G. palpalis palpalis around Brazzaville city further complicate the taxonomic status and population dynamics of the two taxa. This study aimed to determine the phylogenetic relationships between G. fuscipes (s.l.) and G. p. palpalis and to assess genetic variation among G. fuscipes (s.l.) populations in Congo Brazzaville. METHODS We collected 263 G. fuscipes (s.l.) from northern and central regions, and 65 G. p. palpalis from southern part of the country. The mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was amplified using taxa-specific primer pairs. Sequence data were analyzed in DnaSP and Arlequin to assess the genetic diversity, differentiation and demographic history of G. fuscipes (s.l.) populations. RESULTS The general BLAST analysis yielded a similarity of 99% for G. fuscipes (s.l.) and G. p. palpalis. BLASTn analysis for G. fuscipes (s.l.) showed > 98% identity with GenBank sequences for G. fuscipes (s.l.), with BEMB population showing 100% similarity with G. f. fuscipes. Glossina fuscipes (s.l.) populations showed high haplotype diversity (H = 46, Hd = 0.884), moderate nucleotide diversity ( = 0.012) and moderate (FST = 0.072) to high (FST = 0.152) genetic differentiation. Most of the genetic variation (89.73%) was maintained within populations. The mismatch analysis and neutrality tests indicated recent tsetse population expansions. CONCLUSIONS Phylogenetic analysis revealed minor differences between G. fuscipes (s.l.) and G. p. palpalis. Genetic diversity of G. fuscipes (s.l.) was high in the populations sampled except one. Genetic differentiation ranged from moderate to high among subpopulations. There was a restricted gene flow between G. fuscipes (s.l.) populations in the north and central part of the country. Genetic signatures based on cox1 showed recent expansion and recovery of G. fuscipes (s.l.) populations from previous bottlenecks. To fully understand the species distribution limits, we recommend further studies involving a wider sampling scheme including the swampy Mossaka focus for G. fuscipes (s.l.) and the entire range of G. p. palpalis in South Congo.
Collapse
Affiliation(s)
- Abraham Mayoke
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology & Innovation, PO Box 62000-00200, Nairobi, Kenya
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Shadrack M. Muya
- Jomo Kenyatta University of Agriculture and Technology, Faculty of Biological Sciences, PO Box 62000-00200, Nairobi, Kenya
| | - Rosemary Bateta
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Paul O. Mireji
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Sylvance O. Okoth
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Samuel G. Onyoyo
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Joanna E. Auma
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, PO Box 362-00902, Kikuyu, Kenya
| | - Johnson O. Ouma
- African Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| |
Collapse
|
3
|
Nakamura Y, Yamagishi J, Hayashida K, Osada N, Chatanga E, Mweempwa C, Chilongo K, Chisi J, Musaya J, Inoue N, Namangala B, Sugimoto C. Genetic diversity and population structure of Glossina morsitans morsitans in the active foci of human African trypanosomiasis in Zambia and Malawi. PLoS Negl Trop Dis 2019; 13:e0007568. [PMID: 31344039 PMCID: PMC6657825 DOI: 10.1371/journal.pntd.0007568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/21/2019] [Indexed: 12/23/2022] Open
Abstract
The tsetse fly, Glossina morsitans morsitans, is a significant problem in Zambia and Malawi. It is the vector for the human infective parasite Trypanosoma brucei rhodesiense, which causes human African trypanosomiasis, and various Trypanosoma species, which cause African animal trypanosomiasis. Understanding the genetic diversity and population structure of G. m. morsitans is the basis of elucidating the connectivity of the tsetse fly populations, information that is essential in implementing successful tsetse fly control activities. This study conducted a population genetic study using partial mitochondrial cytochrome oxidase gene 1 (CO1) and 10 microsatellite loci to investigate the genetic diversity and population structure of G. m. morsitans captured in the major HAT foci in Zambia and Malawi. We have included 108 and 99 G. m. morsitans samples for CO1 and microsatellite analyses respectively. Our results suggest the presence of two different genetic clusters of G. m. morsitans, existing East and West of the escarpment of the Great Rift Valley. We have also revealed genetic similarity between the G. m. morsitans in Kasungu National Park and those in the Luangwa river basin in Zambia, indicating that this population should also be included in this historical tsetse belt. Although further investigation is necessary to illustrate the whole picture in East and Southern Africa, this study has extended our knowledge of the population structure of G. m. morsitans in Southern Africa.
Collapse
Affiliation(s)
- Yukiko Nakamura
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Station for Zoonosis Control, GI-CORE, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kyoko Hayashida
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Osada
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Station for Big Data and Cybersecurity, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Elisha Chatanga
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Cornelius Mweempwa
- Department of Veterinary Services, Tsetse and Trypanosomiasis Control Unit, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Kalinga Chilongo
- Department of Veterinary Services, Tsetse and Trypanosomiasis Control Unit, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - John Chisi
- Department of Basic Medical Science, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Janelisa Musaya
- Department of Pathology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Noboru Inoue
- Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, Japan
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Station for Zoonosis Control, GI-CORE, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Augustinos AA, Meki IK, Demirbas-Uzel G, Ouédraogo GMS, Saridaki A, Tsiamis G, Parker AG, Abd-Alla AMM, Bourtzis K. Nuclear and Wolbachia-based multimarker approach for the rapid and accurate identification of tsetse species. BMC Microbiol 2018; 18:147. [PMID: 30470190 PMCID: PMC6251096 DOI: 10.1186/s12866-018-1295-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Tsetse flies (Diptera: Glossinidae) are solely responsible for the transmission of African trypanosomes, causative agents of sleeping sickness in humans and nagana in livestock. Due to the lack of efficient vaccines and the emergence of drug resistance, vector control approaches such as the sterile insect technique (SIT), remain the most effective way to control disease. SIT is a species-specific approach and therefore requires accurate identification of natural pest populations at the species level. However, the presence of morphologically similar species (species complexes and sub-species) in tsetse flies challenges the successful implementation of SIT-based population control. Results In this study, we evaluate different molecular tools that can be applied for the delimitation of different Glossina species using tsetse samples derived from laboratory colonies, natural populations and museum specimens. The use of mitochondrial markers, nuclear markers (including internal transcribed spacer 1 (ITS1) and different microsatellites), and bacterial symbiotic markers (Wolbachia infection status) in combination with relatively inexpensive techniques such as PCR, agarose gel electrophoresis, and to some extent sequencing provided a rapid, cost effective, and accurate identification of several tsetse species. Conclusions The effectiveness of SIT benefits from the fine resolution of species limits in nature. The present study supports the quick identification of large samples using simple and cost effective universalized protocols, which can be easily applied by countries/laboratories with limited resources and expertise. Electronic supplementary material The online version of this article (10.1186/s12866-018-1295-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Guler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Gisele M S Ouédraogo
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Ecole National de l'Elevage et de la Santé Animale, 03 BP 7026, Ouagadougou 03, Burkina Faso
| | - Aggeliki Saridaki
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
5
|
Scolari F, Attardo GM, Aksoy E, Weiss B, Savini G, Takac P, Abd-Alla A, Parker AG, Aksoy S, Malacrida AR. Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiol 2018; 18:169. [PMID: 30470198 PMCID: PMC6251095 DOI: 10.1186/s12866-018-1289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Tsetse flies (Diptera, Glossinidae) display unique reproductive biology traits. Females reproduce through adenotrophic viviparity, nourishing the growing larva into their modified uterus until parturition. Males transfer their sperm and seminal fluid, produced by both testes and male accessory glands, in a spermatophore capsule transiently formed within the female reproductive tract upon mating. Both sexes are obligate blood feeders and have evolved tight relationships with endosymbionts, already shown to provide essential nutrients lacking in their diet. However, the partnership between tsetse and its symbionts has so far been investigated, at the molecular, genomic and metabolomics level, only in females, whereas the roles of microbiota in male reproduction are still unexplored. Results Here we begin unravelling the impact of microbiota on Glossina m. morsitans (G. morsitans) male reproductive biology by generating transcriptomes from the reproductive tissues of males deprived of their endosymbionts (aposymbiotic) via maternal antibiotic treatment and dietary supplementation. We then compared the transcriptional profiles of genes expressed in the male reproductive tract of normal and these aposymbiotic flies. We showed that microbiota removal impacts several male reproductive genes by depressing the activity of genes in the male accessory glands (MAGs), including sequences encoding seminal fluid proteins, and increasing expression of genes in the testes. In the MAGs, in particular, the expression of genes related to mating, immunity and seminal fluid components’ synthesis is reduced. In the testes, the absence of symbionts activates genes involved in the metabolic apparatus at the basis of male reproduction, including sperm production, motility and function. Conclusions Our findings mirrored the complementary roles male accessory glands and testes play in supporting male reproduction and open new avenues for disentangling the interplay between male insects and endosymbionts. From an applied perspective, unravelling the metabolic and functional relationships between tsetse symbionts and male reproductive physiology will provide fundamental information useful to understanding the biology underlying improved male reproductive success in tsetse. This information is of particular importance in the context of tsetse population control via Sterile Insect Technique (SIT) and its impact on trypanosomiasis transmission. Electronic supplementary material The online version of this article (10.1186/s12866-018-1289-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Geoffrey Michael Attardo
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA.,Present Address: Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Emre Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | - Brian Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06, Bratislava, SR, Slovakia
| | - Adly Abd-Alla
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Andrew Gordon Parker
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | | |
Collapse
|
6
|
Krafsur ES, Maudlin I. Tsetse fly evolution, genetics and the trypanosomiases - A review. INFECTION GENETICS AND EVOLUTION 2018; 64:185-206. [PMID: 29885477 DOI: 10.1016/j.meegid.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/27/2023]
Abstract
This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b. gambiense. In the past decade most genetic attention was given to the chief human African trypanosomiasis vectors in subgenus Nemorhina e.g., Glossina f. fuscipes, G. p. palpalis, and G. p. gambiense. The chief interest in Nemorhina population genetics seemed to be finding vector populations sufficiently isolated to enable efficient and long-lasting suppression. To this end estimates were made of gene flow, derived from FST and its analogues, and Ne, the size of a hypothetical population equivalent to that under study. Genetic drift was greater, gene flow and Ne typically lesser in savannah inhabiting tsetse (subgenus Glossina) than in riverine forms (Nemorhina). Population stabilities were examined by sequential sampling and genotypic analysis of nuclear and mitochondrial genomes in both groups and found to be stable. Gene frequencies estimated in sequential samplings differed by drift and allowed estimates of effective population numbers that were greater for Nemorhina spp than Glossina spp. Prospects are examined of genetic methods of vector control. The tsetse long generation time (c. 50 d) is a major contraindication to any suggested genetic method of tsetse population manipulation. Ecological and modelling research convincingly show that conventional methods of targeted insecticide applications and traps/targets can achieve cost-effective reduction in tsetse densities.
Collapse
Affiliation(s)
- E S Krafsur
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Ian Maudlin
- School of Biomedical Sciences, The University of Edinburgh, Scotland, UK
| |
Collapse
|
7
|
Kato AB, Hyseni C, Okedi LM, Ouma JO, Aksoy S, Caccone A, Masembe C. Mitochondrial DNA sequence divergence and diversity of Glossina fuscipes fuscipes in the Lake Victoria basin of Uganda: implications for control. Parasit Vectors 2015; 8:385. [PMID: 26197892 PMCID: PMC4511262 DOI: 10.1186/s13071-015-0984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glossina fuscipes fuscipes is the main vector of African Trypanosomiasis affecting both humans and livestock in Uganda. The human disease (sleeping sickness) manifests itself in two forms: acute and chronic. The Lake Victoria basin in Uganda has the acute form and a history of tsetse re-emergence despite concerted efforts to control tsetse. The government of Uganda has targeted the basin for tsetse eradication. To provide empirical data for this initiative, we screened tsetse flies from the basin for genetic variation at the mitochondrial DNA cytochrome oxidase II (mtDNA COII) gene with the goal of investigating genetic diversity and gene flow among tsetse, tsetse demographic history; and compare these results with results from a previous study based on microsatellite loci data in the same area. METHODS We collected 429 Gff tsetse fly samples from 14 localities in the entire Ugandan portion of the Lake Victoria coast, covering 40,000 km(2). We performed genetic analyses on them and added data collected for 56 Gff individuals from 4 additional sampling sites in the basin. The 529 pb partial mitochondrial DNA cytochrome oxidase II (mtDNA COII) sequences totaling 485 were analysed for genetic differentiation, structuring and demographic history. The results were compared with findings from a previous study based on microsatellite loci data from the basin. RESULTS The differences within sampling sites explained a significant proportion of the genetic variation. We found three very closely related mtDNA population clusters, which co-occurred in multiple sites. Although Φ ST (0 - 0.592; P < 0.05) and Bayesian analyses suggest some level of weak genetic differentiation, there is no correlation between genetic divergence and geographic distance (r = 0.109, P = 0.185), and demographic tests provide evidence of locality-based demographic history. CONCLUSION The mtDNA data analysed here complement inferences made in a previous study based on microsatellite data. Given the differences in mutation rates, mtDNA afforded a look further back in time than microsatellites and revealed that Gff populations were more connected in the past. Microsatellite data revealed more genetic structuring than mtDNA. The differences in connectedness and structuring over time could be related to vector control efforts. Tsetse re-emergence after control interventions may be due to re-invasions from outside the treated areas, which emphasizes the need for an integrated area-wide tsetse eradication strategy for sustainable removal of the tsetse and trypanosomiasis problem from this area.
Collapse
Affiliation(s)
- Agapitus B Kato
- Department of Biological Sciences, College of Natural Sciences, Makerere University, Box 7062, Kampala, Uganda.
| | - Chaz Hyseni
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA.
| | - Loyce M Okedi
- National Livestock Resources Research Institute, Tororo, Uganda.
| | - Johnson O Ouma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya.
| | - Serap Aksoy
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA.
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
| | - Charles Masembe
- Department of Biological Sciences, College of Natural Sciences, Makerere University, Box 7062, Kampala, Uganda.
| |
Collapse
|
8
|
Doudoumis V, Alam U, Aksoy E, Abd-Alla AMM, Tsiamis G, Brelsfoard C, Aksoy S, Bourtzis K. Tsetse-Wolbachia symbiosis: comes of age and has great potential for pest and disease control. J Invertebr Pathol 2012; 112 Suppl:S94-103. [PMID: 22835476 DOI: 10.1016/j.jip.2012.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 02/03/2023]
Abstract
Tsetse flies (Diptera: Glossinidae) are the sole vectors of African trypanosomes, the causative agent of sleeping sickness in human and nagana in animals. Like most eukaryotic organisms, Glossina species have established symbiotic associations with bacteria. Three main symbiotic bacteria have been found in tsetse flies: Wigglesworthia glossinidia, an obligate symbiotic bacterium, the secondary endosymbiont Sodalis glossinidius and the reproductive symbiont Wolbachia pipientis. In the present review, we discuss recent studies on the detection and characterization of Wolbachia infections in Glossina species, the horizontal transfer of Wolbachia genes to tsetse chromosomes, the ability of this symbiont to induce cytoplasmic incompatibility in Glossina morsitans morsitans and also how new environment-friendly tools for disease control could be developed by harnessing Wolbachia symbiosis.
Collapse
Affiliation(s)
- Vangelis Doudoumis
- Department of Environmental and Natural Resources Management, University of Ioannina, 2 Seferi St., 30100 Agrinio, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, Aksoy E, Dalaperas S, Abd-Alla A, Ouma J, Takac P, Aksoy S, Bourtzis K. Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiol 2012; 12 Suppl 1:S3. [PMID: 22376025 PMCID: PMC3287514 DOI: 10.1186/1471-2180-12-s1-s3] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Wolbachia is a genus of endosymbiotic α-Proteobacteria infecting a wide range of arthropods and filarial nematodes. Wolbachia is able to induce reproductive abnormalities such as cytoplasmic incompatibility (CI), thelytokous parthenogenesis, feminization and male killing, thus affecting biology, ecology and evolution of its hosts. The bacterial group has prompted research regarding its potential for the control of agricultural and medical disease vectors, including Glossina spp., which transmits African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals. Results In the present study, we employed a Wolbachia specific 16S rRNA PCR assay to investigate the presence of Wolbachia in six different laboratory stocks as well as in natural populations of nine different Glossina species originating from 10 African countries. Wolbachia was prevalent in Glossina morsitans morsitans, G. morsitans centralis and G. austeni populations. It was also detected in G. brevipalpis, and, for the first time, in G. pallidipes and G. palpalis gambiensis. On the other hand, Wolbachia was not found in G. p. palpalis, G. fuscipes fuscipes and G. tachinoides. Wolbachia infections of different laboratory and natural populations of Glossina species were characterized using 16S rRNA, the wsp (Wolbachia Surface Protein) gene and MLST (Multi Locus Sequence Typing) gene markers. This analysis led to the detection of horizontal gene transfer events, in which Wobachia genes were inserted into the tsetse flies fly nuclear genome. Conclusions Wolbachia infections were detected in both laboratory and natural populations of several different Glossina species. The characterization of these Wolbachia strains promises to lead to a deeper insight in tsetse flies-Wolbachia interactions, which is essential for the development and use of Wolbachia-based biological control methods.
Collapse
|
10
|
Influence of host phylogeographic patterns and incomplete lineage sorting on within-species genetic variability in Wigglesworthia species, obligate symbionts of tsetse flies. Appl Environ Microbiol 2011; 77:8400-8. [PMID: 21948847 DOI: 10.1128/aem.05688-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia, to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species (Glossina fuscipes fuscipes) in Uganda. To explore symbiont genetic variation in G. f. fuscipes populations, we screened two variable loci (lon and lepA) from the Wigglesworthia glossinidia bacterium in the host species Glossina fuscipes fuscipes (W. g. fuscipes) and examined phylogeographic and demographic characteristics in multiple host populations. Symbiont genetic variation was apparent within and among populations. We identified two distinct symbiont lineages, in northern and southern Uganda. Incongruence length difference (ILD) tests indicated that the two lineages corresponded exactly to northern and southern G. f. fuscipes mitochondrial DNA (mtDNA) haplogroups (P = 1.0). Analysis of molecular variance (AMOVA) confirmed that most variation was partitioned between the northern and southern lineages defined by host mtDNA (85.44%). However, ILD tests rejected finer-scale congruence within the northern and southern populations (P = 0.009). This incongruence was potentially due to incomplete lineage sorting that resulted in novel combinations of symbiont genetic variants and host background. Identifying these novel combinations may have public health significance, since tsetse is the sole vector of sleeping sickness and Wigglesworthia is known to influence host vector competence. Thus, understanding the adaptive value of these host-symbiont combinations may afford opportunities to develop vector control methods.
Collapse
|
11
|
Kone N, De Meeûs T, Bouyer J, Ravel S, Guerrini L, N'Goran EK, Vial L. Population structuring of the tsetse Glossina tachinoides resulting from landscape fragmentation in the Mouhoun River basin, Burkina Faso. MEDICAL AND VETERINARY ENTOMOLOGY 2010; 24:162-168. [PMID: 20141594 DOI: 10.1111/j.1365-2915.2010.00857.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The impact of landscape fragmentation resulting from human- and climate-mediated factors on the structure of a population of Glossina tachinoides Westwood (Diptera: Glossinidae) in the Mouhoun River basin, Burkina Faso, was investigated. Allele frequencies at five microsatellite loci were compared in four populations. The average distance between samples was 72 km. The sampling points traversed an ecological cline in terms of rainfall and riverine forest ecotype, along a river loop that enlarged from upstream to downstream. Microsatellite DNA demonstrated no structuring among the groups studied (F(ST) = 0.015, P = 0.07), which is contrary to findings pertaining to Glossina palpalis gambiensis Vanderplank in the same geographical area. The populations of G. tachinoides showed complete panmixia (F(IS) = 0, P = 0.5 for the whole sample) and no genetic differentiation among populations or global positioning system trap locations. This is in line with the results of dispersal studies which indicated higher diffusion coefficients for G. tachinoides than for G. p. gambiensis. The impact of these findings is discussed within the framework of control campaigns currently promoted by the Pan African Tsetse and Trypanosomosis Eradication Campaign.
Collapse
Affiliation(s)
- N Kone
- Centre International de Recherche-Développement sur l'Elevage en Zone Subhumide, Bobo Dioulasso, Burkina Faso.
| | | | | | | | | | | | | |
Collapse
|
12
|
Solano P, Ravel S, de Meeûs T. How can tsetse population genetics contribute to African trypanosomiasis control? Trends Parasitol 2010; 26:255-63. [DOI: 10.1016/j.pt.2010.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 12/19/2009] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
|
13
|
De Meeûs T, Guégan JF, Teriokhin AT. MultiTest V.1.2, a program to binomially combine independent tests and performance comparison with other related methods on proportional data. BMC Bioinformatics 2009; 10:443. [PMID: 20030807 PMCID: PMC2811122 DOI: 10.1186/1471-2105-10-443] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 12/23/2009] [Indexed: 11/10/2022] Open
Abstract
Background Combining multiple independent tests, when all test the same hypothesis and in the same direction, has been the subject of several approaches. Besides the inappropriate (in this case) Bonferroni procedure, the Fisher's method has been widely used, in particular in population genetics. This last method has nevertheless been challenged by the SGM (symmetry around the geometric mean) and Stouffer's Z-transformed methods that are less sensitive to asymmetry and deviations from uniformity of the distribution of the partial P-values. Performances of these different procedures were never compared on proportional data such as those currently used in population genetics. Results We present new software that implements a more recent method, the generalised binomial procedure, which tests for the deviation of the observed proportion of P-values lying under a chosen threshold from the expected proportion of such P-values under the null hypothesis. The respective performances of all available procedures were evaluated using simulated data under the null hypothesis with standard P-values distribution (differentiation tests). All procedures more or less behaved consistently with ~5% significant tests at α = 0.05. Then, linkage disequilibrium tests with increasing signal strength (rate of clonal reproduction), known to generate highly non-standard P-value distributions are undertaken and finally real population genetics data are analysed. In these cases, all procedures appear, more or less equally, very conservative, though SGM seems slightly more conservative. Conclusion Based on our results and those discussed in the literature we conclude that the generalised binomial and Stouffer's Z procedures should be preferred and Z when the number of tests is very small. The more conservative SGM might still be appropriate for meta-analyses when a strong publication bias in favour of significant results is expected to inflate type 2 error.
Collapse
Affiliation(s)
- Thierry De Meeûs
- IRD, UMR 177 IRD-CIRAD Trypanosomoses, Centre International de Recherche-Développement sur l'Elevage en zone Subhumide, 01 BP 454 Bobo-Dioulasso 01, Burkina-Faso.
| | | | | |
Collapse
|
14
|
Dyer NA, Furtado A, Cano J, Ferreira F, Odete Afonso M, Ndong-Mabale N, Ndong-Asumu P, Centeno-Lima S, Benito A, Weetman D, Donnelly MJ, Pinto J. Evidence for a discrete evolutionary lineage within Equatorial Guinea suggests that the tsetse fly Glossina palpalis palpalis exists as a species complex. Mol Ecol 2009; 18:3268-82. [PMID: 19619197 DOI: 10.1111/j.1365-294x.2009.04265.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tsetse flies of the palpalis group are major vectors of Human African Trypanosomiasis in Africa. Accurate knowledge of species identity is essential for vector control. Here, we combine ribosomal internal transcribed spacer 1 (ITS1), mitochondrial Cytochrome Oxidase 1 (COI) and microsatellites to determine the population structure and phylogenetic relations of Glossina p. palpalis in Equatorial Guinea. CO1 sequence data suggest that G. p. palpalis in Equatorial Guinea is a distinct subspecies from previously described G. p. palpalis in West Africa and Democratic Republic of Congo. Glossina p. palpalis in Equatorial Guinea and DRC share a common ancestor which diverged from West African G. p. palpalis around 1.9 Ma. Previous ITS1 length polymorphism data suggested the possible presence of hybrids in Equatorial Guinea. However, ITS1 showed incomplete lineage sorting compared with clearly defined COI groups, and data from 12 unlinked microsatellites provided no evidence of hybridization. Microsatellite data indicated moderate but significant differentiation between the populations analysed (Rio Campo, Mbini and Kogo). Moreover, unlike previous studies of G. p. palpalis, there was no evidence for heterozygote deficiency, presence of migrants or cryptic population structure. Variance effective population size at Rio Campo was estimated at 501-731 assuming eight generations per year. This study of the population genetics of G. p. palpalis in central Africa provides the first estimate of genetic differentiation between geographically separated G. p. palpalis populations.
Collapse
Affiliation(s)
- N A Dyer
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Krafsur ES. Tsetse flies: genetics, evolution, and role as vectors. INFECTION GENETICS AND EVOLUTION 2008; 9:124-41. [PMID: 18992846 DOI: 10.1016/j.meegid.2008.09.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/27/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
Tsetse flies (Diptera: Glossinidae) are an ancient taxon of one genus, Glossina, and limited species diversity. All are exclusively haematophagous and confined to sub-Saharan Africa. The Glossina are the principal vectors of African trypanosomes Trypanosoma sp. (Kinetoplastida: Trypanosomatidae) and as such, are of great medical and economic importance. Clearly tsetse flies and trypanosomes are coadapted and evolutionary interactions between them are manifest. Numerous clonally reproducing strains of Trypanosoma sp. exist and their genetic diversities and spatial distributions are inadequately known. Here I review the breeding structures of the principle trypanosome vectors, G. morsitans s.l., G. pallidipes, G. palpalis s.l. and G. fuscipes fuscipes. All show highly structured populations among which there is surprisingly little detectable gene flow. Rather less is known of the breeding structure of T. brucei sensu lato vis à vis their vector tsetse flies but many genetically differentiated strains exist in nature. Genetic recombination in Trypanosoma via meiosis has recently been demonstrated in the laboratory thereby furnishing a mechanism of strain differentiation in addition to that of simple mutation. Spatially and genetically representative sampling of both trypanosome species and strains and their Glossina vectors is a major barrier to a comprehensive understanding of their mutual relationships.
Collapse
Affiliation(s)
- E S Krafsur
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
16
|
Krafsur ES, Marquez JG, Ouma JO. Structure of some East African Glossina fuscipes fuscipes populations. MEDICAL AND VETERINARY ENTOMOLOGY 2008; 22:222-227. [PMID: 18816270 PMCID: PMC2562567 DOI: 10.1111/j.1365-2915.2008.00739.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Glossina fuscipes fuscipes Newstead 1910 (Diptera: Glossinidae) is the primary vector of human sleeping sickness in Kenya and Uganda. This is the first report on its population structure. A total of 688 nucleotides of mitochondrial ribosomal 16S2 and cytochrome oxidase I genes were sequenced. Twenty-one variants were scored in 79 flies from three geographically diverse natural populations. Four haplotypes were shared among populations, eight were private and nine were singletons. The mean haplotype and nucleotide diversities were 0.84 and 0.009, respectively. All populations were genetically differentiated and were at demographic equilibrium. In addition, a longstanding laboratory culture originating from the Central African Republic (CAR-lab) in 1986 (or before) was examined. Haplotype and nucleotide diversities in this culture were 0.95 and 0.012, respectively. None of its 27 haplotypes were shared with the East African populations. A first approximation of relative effective population sizes was Uganda > CAR-lab > Kenya. It was concluded that the structure of G. f. fuscipes populations in East Africa is localized.
Collapse
Affiliation(s)
- E S Krafsur
- Department of Entomology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
17
|
High levels of genetic differentiation between Ugandan Glossina fuscipes fuscipes populations separated by Lake Kyoga. PLoS Negl Trop Dis 2008; 2:e242. [PMID: 18509474 PMCID: PMC2386243 DOI: 10.1371/journal.pntd.0000242] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 04/24/2008] [Indexed: 12/03/2022] Open
Abstract
Background Glossina fuscipes fuscipes is the major vector of human African trypanosomiasis, commonly referred to as sleeping sickness, in Uganda. In western and eastern Africa, the disease has distinct clinical manifestations and is caused by two different parasites: Trypanosoma brucei rhodesiense and T. b. gambiense. Uganda is exceptional in that it harbors both parasites, which are separated by a narrow 160-km belt. This separation is puzzling considering there are no restrictions on the movement of people and animals across this region. Methodology and Results We investigated whether genetic heterogeneity of G. f. fuscipes vector populations can provide an explanation for this disjunct distribution of the Trypanosoma parasites. Therefore, we examined genetic structuring of G. f. fuscipes populations across Uganda using newly developed microsatellite markers, as well as mtDNA. Our data show that G. f. fuscipes populations are highly structured, with two clearly defined clusters that are separated by Lake Kyoga, located in central Uganda. Interestingly, we did not find a correlation between genetic heterogeneity and the type of Trypanosoma parasite transmitted. Conclusions The lack of a correlation between genetic structuring of G. f. fuscipes populations and the distribution of T. b. gambiense and T. b. rhodesiense indicates that it is unlikely that genetic heterogeneity of G. f. fuscipes populations explains the disjunct distribution of the parasites. These results have important epidemiological implications, suggesting that a fusion of the two disease distributions is unlikely to be prevented by an incompatibility between vector populations and parasite. The two types of sleeping sickness in West and East Africa are markedly distinct, require different treatments, and are caused by different parasites. The only country where both parasites are present is Uganda, where they are separated by a narrow 160 km disease-free belt. Because there is no restriction on the movement of humans and animals between the two disease zones, this separation is puzzling. We asked whether this disjunct distribution can be explained by variation within the tsetse fly that is largely responsible for transmitting both diseases in Uganda, Glossina fuscipes fuscipes. We therefore examined whether this tsetse subspecies is genetically uniform across Uganda. Our results indicate that G. f. fusicipes is not genetically different between the two disease zones, but there are clear genetic differences between northern and southern populations, which are separated by Lake Kyoga. Therefore, it is unlikely that variation in the tsetse fly determines the distribution of the two parasites. This implies that the two diseases may fuse in the near future, which would greatly complicate diagnosis and treatment of sleeping sickness in any potential area of overlap.
Collapse
|