1
|
Rutherford S, Rossetto M, Bragg JG, Wan JSH. Where to draw the boundaries? Using landscape genomics to disentangle the scribbly gum species complex. AMERICAN JOURNAL OF BOTANY 2023; 110:e16245. [PMID: 37747108 DOI: 10.1002/ajb2.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
PREMISE Species delimitation is an integral part of evolution and ecology and is vital in conservation science. However, in some groups, species delimitation is difficult, especially where ancestral relationships inferred from morphological or genetic characters are discordant, possibly due to a complicated demographic history (e.g., recent divergences between lineages). Modern genetic techniques can take into account complex histories to distinguish species at a reasonable cost and are increasingly used in numerous applications. We focus on the scribbly gums, a group of up to five closely related and morphologically similar "species" within the eucalypts. METHODS Multiple populations of each recognized scribbly gum species were sampled over a wide region across climates, and genomewide scans were used to resolve species boundaries. RESULTS None of the taxa were completely divergent, and there were two genetically distinct entities: the inland distributed Eucalyptus rossii and a coastal conglomerate consisting of four species forming three discernible, but highly admixed groups. Divergence among taxa was likely driven by temporal vicariant processes resulting in partial separation across biogeographic barriers. High interspecific gene flow indicated separated taxa reconnected at different points in time, blurring species boundaries. CONCLUSIONS Our results highlight the need for genetic screening when dealing with closely related taxonomic entities, particularly those with modest morphological differences. We show that high-throughput sequencing can be effective at identifying species groupings and processes driving divergence, even in the most taxonomically complex groups, and be used as a standard practice for disentangling species complexes.
Collapse
Affiliation(s)
- Susan Rutherford
- Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Department of Environmental and Sustainability Sciences, The Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, USA
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, New South Wales, Australia
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, New South Wales, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, New South Wales, Australia
| | - Justin S H Wan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Yap JYS, Rossetto M, Das S, Wilson PD, Beaumont LJ, Henry RJ. Tracking habitat or testing its suitability? Similar distributional patterns can hide very different histories of persistence versus nonequilibrium dynamics. Evolution 2022; 76:1209-1228. [PMID: 35304742 DOI: 10.1111/evo.14460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023]
Abstract
The expansions and contractions of a species' range in response to temporal changes in selective filters leave genetic signatures that can inform a more accurate reconstruction of their evolutionary history across the landscape. After a long period of continental decline, Australian rainforests settled into localized patterns of contraction or expansion during the climatic fluctuations of the Quaternary. The environmental impacts of recurring glacial and interglacial periods also intensified the arrival of new lineages from the Sunda shelf, and it can be expected that immigrant versus locally persistent taxa responded to environmental challenges in quantifiably different manner. To investigate how such differences impact on species' distribution, we contrast landscape genomic patterns and changes in habitat availability between a species with a long continental history on Doryphora sassafras and a Sunda-derived species (Toona ciliata), across a distributional overlap. Extensive landscape-level homogeneity across chloroplast and nuclear genomes for the Sunda-derived T. ciliata, characterize the genetic signature of a very recent invasion and a rapid southern "exploratory" expansion that had not been previously recorded in the Australian flora (i.e., of Gondwanan origin or Sahul-derived). In contrast, D. sassafras is consistent with other Sahul-derived species characterized by strong geographical divergence and regional differentiation. Interestingly, our findings suggest that admixture between genetically divergent populations during expansion events might be a contributing factor to the successful colonization of novel habitats. Overall, this study identifies some of the mechanisms regulating the rearrangements in species distributions and assemblage composition that follow major environmental shifts, and reminds us how a species' current range might not necessarily define species' habitat preference, with the consequence that estimates of past or future range might not always be reliable.
Collapse
Affiliation(s)
- Jia-Yee Samantha Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden, Sydney, New South Wales, Australia.,Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden, Sydney, New South Wales, Australia.,Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Sourav Das
- Department of Biological Sciences, Macquarie University, Brisbane, New South Wales, Australia.,Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Peter D Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden, Sydney, New South Wales, Australia.,Department of Biological Sciences, Macquarie University, Brisbane, New South Wales, Australia
| | - Linda J Beaumont
- Department of Biological Sciences, Macquarie University, Brisbane, New South Wales, Australia
| | - Robert J Henry
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Genomic Screening to Identify Food Trees Potentially Dispersed by Precolonial Indigenous Peoples. Genes (Basel) 2022; 13:genes13030476. [PMID: 35328030 PMCID: PMC8954434 DOI: 10.3390/genes13030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Over millennia, Indigenous peoples have dispersed the propagules of non-crop plants through trade, seasonal migration or attending ceremonies; and potentially increased the geographic range or abundance of many food species around the world. Genomic data can be used to reconstruct these histories. However, it can be difficult to disentangle anthropogenic from non-anthropogenic dispersal in long-lived non-crop species. We developed a genomic workflow that can be used to screen out species that show patterns consistent with faunal dispersal or long-term isolation, and identify species that carry dispersal signals of putative human influence. We used genotyping-by-sequencing (DArTseq) and whole-plastid sequencing (SKIMseq) to identify nuclear and chloroplast Single Nucleotide Polymorphisms in east Australian rainforest trees (4 families, 7 genera, 15 species) with large (>30 mm) or small (<30 mm) edible fruit, either with or without a known history of use by Indigenous peoples. We employed standard population genetic analyses to test for four signals of dispersal using a limited and opportunistically acquired sample scheme. We expected different patterns for species that fall into one of three broadly described dispersal histories: (1) ongoing faunal dispersal, (2) post-megafauna isolation and (3) post-megafauna isolation followed by dispersal of putative human influence. We identified five large-fruited species that displayed strong population structure combined with signals of dispersal. We propose coalescent methods to investigate whether these genomic signals can be attributed to post-megafauna isolation and dispersal by Indigenous peoples.
Collapse
|
4
|
Flores‐Rentería L, Rymer PD, Ramadoss N, Riegler M. Major biogeographic barriers in eastern Australia have shaped the population structure of widely distributed Eucalyptus moluccana and its putative subspecies. Ecol Evol 2021; 11:14828-14842. [PMID: 34765144 PMCID: PMC8571587 DOI: 10.1002/ece3.8169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/14/2022] Open
Abstract
We have investigated the impact of recognized biogeographic barriers on genetic differentiation of grey box (Eucalyptus moluccana), a common and widespread tree species of the family Myrtaceae in eastern Australian woodlands, and its previously proposed four subspecies moluccana, pedicellata, queenslandica, and crassifolia. A range of phylogeographic analyses were conducted to examine the population genetic differentiation and subspecies genetic structure in E. moluccana in relation to biogeographic barriers. Slow evolving markers uncovering long term processes (chloroplast DNA) were used to generate a haplotype network and infer phylogeographic barriers. Additionally, fast evolving, hypervariable markers (microsatellites) were used to estimate demographic processes and genetic structure among five geographic regions (29 populations) across the entire distribution of E. moluccana. Morphological features of seedlings, such as leaf and stem traits, were assessed to evaluate population clusters and test differentiation of the putative subspecies. Haplotype network analysis revealed twenty chloroplast haplotypes with a main haplotype in a central position shared by individuals belonging to the regions containing the four putative subspecies. Microsatellite analysis detected the genetic structure between Queensland (QLD) and New South Wales (NSW) populations, consistent with the McPherson Range barrier, an east-west spur of the Great Dividing Range. The substructure was detected within QLD and NSW in line with other barriers in eastern Australia. The morphological analyses supported differentiation between QLD and NSW populations, with no difference within QLD, yet some differentiation within NSW populations. Our molecular and morphological analyses provide evidence that several geographic barriers in eastern Australia, including the Burdekin Gap and the McPherson Range have contributed to the genetic structure of E. moluccana. Genetic differentiation among E. moluccana populations supports the recognition of some but not all the four previously proposed subspecies, with crassifolia being the most differentiated.
Collapse
Affiliation(s)
| | - Paul D. Rymer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | | | - Markus Riegler
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| |
Collapse
|
5
|
Rutherford S, Wan JSH, Cohen JM, Benson D, Rossetto M. Looks can be deceiving: speciation dynamics of co-distributed Angophora (Myrtaceae) species in a varying landscape. Evolution 2020; 75:310-329. [PMID: 33325041 DOI: 10.1111/evo.14140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms underlying species divergence remains a central goal in evolutionary biology. Landscape genetics can be a powerful tool for examining evolutionary processes. We used genome-wide scans to genotype samples from populations of eight Angophora species. Angophora is a small genus within the eucalypts comprising common and rare species in a heterogeneous landscape, making it an appropriate group to study speciation. We found A. hispida was highly differentiated from the other species. Two subspecies of A. costata (subsp. costata and subsp. euryphylla) formed a group, while the third (subsp. leiocarpa, which is only distinguished by its smooth fruits and provenance) was supported as a distinct pseudocryptic species. Other species that are morphologically distinct could not be genetically differentiated (e.g., A. floribunda and A. subvelutina). Distribution and genetic differentiation within Angophora were strongly influenced by temperature and humidity, as well as biogeographic barriers, particularly rivers and higher elevation regions. While extensive introgression was found between many populations of some species (e.g., A. bakeri and A. floribunda), others only hybridized at certain locations. Overall, our findings suggest multiple mechanisms drove evolutionary diversification in Angophora and highlight how genome-wide analyses of related species in a diverse landscape can provide insights into speciation.
Collapse
Affiliation(s)
- Susan Rutherford
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.,Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Sydney, Australia
| | - Justin S H Wan
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.,Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Sydney, Australia
| | - Joel M Cohen
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Sydney, Australia
| | - Doug Benson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Sydney, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Sydney, Australia
| |
Collapse
|
6
|
Yap JS, Merwe M, Ford AJ, Henry RJ, Rossetto M. Biotic exchange leaves detectable genomic patterns in the Australian rain forest flora. Biotropica 2020. [DOI: 10.1111/btp.12776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia‐Yee S. Yap
- National Herbarium of New South Wales Royal Botanic Garden Sydney NSW Australia
- Queensland Alliance of Agriculture and Food Innovation University of Queensland Brisbane Qld Australia
| | - Marlien Merwe
- National Herbarium of New South Wales Royal Botanic Garden Sydney NSW Australia
| | - Andrew J. Ford
- CSIRO, Land and Water Tropical Forest Research Centre Atherton Qld Australia
| | - Robert J. Henry
- Queensland Alliance of Agriculture and Food Innovation University of Queensland Brisbane Qld Australia
| | - Maurizio Rossetto
- National Herbarium of New South Wales Royal Botanic Garden Sydney NSW Australia
- Queensland Alliance of Agriculture and Food Innovation University of Queensland Brisbane Qld Australia
| |
Collapse
|
7
|
Habitat preference differentiates the Holocene range dynamics but not barrier effects on two sympatric, congeneric trees (Tristaniopsis, Myrtaceae). Heredity (Edinb) 2019; 123:532-548. [PMID: 31243348 DOI: 10.1038/s41437-019-0243-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 11/08/2022] Open
Abstract
Niche partitioning can lead to differences in the range dynamics of plant species through its impacts on habitat availability, dispersal, or selection for traits that affect colonization and persistence. We investigated whether niche partitioning into upland and riparian habitats differentiates the range dynamics of two closely related and sympatric eastern Australian trees: the mountain water gum (Tristaniopsis collina) and the water gum (T. laurina). Using genomic data from SNP genotyping of 480 samples, we assessed the impact of biogeographic barriers and tested for signals of range expansion. Circuit theory was used to model isolation-by-resistance across three palaeo-environment scenarios: the Last Glacial Maximum, the Holocene Climate Optimum and present-day (1950-2014). Both trees showed similar genetic structure across historically dry barriers, despite evidence of significant environmental niche differentiation and different post-glacial habitat shifts. Tristaniopsis collina exhibits the signature of serial founder effects consistent with recent or rapid range expansion, whilst T. laurina has genetic patterns consistent with long-term persistence in geographically isolated populations despite occupying a broader bioclimatic niche. We found the minor influence of isolation-by-resistance on both species, though other unknown factors appear to shape genetic variation. We postulate that specialized recruitment traits (adapted to flood-disturbance regimes) rather than habitat availability limited post-glacial range expansion in T. laurina. Our findings indicate that niche breadth does not always facilitate range expansion through colonization and migration across barriers, though it can promote long-term persistence in situ.
Collapse
|
8
|
Rutherford S, van der Merwe M, Wilson PG, Kooyman RM, Rossetto M. Managing the risk of genetic swamping of a rare and restricted tree. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01201-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Cooper SL, Catterall C, Bundock PC. Local provenancing in subtropical rainforest restoration: For better or worse? A review of practitioners’ perspectives. ECOLOGICAL MANAGEMENT & RESTORATION 2018. [DOI: 10.1111/emr.12305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Simpson L, Clements MA, Crayn DM, Nargar K. Evolution in Australia’s mesic biome under past and future climates: Insights from a phylogenetic study of the Australian Rock Orchids (Dendrobium speciosum complex, Orchidaceae). Mol Phylogenet Evol 2018; 118:32-46. [DOI: 10.1016/j.ympev.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
|
11
|
Bryant LM, Krosch MN. Lines in the land: a review of evidence for eastern Australia's major biogeographical barriers to closed forest taxa. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12821] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Litticia M. Bryant
- School of Earth, Environmental and Biological Sciences; Queensland University of Technology; Brisbane Qld 4000 Australia
| | - Matt N. Krosch
- School of Earth, Environmental and Biological Sciences; Queensland University of Technology; Brisbane Qld 4000 Australia
| |
Collapse
|
12
|
Maharramova EH, Safarov HM, Kozlowski G, Borsch T, Muller LA. Analysis of nuclear microsatellites reveals limited differentiation between Colchic and Hyrcanian populations of the wind-pollinated relict tree Zelkova carpinifolia (Ulmaceae). AMERICAN JOURNAL OF BOTANY 2015; 102:119-128. [PMID: 25587154 DOI: 10.3732/ajb.1400370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY The Caucasus represents one of the world's biodiversity hotspots and includes the climatic refugia Hyrcan on the southern coast of the Caspian Sea and Colchis on the eastern coast of the Black Sea, where different species survived during the Quaternary climatic oscillations. We evaluated the genetic diversity of the relict tree Zelkova carpinifolia shared between the two refugia and distributed throughout the Caucasus and adjacent areas.• METHODS Specimens were collected from 30 geographical sites in Azerbaijan, Georgia, Iran, and Turkey and screened for variability at eight nuclear microsatellite loci. The genetic diversity among and within populations was assessed using a set of statistical measures.• KEY RESULTS We detected 379 different genotypes from a total of 495 individuals with varying degrees of clonal reproduction at the different sites. Low to intermediate levels of genetic diversity were observed at all sites, and strong differentiation between sampling sites was absent. In addition, we observed no clear genetic differentiation between the Colchis and Hyrcan. Bayesian clustering of the genotypes revealed three populations with high levels of admixture between the sampling sites.• CONCLUSIONS The lack of strong genetic structure of studied populations of Z. carpinifolia contrasts with a previous study based on chloroplast markers and suggests that long-distance pollen dispersal is an important factor of gene flow among populations of Z. carpinifolia. The present study does not reveal any particular site with particularly isolated genotypes that would deserve more attention for conservation purposes than others, although some sites should be considered for further investigation.
Collapse
Affiliation(s)
- Elmira H Maharramova
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin, 14195 Berlin, Germany Institute of Botany, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
| | | | - Gregor Kozlowski
- Department of Biology and Botanic Garden, University of Fribourg, CH-1700 Fribourg, Switzerland Natural History Museum, CH-1700 Fribourg, Switzerland
| | - Thomas Borsch
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin, 14195 Berlin, Germany Institut für Biologie-Botanik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ludo A Muller
- Institut für Biologie-Botanik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|