1
|
Alharbi AF, Sheng N, Nicol K, Strömberg N, Hollox EJ. Balancing selection at the human salivary agglutinin gene (DMBT1) driven by host-microbe interactions. iScience 2022; 25:104189. [PMID: 35494225 PMCID: PMC9038570 DOI: 10.1016/j.isci.2022.104189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Discovering loci under balancing selection in humans can identify loci with alleles that affect response to the environment and disease. Genome variation data have identified the 5′ region of the DMBT1 gene as undergoing balancing selection in humans. DMBT1 encodes the pattern-recognition glycoprotein DMBT1, also known as SALSA, gp340, or salivary agglutinin. DMBT1 binds to a variety of pathogens through a tandemly arranged scavenger receptor cysteine-rich (SRCR) domain, with the number of domains polymorphic in humans. We show that the signal of balancing selection is driven by one haplotype usually carrying a shorter SRCR repeat and another usually carrying a longer SRCR repeat. DMBT1 encoded by a shorter SRCR repeat allele does not bind a cariogenic and invasive Streptococcus mutans strain, in contrast to the long SRCR allele that shows binding. Our results suggest that balancing selection at DMBT1 is due to host-microbe interactions of encoded SRCR tandem repeat alleles. Clear evidence from many analyses show balancing selection at DMBT1 Scavenger-receptor cysteine-rich domain array associated with balancing selection Genetic variation, not alternative splicing, responsible for protein isoforms Long, but not short, DMBT1 isoforms bind a cariogenic strain of Streptococcus mutans
Collapse
Affiliation(s)
- Adel F. Alharbi
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Medina Regional Laboratory, General Directorate of Health Affairs, Ministry of Health, Medina, Saudi Arabia
| | - Nongfei Sheng
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Katie Nicol
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Corresponding author
| |
Collapse
|
2
|
DMBT1 inhibition of Pseudomonas aeruginosa twitching motility involves its N-glycosylation and cannot be conferred by the Scavenger Receptor Cysteine-Rich bacteria-binding peptide domain. Sci Rep 2019; 9:13146. [PMID: 31511582 PMCID: PMC6739395 DOI: 10.1038/s41598-019-49543-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/22/2019] [Indexed: 01/18/2023] Open
Abstract
The scavenging capacity of glycoprotein DMBT1 helps defend mucosal epithelia against microbes. DMBT1 binding to multiple bacterial species involves its conserved Scavenger Receptor Cysteine-Rich (SRCR) domains, localized to a 16-mer consensus sequence peptide, SRCRP2. Previously, we showed that DMBT1 bound Pseudomonas aeruginosa pili, and inhibited twitching motility, a pilus-mediated movement important for virulence. Here, we determined molecular characteristics required for twitching motility inhibition. Heat-denatured DMBT1 lost capacity to inhibit twitching motility and showed reduced pili binding (~40%). Size-exclusion chromatography of Lys-C-digested native DMBT1 showed that only high-Mw fractions retained activity, suggesting involvement of the N-terminal containing repeated SRCR domains with glycosylated SRCR-Interspersed Domains (SIDs). However, individual or pooled consensus sequence peptides (SRCRPs 1 to 7) showed no activity and did not bind P. aeruginosa pili; nor did recombinant DMBT1 (aa 1–220) or another SRCR-rich glycoprotein, CD163. Enzymatic de-N-glycosylation of DMBT1, but not de-O-glycosylation, reduced its capacity to inhibit twitching motility (~57%), without reducing pili binding. Therefore, DMBT1 inhibition of P. aeruginosa twitching motility involves its N-glycosylation, its pili-binding capacity is insufficient, and it cannot be conferred by the SRCR bacteria-binding peptide domain, either alone or mixed with other unlinked SRCRPs, suggesting an additional mechanism for DMBT1-mediated mucosal defense.
Collapse
|
3
|
Oho T, Nagata E. DMBT1 involvement in the human aortic endothelial cell response to Streptococcus mutans. Mol Oral Microbiol 2019; 34:108-117. [PMID: 30861638 DOI: 10.1111/omi.12257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022]
Abstract
Streptococcus mutans is a causative organism of dental caries and has been reported to be associated with the development of cardiovascular disease (CVD). Previous studies have demonstrated that S. mutans invades human aortic endothelial cells (HAECs) and HAECs invaded by S. mutans produce higher levels of CVD-related cytokines than non-invaded HAECs. DMBT1 (deleted in malignant brain tumors 1), also known as salivary agglutinin or gp-340, belongs to the scavenger receptor cysteine-rich superfamily. DMBT1 is expressed in epithelial and non-epithelial tissues and has multiple functions. The interaction between S. mutans and DMBT1 has been demonstrated in cariogenesis, but DMBT1 involvement in CVD has not been examined. In this study, we investigated DMBT1 expression in HAECs stimulated with S. mutans and examined the role of DMBT1 in the interaction between S. mutans and HAECs. All of the tested S. mutans strains induced higher production levels of DMBT1 in HAECs than those in unstimulated HAECs. More S. mutans cells adhered to DMBT1 knock down HAECs than to DMBT1-producing HAECs. Invasion of DMBT1 knock down HAECs by S. mutans was stronger than that of DMBT1-producing HAECs, and externally added DMBT1 reduced bacterial invasion. Cytokine production by DMBT1 knock down HAECs by S. mutans stimulation was higher than that by DMBT1-producing HAECs. These phenomena seemed to be due to the effect of released DMBT1, namely, the inhibition of bacterial adherence to HAECs by DMBT1. These results suggest that DMBT1 plays a protective role against the S. mutans-induced CVD process in HAECs.
Collapse
Affiliation(s)
- Takahiko Oho
- Department of Preventive Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Emi Nagata
- Division of Preventive Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
4
|
Esberg A, Sheng N, Mårell L, Claesson R, Persson K, Borén T, Strömberg N. Streptococcus Mutans Adhesin Biotypes that Match and Predict Individual Caries Development. EBioMedicine 2017; 24:205-215. [PMID: 28958656 PMCID: PMC5652290 DOI: 10.1016/j.ebiom.2017.09.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
Dental caries, which affects billions of people, is a chronic infectious disease that involves Streptococcus mutans, which is nevertheless a poor predictor of individual caries development. We therefore investigated if adhesin types of S.mutans with sucrose-independent adhesion to host DMBT1 (i.e. SpaP A, B or C) and collagen (i.e. Cnm, Cbm) match and predict individual differences in caries development. The adhesin types were measured in whole saliva by qPCR in 452 12-year-old Swedish children and related to caries at baseline and prospectively at a 5-year follow-up. Strains isolated from the children were explored for genetic and phenotypic properties. The presence of SpaP B and Cnm subtypes coincided with increased 5-year caries increment, and their binding to DMBT1 and saliva correlated with individual caries scores. The SpaP B subtypes are enriched in amino acid substitutions that coincided with caries and binding and specify biotypes of S. mutans with increased acid tolerance. The findings reveal adhesin subtypes of S. mutans that match and predict individual differences in caries development and provide a rationale for individualized oral care. Adhesin subtypes of Streptococcus mutans match and predict individual caries development. Adhesin binding to salivary DMBT1 correlates with individual caries scores. The adhesin types coincide with distinct biotypes of S. mutans.
Dental caries, which affects billions of people, involves the bacterium Streptococcus mutans, which is nevertheless a poor predictor of caries development. The present findings provide the first evidence that S. mutans adhesin subtypes match and predict individual 5-year caries development in Swedish children. The binding strength of the adhesin subtypes correlates with individual caries scores, and the adhesin subtypes specify biotypes of S. mutans that also differ in acid tolerance. The present findings provide a rationale for individualized oral care and improved systemic health because chronic caries infection and carrying high-virulence strains pose a systemic disease risk.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Nongfei Sheng
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Lena Mårell
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Rolf Claesson
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Nicklas Strömberg
- Department of Odontology/cariology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
5
|
Reichhardt M, Holmskov U, Meri S. SALSA—A dance on a slippery floor with changing partners. Mol Immunol 2017; 89:100-110. [DOI: 10.1016/j.molimm.2017.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
|
6
|
Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Pathog 2017; 13:e1006392. [PMID: 28489917 PMCID: PMC5440049 DOI: 10.1371/journal.ppat.1006392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/22/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022] Open
Abstract
It is generally thought that mucosal fluids protect underlying epithelial surfaces against opportunistic infection via their antimicrobial activity. However, our published data show that human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeruginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results showed that tear fluid suppressed twitching motility, a type of surface-associated movement conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhibition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity. Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear components lacked the activity. Systematic protein fractionation, mass spectrometry, and immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors 1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced disease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expression, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P. aeruginosa chemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB). However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motility contributes to the mechanisms by which mucosal fluids protect against P. aeruginosa infection. This study also advances our understanding of how mucosal fluids protect against infection, and suggests directions for novel biocompatible strategies to protect our surface epithelia against a major opportunistic pathogen.
Collapse
|
7
|
Abstract
The proteome of whole saliva, in contrast to that of serum, is highly susceptible to a variety of physiological and biochemical processes. First, salivary protein secretion is under neurologic control, with protein output being dependent on the stimulus. Second, extensive salivary protein modifications occur in the oral environment, where a plethora of host- and bacteria-derived enzymes act on proteins emanating from the glandular ducts. Salivary protein biosynthesis starts with the transcription and translation of salivary protein genes in the glands, followed by post-translational processing involving protein glycosylation, phosphorylation, and proteolysis. This gives rise to salivary proteins occurring in families, consisting of structurally closely related family members. Once glandular secretions enter the non-sterile oral environment, proteins are subjected to additional and continuous protein modifications, leading to extensive proteolytic cleavage, partial deglycosylation, and protein-protein complex formation. All these protein modifications occur in a dynamic environment dictated by the continuous supply of newly synthesized proteins and removal by swallowing. Understanding the proteome of whole saliva in an environment of continuous turnover will be a prerequisite to gain insight into the physiological and pathological processes relevant to oral health, and be crucial for the identification of meaningful biomarkers for oral disease.
Collapse
Affiliation(s)
- E J Helmerhorst
- Boston University Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, 700 Albany Street CABR W-201, Boston, MA 02118, USA.
| | | |
Collapse
|
8
|
Boks MA, Gunput STG, Kosten I, Gibbs S, van Vliet SJ, Ligtenberg AJM, van Kooyk Y. The Human Glycoprotein Salivary Agglutinin Inhibits the Interaction of DC-SIGN and Langerin with Oral Micro-Organisms. J Innate Immun 2016; 8:350-61. [PMID: 27082983 DOI: 10.1159/000443016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
Salivary agglutinin (SAG), also known as gp340 or SALSA, is a glycoprotein encoded by the Deleted in Malignant Brain Tumours 1 gene and is abundantly present in human saliva. SAG aggregates bacteria and viruses, thereby promoting their clearance from the oral cavity. The mucosa lining the oral cavity contains dendritic cells (DC) and Langerhans cells (LC), which express the C-type lectin receptors (CLR) DC-SIGN and Langerin, respectively. Both DC-SIGN and Langerin recognise mannose and fucose carbohydrate structures on pathogens and self-glycoproteins to regulate immunity and homeostasis. The purpose of this study was to investigate whether SAG interacts with these CLR and whether this interferes with the binding to oral pathogens. We show that whole parotid saliva and SAG, when coated to microplates, strongly interact with DC-SIGN and Langerin, probably via mannose and fucose structures. Also, primary human DC and LC bind parotid saliva and SAG via DC-SIGN and Langerin, respectively. Furthermore, SAG binding to DC-SIGN or Langerin prevented binding to the micro-organisms Candida albicans and Escherichia coli which express mannose and fucose-containing glycan structures. Thus, binding of saliva glycoprotein SAG to DC-SIGN and Langerin may inhibit pathogen-DC/LC interactions, and could prove to be a new immunomodulatory mechanism of SAG.
Collapse
Affiliation(s)
- Martine A Boks
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
Reichhardt MP, Meri S. SALSA: A Regulator of the Early Steps of Complement Activation on Mucosal Surfaces. Front Immunol 2016; 7:85. [PMID: 27014265 PMCID: PMC4781872 DOI: 10.3389/fimmu.2016.00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022] Open
Abstract
Complement is present mainly in blood. However, following mechanical damage or inflammation, serous exudates enter the mucosal surfaces. Here, the complement proteins interact with other endogenous molecules to keep microbes from entering the parenteral tissues. One of the mucosal proteins known to interact with the early complement components of both the classical and the lectin pathway is the salivary scavenger and agglutinin (SALSA). SALSA is also known as deleted in malignant brain tumors 1 and gp340. It is found both attached to the epithelium and secreted into the surrounding fluids of most mucosal surfaces. SALSA has been shown to bind directly to C1q, mannose-binding lectin, and the ficolins. Through these interactions SALSA regulates activation of the complement system. In addition, SALSA interacts with surfactant proteins A and D, secretory IgA, and lactoferrin. Ulcerative colitis and Crohn's disease are examples of diseases, where complement activation in mucosal tissues may occur. This review describes the latest advances in our understanding of how the early complement components interact with the SALSA molecule. Furthermore, we discuss how these interactions may affect disease propagation on mucosal surfaces in immunological and inflammatory diseases.
Collapse
Affiliation(s)
- Martin Parnov Reichhardt
- Immunobiology Research Program, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland
| | - Seppo Meri
- Immunobiology Research Program, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland
| |
Collapse
|
10
|
Peterson RA, Gueniche A, Adam de Beaumais S, Breton L, Dalko-Csiba M, Packer NH. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion. Glycobiology 2015; 26:218-29. [DOI: 10.1093/glycob/cwv102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
|
11
|
Proteomic analysis of pediatric sinonasal secretions shows increased MUC5B mucin in CRS. Pediatr Res 2015; 77:356-62. [PMID: 25420179 DOI: 10.1038/pr.2014.187] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/26/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is characterized by mucous overproduction and submucosal gland hyperplasia. The global protein profile of sinonasal secretions in pediatric CRS has not been studied. We hypothesized that MUC5B, a glandular mucin, would be relatively increased in CRS secretions compared to other mucins. METHODS Secretions were collected at Children's National Health System (Children's National) from CRS patients undergoing sinus surgery and from control patients without CRS undergoing craniofacial procedures. Proteins were extracted, digested to peptides, and analyzed by mass spectometry. Fold change significance was calculated using the QSpec algorithm. Western blot analysis was performed to validate proteomic findings. RESULTS In total, 294 proteins were identified. Although both MUC5B and MUC5AC were identified in a majority of samples, the relative abundance of MUC5B was found to be significantly higher (P < 0.05). Western blot data validated these findings. Other proteins with the highest significant positive-fold change in CRS samples were BP1 fold-containing family A member 1, chitinase-3-like protein 1, plastin-2, serpin 10, and BP1 fold-containing family B member 1. CONCLUSION Overall, our data demonstrate an increase of MUC5B abundance in the sinus secretions of pediatric patients with CRS.
Collapse
|
12
|
Brittan JL, Nobbs AH. Group B Streptococcus pili mediate adherence to salivary glycoproteins. Microbes Infect 2015; 17:360-8. [PMID: 25576026 DOI: 10.1016/j.micinf.2014.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 12/23/2022]
Abstract
Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia and meningitis, and is responsible for a rising number of severe invasive infections in adults. For all disease manifestations, colonisation is a critical first step. GBS has frequently been isolated from the oropharynx of neonates and adults. However, little is understood about the mechanisms of GBS colonisation at this site. In this study it is shown that three GBS strains (COH1, NEM316, 515) have capacity to adhere to human salivary pellicle. Heterologous expression of GBS pilus island (PI) genes in Lactococcus lactis to form surface-expressed pili demonstrated that GBS PI-2a and PI-1 pili bound glycoprotein-340 (gp340), a component of salivary pellicle. By contrast, PI-2b pili did not interact with gp340. The variation was attributable to differences in capacities for backbone and ancillary protein subunits of each pilus to bind gp340. Furthermore, while GBS strains were aggregated by fluid-phase gp340, this mechanism was not mediated by pili, which displayed specificity for immobilised gp340. Thus pili may enable GBS to colonise the soft and hard tissues of the oropharynx, while evading an innate mucosal defence, with implications for risk of progression to severe diseases such as meningitis and sepsis.
Collapse
Affiliation(s)
- Jane L Brittan
- School of Oral & Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK
| | - Angela H Nobbs
- School of Oral & Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| |
Collapse
|
13
|
Reichhardt MP, Jarva H, de Been M, Rodriguez JM, Jimenez Quintana E, Loimaranta V, Meindert de Vos W, Meri S. The Salivary Scavenger and Agglutinin in Early Life: Diverse Roles in Amniotic Fluid and in the Infant Intestine. THE JOURNAL OF IMMUNOLOGY 2014; 193:5240-8. [DOI: 10.4049/jimmunol.1401631] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Vestman NR, Timby N, Holgerson PL, Kressirer CA, Claesson R, Domellöf M, Öhman C, Tanner ACR, Hernell O, Johansson I. Characterization and in vitro properties of oral lactobacilli in breastfed infants. BMC Microbiol 2013; 13:193. [PMID: 23945215 PMCID: PMC3751747 DOI: 10.1186/1471-2180-13-193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/08/2013] [Indexed: 12/20/2022] Open
Abstract
Background Lactobacillus species can contribute positively to general and oral health and are frequently acquired by breastfeeding in infancy. The present study aimed to identify oral lactobacilli in breast and formula-fed 4 month-old infants and to evaluate potential probiotic properties of the dominant Lactobacillus species detected. Saliva and oral swab samples were collected from 133 infants who were enrolled in a longitudinal study (n=240) examining the effect of a new infant formula on child growth and development. Saliva was cultured and Lactobacillus isolates were identified from 16S rRNA gene sequences. Five L. gasseri isolates that differed in 16S rRNA sequence were tested for their ability to inhibit growth of selected oral bacteria and for adhesion to oral tissues. Oral swab samples were analyzed by qPCR for Lactobacillus gasseri. Results 43 (32.3%) infants were breastfed and 90 (67.7%) were formula-fed with either a standard formula (43 out of 90) or formula supplemented with a milk fat globule membrane (MFGM) fraction (47 out of 90). Lactobacilli were cultured from saliva of 34.1% breastfed infants, but only in 4.7% of the standard and 9.3% of the MFGM supplemented formula-fed infants. L. gasseri was the most prevalent (88% of Lactobacillus positive infants) of six Lactobacillus species detected. L. gasseri isolates inhibited Streptococcus mutans binding to saliva-coated hydroxyapatite, and inhibited growth of S. mutans, Streptococcus sobrinus, Actinomyces naeslundii, Actinomyces oris, Candida albicans and Fusobacterium nucleatum in a concentration dependent fashion. L. gasseri isolates bound to parotid and submandibular saliva, salivary gp340 and MUC7, and purified MFGM, and adhered to epithelial cells. L. gasseri was detected by qPCR in 29.7% of the oral swabs. Breastfed infants had significantly higher mean DNA levels of L. gasseri (2.14 pg/uL) than infants fed the standard (0.363 pg/uL) or MFGM (0.697 pg/uL) formula. Conclusions Lactobacilli colonized the oral cavity of breastfed infants significantly more frequently than formula-fed infants. The dominant Lactobacillus was L. gasseri, which was detected at higher levels in breastfed than formula-fed infants and displayed probiotic traits in vitro.
Collapse
|
15
|
Madsen J, Sorensen GL, Nielsen O, Tornøe I, Thim L, Fenger C, Mollenhauer J, Holmskov U. A variant form of the human deleted in malignant brain tumor 1 (DMBT1) gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3). PLoS One 2013; 8:e64441. [PMID: 23691218 PMCID: PMC3654909 DOI: 10.1371/journal.pone.0064441] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/15/2013] [Indexed: 12/27/2022] Open
Abstract
The protein deleted in malignant brain tumors (DMBT1) and the trefoil factor (TFF) proteins have all been proposed to have roles in epithelial cell growth and cell differentiation and shown to be up regulated in inflammatory bowel diseases. A panel of monoclonal antibodies was raised against human DMBT1gp340. Analysis of lung washings and colon tissue extracts by Western blotting in the unreduced state, two antibodies (Hyb213-1 and Hyb213-6) reacted with a double band of 290 kDa in lung lavage. Hyb213-6, in addition, reacted against a double band of 270 kDa in colon extract while Hyb213-1 showed no reaction. Hyb213-6 showed strong cytoplasmic staining in epithelial cells of both the small and large intestine whereas no staining was seen with Hyb213-1. The number of DMBT1gp340 positive epithelial cells, stained with Hyb213-6, was significantly up regulated in inflammatory colon tissue sections from patients with ulcerative colitis (p<0.0001) and Crohn’s disease (p = 0.006) compared to normal colon tissue. Immunohistochemical analysis of trefoil factor TFF1, 2 and 3 showed that TFF1 and 3 localized to goblet cells in both normal colon tissue and in tissue from patients with ulcerative colitis or Crohn’s disease. No staining for TFF2 was seen in goblet cells in normal colon tissue whereas the majority of tissue sections in ulcerative colitis and Crohn’s disease showed sparse and scattered TFF2 positive goblet cells. DMBT1 and TFF proteins did therefore not co-localize in the same cells but localized in adjacent cells in the colon. The interaction between DMBT1gp340 and trefoil TFFs proteins was investigated using an ELISA assay. DMBT1gp340 bound to solid-phase bound recombinant dimeric TFF3 in a calcium dependent manner (p<0.0001) but did not bind to recombinant forms of monomeric TFF3, TFF2 or glycosylated TFF2. This implies a role for DMBT1 and TFF3 together in inflammatory bowel disease.
Collapse
Affiliation(s)
- Jens Madsen
- Sir Henry Wellcome Laboratories, Department of Child Health, Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sonesson M, Ericson D, Kinnby B, Wickström C. Glycoprotein 340 and sialic acid in minor-gland and whole saliva of children, adolescents, and adults. Eur J Oral Sci 2011; 119:435-40. [DOI: 10.1111/j.1600-0722.2011.00879.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res 2011; 90:1271-8. [PMID: 21335541 DOI: 10.1177/0022034511399096] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies on the adherence properties of oral bacteria have been a major focus in microbiology research for several decades. The ability of bacteria to adhere to the variety of surfaces present in the oral cavity, and to become integrated within the resident microbial communities, confers growth and survival properties. Molecular analyses have revealed several families of Gram-positive bacterial surface proteins, including serine-rich repeat, antigen I/II, and pilus families, that mediate adherence to a variety of salivary and oral bacterial receptors. In Gram-negative bacteria, pili, auto-transporters, and extracellular matrix-binding proteins provide components for host tissue recognition and building of complex microbial communities. Future studies will reveal in greater detail the binding pockets for these adhesin families and their receptors. This information will be crucial for the development of new inhibitors or vaccines that target the functional regions of bacterial proteins that are involved in colonization and pathogenesis.
Collapse
Affiliation(s)
- A H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | | | |
Collapse
|
18
|
Deleted in malignant brain tumors-1 protein (DMBT1): a pattern recognition receptor with multiple binding sites. Int J Mol Sci 2010; 11:5212-33. [PMID: 21614203 PMCID: PMC3100851 DOI: 10.3390/ijms1112521] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/09/2010] [Accepted: 12/09/2010] [Indexed: 12/22/2022] Open
Abstract
Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1(SAG)), and lung glycoprotein-340 (DMBT1(GP340)) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.
Collapse
|
19
|
Rossez Y, Coddeville B, Elass E, Quinchon JF, Vidal O, Corfield AP, Gosset P, Lacroix JM, Michalski JC, Robbe-Masselot C. Interaction between DMBT1 and galectin 3 is modulated by the structure of the oligosaccharides carried by DMBT1. Biochimie 2010; 93:593-603. [PMID: 21167898 DOI: 10.1016/j.biochi.2010.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/06/2010] [Indexed: 11/29/2022]
Abstract
DMBT1 (deleted in malignant brain tumor 1), a human mucin-like glycoprotein, belonging to the scavenger receptor cysteine-rich (SRCR) superfamily, is mainly secreted from mucosal epithelia. It has been shown previously that interaction of hensin, the rabbit ortholog of DMBT1, with galectin 3, a β-galactoside-binding lectin, induces a terminal differentiation of epithelial cells. In this paper, we have used surface plasmon resonance (SPR), to analyse the binding of galectin 3 to two purified samples of human DMBT1:recombinant DMBT1 produced in CHO cells and DMBT1 isolated from intestinal tissues. Characterization of their glycosylation profile by nano-ESI-Q-TOF tandem mass spectrometry showed significant differences in O-glycans between the two DMBT1 samples. Results obtained by SPR demonstrated that the oligosaccharide side chains of DMBT1 are recognized by the carbohydrate-recognition domain (CRD) of galectin 3 and modification in the pattern of oligosaccharides modulates the binding parameters of DMBT1 with galectin 3. Moreover, using immunohistochemistry on paraffin-embedded colonic tissue sections, we could show a co-localisation of DMBT1 and galectin 3 in human intestine, suggesting a potential physiological interaction.
Collapse
|
20
|
Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 2010; 77:276-86. [PMID: 20497507 PMCID: PMC2909373 DOI: 10.1111/j.1365-2958.2010.07212.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans antigen I/II (AgI/II) protein was one of the first cell wall-anchored adhesins identified in Gram-positive bacteria. It mediates attachment of S. mutans to tooth surfaces and has been a focus for immunization studies against dental caries. The AgI/II family polypeptides recognize salivary glycoproteins, and are also involved in biofilm formation, platelet aggregation, tissue invasion and immune modulation. The genes encoding AgI/II family polypeptides are found among Streptococcus species indigenous to the human mouth, as well as in Streptococcus pyogenes, S. agalactiae and S. suis. Evidence of functionalities for different regions of the AgI/II proteins has emerged. A sequence motif within the C-terminal portion of Streptococcus gordonii SspB (AgI/II) is bound by Porphyromonas gingivalis, thus promoting oral colonization by this anaerobic pathogen. The significance of other epitopes is now clearer following resolution of regional crystal structures. A new picture emerges of the central V (variable) region, predicted to contain a carbohydrate-binding trench, being projected from the cell surface by a stalk formed by an unusual association between an N-terminal alpha-helix and a C-terminal polyproline helix. This presentation mode might be important in determining functional conformations of other Gram-positive surface proteins that have adhesin domains flanked by alpha-helical and proline-rich regions.
Collapse
Affiliation(s)
- L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville FL 32610, USA
| | - Sarah E. Maddocks
- School of Oral and Dental Sciences, University of Bristol, Bristol BS9 2RD, UK
| | - Matthew R. Larson
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nina Forsgren
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Karina Persson
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Champion C. Deivanayagam
- Center for Biophysical Sciences and Engineering, and Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol BS9 2RD, UK
| |
Collapse
|
21
|
Issa S, Moran AP, Ustinov SN, Lin JHH, Ligtenberg AJ, Karlsson NG. O-linked oligosaccharides from salivary agglutinin: Helicobacter pylori binding sialyl-Lewis x and Lewis b are terminating moieties on hyperfucosylated oligo-N-acetyllactosamine. Glycobiology 2010; 20:1046-57. [PMID: 20466654 DOI: 10.1093/glycob/cwq066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Salivary agglutinin plays a vital biological role modulating the protective effect in the oral cavity by interacting with a broad range of oral pathogens. Here, we describe the first characterization of the O-linked oligosaccharides of salivary agglutinin identified by negative ion liquid chromatography-mass spectrometry. The dominating structures were neutral or monosialylated core 1 (Galbeta1-3GalNAcalpha1-Ser/Thr) and core 2 (Galbeta1-3(GlcNAcbeta1-6)GalNAcalpha1-Ser/Thr) structures extended by fucosylated oligo-N-acetyllactosamine units. Oligosaccharides detected as [M-H](-) or [M-2H](2)(-) ions ranged from the disaccharide Galbeta1-3GalNAcol up to structures of almost 4000 Da, corresponding to core 1/2 structures with five N-acetyllactosamine units and 11 fucoses. Fucose was found either as terminal or internal blood group H structures in type 1 (Galbeta1-3GlcNAcbeta1-R), type 2 (Galbeta1-4GlcNAcbeta1-R) and type 3 (Galbeta1-3GalNAcalpha1-Ser/Thr) units, where the chains also could be fucosylated on GlcNAc yielding repeated Lewis a/b or Lewis x/y structures. Sialylation was located either at the non-reducing end of the N-acetyllactosamine chains as sialyl-Lewis x or as sialyl-T (NeuAcalpha2-3Galbeta1-3GalNAcalpha1-Ser/Thr) type structures with or without further extension of the C-6 branch of GalNAc with neutral fucosylated N-acetyllactosamine chains. The data indicated that sialylation, fucosylation and type 1 N-acetyllactosamine termination are important regulatory elements for controlling the oligosaccharide chain length. Furthermore, it was shown that these regulatory oligosaccharide elements could be utilized by the pathogen Helicobacter pylori to colonize the oral cavity, reside in dental plaque and serve as a reservoir for reinfection after successful clearance of H. pylori gastric infection.
Collapse
Affiliation(s)
- Samah Issa
- School of Chemistry, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
22
|
Madsen J, Mollenhauer J, Holmskov U. Review: Gp-340/DMBT1 in mucosal innate immunity. Innate Immun 2010; 16:160-7. [PMID: 20418254 DOI: 10.1177/1753425910368447] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Deleted in Malignant Brain Tumour 1 (DMBT1) is a gene that encodes alternatively spliced proteins involved in mucosal innate immunity. It also encodes a glycoprotein with a molecular mass of 340 kDa, and is referred to as gp-340 (DMBT1(gp340)) and salivary agglutinin (DMBT1(SAG)). DMBT1(gp340) is secreted into broncho-alveolar surface lining fluid whereas DMBT(SAG) is present in the saliva. The two molecules were shown to be identical and both interact with and agglutinate several Gram-negative and Gram-positive bacteria including Streptococcus mutans, a bacterium responsible for caries in the oral cavity. DMBT1(gp340) interacts with surfactant proteins A and D (SP-D). DMBT1(gp340) and SP-D can individually and together interact and agglutinate influenza A virus. DMBT1(gp340) also binds to HIV-1 and facilitates transcytosis of the virus into epithelial cells. DMBT1 binds to a variety of other host proteins, including serum and secretory IgA, C1q, lactoferrin, MUC5B and trefoil factor 2 (TFF2), all molecules with involvement in innate immunity and/or wound-healing processes. Recent generation of Dmbt1-deficient mice has provided the research field of DMBT1 with a model that allows research to progress from in vitro studies to in vivo functional studies of the multifunctional proteins encoded by the DMBT1 gene.
Collapse
Affiliation(s)
- Jens Madsen
- University of Southampton, Southampton General Hospital, UK.
| | | | | |
Collapse
|
23
|
Walz A, Odenbreit S, Stühler K, Wattenberg A, Meyer HE, Mahdavi J, Borén T, Ruhl S. Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesins of Helicobacter pylori by fluorescence-based 2-D bacterial overlay. Proteomics 2009; 9:1582-92. [PMID: 19253298 DOI: 10.1002/pmic.200700808] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because gastric infection by Helicobacter pylori takes place via the oral route, possible interactions of this bacterium with human salivary proteins could occur. By using modified 1- and 2-D bacterial overlay, binding of H. pylori adhesins BabA and SabA to the whole range of salivary proteins was explored. Bound salivary receptor molecules were identified by MALDI-MS and by comparison to previously established proteome maps of whole and glandular salivas. By use of adhesin-deficient mutants, binding of H. pylori to MUC7 and gp-340 could be linked to the SabA and BabA adhesins, respectively, whereas binding to MUC5B was associated with both adhesins. Binding of H. pylori to the proline-rich glycoprotein was newly detected and assigned to BabA adhesin whereas the SabA adhesin was found to mediate binding to newly detected receptor molecules, including carbonic anhydrase VI, secretory component, heavy chain of secretory IgA1, parotid secretory protein and zinc-alpha(2)-glycoprotein. Some of these salivary glycoproteins are known to act as scavenger molecules or are involved in innate immunity whereas others might come to modify the pathogenetic properties of this organism. In general, this 2-D bacterial overlay technique represents a useful supplement in adhesion studies of bacteria with complex protein mixtures.
Collapse
Affiliation(s)
- Anke Walz
- Department of Operative Dentistry and Periodontology, Dental School, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Leito JTD, Ligtenberg AJM, Nazmi K, de Blieck-Hogervorst JMA, Veerman ECI, Nieuw Amerongen AV. A common binding motif for various bacteria of the bacteria-binding peptide SRCRP2 of DMBT1/gp-340/salivary agglutinin. Biol Chem 2008; 389:1193-200. [PMID: 18713006 DOI: 10.1515/bc.2008.135] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract Salivary agglutinin (DMBT1SAG) is identical to lung glycoprotein-340 and encoded by deleted in malignant brain tumors-1. It is a member of the scavenger receptor cysteine-rich (SRCR) superfamily, proteins that have one or more SRCR domains. Salivary agglutinin plays a role in oral innate immunity by the binding and agglutination of oral streptococci. S. mutans has been shown to bind to a 16-mer peptide (QGRVEVLYRGSWGTVC) located within the SRCR domains. Within this peptide, designated SRCR Peptide 2, residues VEVL and W were critical for binding. The aim of this study was to investigate binding of DMBT1SAG to other bacteria. Therefore, interaction between a series of bacteria and DMBT1(SAG), SRCR peptide 2 and its alanine substitution variants was studied in adhesion and agglutination assays. For different bacteria there was a highly significant correlation between adhesion to DMBT1SAG and adhesion to SRCR peptide 2 suggesting that SRCR peptide 2 is the major bacteria binding site. An alanine substitution scan showed that 8 amino acids were involved in binding (xRVEVLYxxSWxxxx). The binding motifs varied for different species were found, but the residues VxVxY and W were always present. In conclusion, a common binding motif (RVEVLYxxxSW) within the SRCR domains is responsible for the broad bacteria-binding spectrum of DMBT1SAG.
Collapse
Affiliation(s)
- Jelani T D Leito
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit and Universiteit van Amsterdam, Van der Boechorstsraat 7, NL-1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Edwards AM, Manetti AGO, Falugi F, Zingaretti C, Capo S, Buccato S, Bensi G, Telford JL, Margarit I, Grandi G. Scavenger receptor gp340 aggregates group A streptococci by binding pili. Mol Microbiol 2008; 68:1378-94. [PMID: 18452511 DOI: 10.1111/j.1365-2958.2008.06220.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Group A streptococci (GAS) are the most frequent cause of bacterial pharyngitis. The first obstacle to GAS colonization of the pharynx is saliva. As well as forming a physical barrier, saliva contains components of innate and acquired immunity. Previous work has shown that saliva induces bacterial aggregation, which may serve as a clearance mechanism. As the aggregation of some oral streptococci in saliva is mediated by long proteinaceous appendages, we hypothesized that pili of GAS might behave similarly. Wild-type GAS M1 strain SF370 aggregated in saliva, while pilus-defective mutants did not. Similarly, heterologous expression of diverse GAS pili on the surface of Lactococcus lactis induced aggregation in saliva, while control strains were unaffected. Further studies revealed that aggregating bacteria bound salivary component gp340. Purified gp340 aggregated wild-type GAS and L. lactis expressing GAS pili, but not control strains. GAS pilus-defective mutants were abrogated in gp340 binding and aggregation. Furthermore, gp340-mediated aggregation reduced bacterial adhesion to human epithelial cells, suggesting a role in host defence.
Collapse
|
26
|
Ligtenberg AJM, Veerman ECI, Nieuw Amerongen AV, Mollenhauer J. Salivary agglutinin/glycoprotein-340/DMBT1: a single molecule with variable composition and with different functions in infection, inflammation and cancer. Biol Chem 2008; 388:1275-89. [PMID: 18020944 DOI: 10.1515/bc.2007.158] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Salivary agglutinin (SAG), lung glycoprotein-340 (gp-340) and Deleted in Malignant Brain Tumours 1 (DMBT1) are three names for identical proteins encoded by the dmbt1 gene. DMBT1/SAG/gp-340 belongs to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins, a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. On the one hand, DMBT1 may represent an innate defence factor acting as a pattern recognition molecule. It interacts with a broad range of pathogens, including cariogenic streptococci and Helicobacter pylori, influenza viruses and HIV, but also with mucosal defence proteins, such as IgA, surfactant proteins and MUC5B. Stimulation of alveolar macrophage migration, suppression of neutrophil oxidative burst and activation of the complement cascade point further to an important role in the regulation of inflammatory responses. On the other hand, DMBT1 has been demonstrated to play a role in epithelial and stem cell differentiation. Inactivation of the gene coding for this protein may lead to disturbed differentiation, possibly resulting in tumour formation. These data strongly point to a role for DMBT1 as a molecule linking innate immune processes with regenerative processes.
Collapse
Affiliation(s)
- Antoon J M Ligtenberg
- Department of Oral Biochemistry, Academic Centre for Dentistry, Free University, van de Boechorststraat 7, NL-1081 BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Mollenhauer J, End C, Renner M, Lyer S, Poustka A. DMBT1 as an archetypal link between infection, inflammation, and cancer. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0213-9626(07)70089-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries. BMC Infect Dis 2007; 7:57. [PMID: 17562017 PMCID: PMC1894970 DOI: 10.1186/1471-2334-7-57] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/11/2007] [Indexed: 11/29/2022] Open
Abstract
Background Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries), harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans. Methods A case-referent study was performed in 12-year-old Swedish children with high (n = 19) or low (n = 19) caries experiences. We measured the gp-340 I to III saliva phenotypes and correlated those with multiple outcome measures for caries experience and saliva adhesion of S. mutans using the partial least squares (PLS) multivariate projection technique. In addition, we used traditional statistics and 2-year caries increment to verify the established PLS associations, and bacterial adhesion to purified gp-340 I to III proteins to support possible mechanisms. Results All except one subject were typed as gp-340 I to III (10, 23 and 4, respectively). The gp-340 I phenotype correlated positively with caries experience (VIP = 1.37) and saliva adhesion of S. mutans Ingbritt (VIP = 1.47). The gp-340 II and III phenotypes tended to behave in the opposite way. Moreover, the gp-340 I phenotype tended to show an increased 2-year caries increment compared to phenotypes II/III. Purified gp-340 I protein mediated markedly higher adhesion of S. mutans strains Ingbritt and NG8 and Lactococcus lactis expressing AgI/II adhesins (SpaP or PAc) compared to gp-340 II and III proteins. In addition, the gp-340 I protein appeared over represented in subjects positive for Db, an allelic acidic PRP variant associated with caries, and subjects positive for both gp-340 I and Db tended to experience more caries than those negative for both proteins. Conclusion Gp-340 I behaves as a caries susceptibility protein.
Collapse
|