1
|
Stewart N, Wisnovsky S. Bridging Glycomics and Genomics: New Uses of Functional Genetics in the Study of Cellular Glycosylation. Front Mol Biosci 2022; 9:934584. [PMID: 35782863 PMCID: PMC9243437 DOI: 10.3389/fmolb.2022.934584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
All living cells are coated with a diverse collection of carbohydrate molecules called glycans. Glycans are key regulators of cell behavior and important therapeutic targets for human disease. Unlike proteins, glycans are not directly templated by discrete genes. Instead, they are produced through multi-gene pathways that generate a heterogenous array of glycoprotein and glycolipid antigens on the cell surface. This genetic complexity has sometimes made it challenging to understand how glycosylation is regulated and how it becomes altered in disease. Recent years, however, have seen the emergence of powerful new functional genomics technologies that allow high-throughput characterization of genetically complex cellular phenotypes. In this review, we discuss how these techniques are now being applied to achieve a deeper understanding of glyco-genomic regulation. We highlight specifically how methods like ChIP-seq, RNA-seq, CRISPR genomic screening and scRNA-seq are being used to map the genomic basis for various cell-surface glycosylation states in normal and diseased cell types. We also offer a perspective on how emerging functional genomics technologies are likely to create further opportunities for studying cellular glycobiology in the future. Taken together, we hope this review serves as a primer to recent developments at the glycomics-genomics interface.
Collapse
Affiliation(s)
- Natalie Stewart
- Biochemistry and Microbiology Dept, University of Victoria, Victoria, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Simon Wisnovsky,
| |
Collapse
|
2
|
Čaval T, Lin YH, Varkila M, Reiding KR, Bonten MJM, Cremer OL, Franc V, Heck AJR. Glycoproteoform Profiles of Individual Patients' Plasma Alpha-1-Antichymotrypsin are Unique and Extensively Remodeled Following a Septic Episode. Front Immunol 2021; 11:608466. [PMID: 33519818 PMCID: PMC7840657 DOI: 10.3389/fimmu.2020.608466] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Sepsis and septic shock remain the leading causes of death in intensive care units (ICUs), yet the pathogenesis originating from the inflammatory response during sepsis remains ambiguous. Acute-phase proteins are typically highly glycosylated, and the nature of the glycans have been linked to the incidence and severity of such inflammatory responses. To further build upon these findings we here monitored, the longitudinal changes in the plasma proteome and, in molecular detail, glycoproteoform profiles of alpha-1-antichymotrypsin (AACT) extracted from plasma of ten individual septic patients. For each patient we included four different time-points, including post-operative (before sepsis) and following discharge from the ICU. We isolated AACT from plasma depleted for albumin, IgG and serotransferrin and used high-resolution native mass spectrometry to qualitatively and quantitatively monitor the multifaceted glycan microheterogeneity of desialylated AACT, which allowed us to monitor how changes in the glycoproteoform profiles reflected the patient's physiological state. Although we observed a general trend in the remodeling of the AACT glycoproteoform profiles, e.g. increased fucosylation and branching/LacNAc elongation, each patient exhibited unique features and responses, providing a resilient proof-of-concept for the importance of personalized longitudinal glycoproteoform profiling. Importantly, we observed that the AACT glycoproteoform changes induced by sepsis did not readily subside after discharge from ICU.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Yu-Hsien Lin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Meri Varkila
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Karli R. Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Marc J. M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Olaf L. Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|
3
|
Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett 2019; 593:1598-1615. [PMID: 31215021 DOI: 10.1002/1873-3468.13495] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
N-glycosylation is a ubiquitous protein modification, and N-glycosylation profiles are emerging as both biomarkers and functional effectors in various types of diabetes. Genome-wide association studies identified glycosyltransferase genes as candidate causal genes for type 1 and type 2 diabetes. Studies focused on N-glycosylation changes in type 2 diabetes demonstrated that patients can be distinguished from healthy controls based on N-glycome composition. In addition, individuals at an increased risk of future disease development could be identified based on N-glycome profiles. Moreover, accumulating evidence indicates that N-glycans have a major role in preventing the impairment of glucose-stimulated insulin secretion by maintaining the glucose transporter in proper orientation, indicating that interindividual variation in protein N-glycosylation might be a novel risk factor contributing to diabetes development. Defective N-glycosylation of T cells has been implicated in type 1 diabetes pathogenesis. Furthermore, studies of N-glycan alterations have successfully been used to identify individuals with rare types of diabetes (such as the HNF1A-MODY), and also to evaluate functional significance of novel diabetes-associated mutations. In conclusion, both N-glycans and glycosyltransferases emerge as potential therapeutic targets in diabetes.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
4
|
Nordén R, Samuelsson E, Nyström K. NFκB-mediated activation of the cellular FUT3, 5 and 6 gene cluster by herpes simplex virus type 1. Glycobiology 2018; 27:999-1005. [PMID: 28973293 DOI: 10.1093/glycob/cwx079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 has the ability to induce expression of a human gene cluster located on chromosome 19 upon infection. This gene cluster contains three fucosyltransferases (encoded by FUT3, FUT5 and FUT6) with the ability to add a fucose to an N-acetylglucosamine residue. Little is known regarding the transcriptional activation of these three genes in human cells. Intriguingly, herpes simplex virus type 1 activates all three genes simultaneously during infection, a situation not observed in uninfected tissue, pointing towards a virus specific mechanism for transcriptional activation. The aim of this study was to define the underlying mechanism for the herpes simplex virus type 1 activation of FUT3, FUT5 and FUT6 transcription. The transcriptional activation of the FUT-gene cluster on chromosome 19 in fibroblasts was specific, not involving adjacent genes. Moreover, inhibition of NFκB signaling through panepoxydone treatment significantly decreased the induction of FUT3, FUT5 and FUT6 transcriptional activation, as did siRNA targeting of p65, in herpes simplex virus type 1 infected fibroblasts. NFκB and p65 signaling appears to play an important role in the regulation of FUT3, FUT5 and FUT6 transcriptional activation by herpes simplex virus type 1 although additional, unidentified, viral factors might account for part of the mechanism as direct interferon mediated stimulation of NFκB was not sufficient to induce the fucosyltransferase encoding gene cluster in uninfected cells.
Collapse
Affiliation(s)
- Rickard Nordén
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Guldhedsgatan 10B, SE-413 46 Gothenburg, Sweden
| | - Ebba Samuelsson
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Guldhedsgatan 10B, SE-413 46 Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Guldhedsgatan 10B, SE-413 46 Gothenburg, Sweden
| |
Collapse
|
5
|
Nongmaithem SS, Joglekar CV, Krishnaveni GV, Sahariah SA, Ahmad M, Ramachandran S, Gandhi M, Chopra H, Pandit A, Potdar RD, H D Fall C, Yajnik CS, Chandak GR. GWAS identifies population-specific new regulatory variants in FUT6 associated with plasma B12 concentrations in Indians. Hum Mol Genet 2017; 26:2551-2564. [PMID: 28334792 PMCID: PMC5886186 DOI: 10.1093/hmg/ddx071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/20/2017] [Indexed: 01/26/2023] Open
Abstract
Vitamin B12 is an important cofactor in one-carbon metabolism whose dysregulation is associated with various clinical conditions. Indians have a high prevalence of B12 deficiency but little is known about the genetic determinants of circulating B12 concentrations in Indians. We performed a genome-wide association study in 1001 healthy participants in the Pune Maternal Nutrition Study (PMNS), replication studies in 3418 individuals from other Indian cohorts and by meta-analysis identified new variants, rs3760775 (P = 1.2 × 10−23) and rs78060698 (P = 8.3 × 10−17) in FUT6 to be associated with circulating B12 concentrations. Although in-silico analysis replicated both variants in Europeans, differences in the effect allele frequency, effect size and the linkage disequilibrium structure of credible set variants with the reported variants suggest population-specific characteristics in this region. We replicated previously reported variants rs602662, rs601338 in FUT2, rs3760776, rs708686 in FUT6, rs34324219 in TCN1 (all P < 5 × 10−8), rs1131603 in TCN2 (P = 3.4 × 10−5), rs12780845 in CUBN (P = 3.0 × 10−3) and rs2270655 in MMAA (P = 2.0 × 10−3). Circulating B12 concentrations in the PMNS and Parthenon study showed a significant decline with increasing age (P < 0.001), however, the genetic contribution to B12 concentrations remained constant. Luciferase reporter and electrophoretic-mobility shift assay for the FUT6 variant rs78060698 using HepG2 cell line demonstrated strong allele-specific promoter and enhancer activity and differential binding of HNF4α, a key regulator of expression of various fucosyltransferases. Hence, the rs78060698 variant, through regulation of fucosylation may control intestinal host-microbial interaction which could influence B12 concentrations. Our results suggest that in addition to established genetic variants, population-specific variants are important in determining plasma B12 concentrations.
Collapse
Affiliation(s)
- Suraj S Nongmaithem
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India
| | - Charudatta V Joglekar
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Rasta Peth, Pune, Maharashtra 411 011, India
| | - Ghattu V Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, Karnataka 570 021, India
| | - Sirazul A Sahariah
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Meraj Ahmad
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India
| | - Swetha Ramachandran
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India
| | - Meera Gandhi
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Harsha Chopra
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Anand Pandit
- Department of Pediatrics, King Edward Memorial Hospital and Research Centre, Rasta Peth, Pune, Maharashtra 411 011, India
| | - Ramesh D Potdar
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Caroline H D Fall
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Chittaranjan S Yajnik
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Rasta Peth, Pune, Maharashtra 411 011, India
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India.,Human Genetics Unit, Genome Institute of Singapore, Biopolis, 138 672, Singapore
| |
Collapse
|
6
|
Darebna P, Novak P, Kucera R, Topolcan O, Sanda M, Goldman R, Pompach P. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J Proteomics 2016; 153:44-52. [PMID: 27646713 DOI: 10.1016/j.jprot.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/22/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022]
Abstract
Alternations in the glycosylation of proteins have been described in connection with several cancers, including hepatocellular carcinoma (HCC) and colorectal cancer. Analytical tools, which use combination of liquid chromatography and mass spectrometry, allow precise and sensitive description of these changes. In this study, we use MRM and FT-ICR operating in full-MS scan, to determine ratios of intensities of specific glycopeptides in HCC, colorectal cancer, and liver metastasis of colorectal cancer. Haptoglobin, hemopexin and complement factor H were detected after albumin depletion and the N-linked glycopeptides with fucosylated glycans were compared with their non-fucosylated forms. In addition, sialylated forms of an O-linked glycopeptide of hemopexin were quantified in the same samples. We observe significant increase in fucosylation of all three proteins and increase in bi-sialylated O-glycopeptide of hemopexin in HCC of hepatitis C viral (HCV) etiology by both LC-MS methods. The results of the MRM and full-MS scan FT-ICR analyses provide comparable quantitative readouts in spite of chromatographic, mass spectrometric and data analysis differences. Our results suggest that both workflows allow adequate relative quantification of glycopeptides and suggest that HCC of HCV etiology differs in glycosylation from colorectal cancer and liver metastasis of colorectal cancer. SIGNIFICANCE The article compares N- and O-glycosylation of several serum proteins in different diseases by a fast and easy sample preparation procedure in combination with high resolution Fourier transform ion cyclotron resonance mass spectrometry. The results show successful glycopeptides relative quantification in a complex peptide mixture by the high resolution instrument and the detection of glycan differences between the different types of cancer diseases. The presented method is comparable to conventional targeted MRM approach but allows additional curation of the data.
Collapse
Affiliation(s)
- Petra Darebna
- Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Petr Novak
- Institute of Microbiology v.v.i., Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Radek Kucera
- Laboratory of Immunoanalysis, Faculty Hospital in Pilsen, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Laboratory of Immunoanalysis, Faculty Hospital in Pilsen, Pilsen, Czech Republic
| | - Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Petr Pompach
- Institute of Microbiology v.v.i., Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic.
| |
Collapse
|
7
|
Ryoo H, Ryu J, Lee C. Transcriptional Downregulation by Nucleotide Substitution with the Minor Allele of rs3760776 Located in the Promoter of FUT6 Gene. Biochem Genet 2015; 53:72-8. [PMID: 25962326 DOI: 10.1007/s10528-015-9673-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/15/2015] [Indexed: 11/25/2022]
Abstract
We examined the promoter activity of an association signal in an upstream region of the gene encoding fucosyltransferae 6 (FUT6) identified from a recent genomewide association study for the N-glycan level. The luciferase assay using reporter constructs with T and C alleles at rs3760776 revealed differential promoter activity. The amount of luciferin expressed with the C allele corresponded to that without the reporter construct (P > 0.05). On the other hand, the expression was dramatically reduced with the T allele (P < 0.05). The difference in transcriptional activity between the two alleles was confirmed by an electrophoretic mobility shift assay. It demonstrated that the promoter with a T allele had a stronger binding affinity to nuclear factors than that with the C allele. We concluded that the T allele of rs3760776 might repress the transcription of the FUT6 gene. Further studies are warranted to understand its underlying mechanism and its influence on susceptibility to potential diseases.
Collapse
Affiliation(s)
- Hyunju Ryoo
- School of Systems Biomedical Science, Soongsil University, 511 Sangdo-dong, Dongjak-gu, Seoul, Korea
| | | | | |
Collapse
|
8
|
Bassagañas S, Allende H, Cobler L, Ortiz MR, Llop E, de Bolós C, Peracaula R. Inflammatory cytokines regulate the expression of glycosyltransferases involved in the biosynthesis of tumor-associated sialylated glycans in pancreatic cancer cell lines. Cytokine 2015; 75:197-206. [PMID: 25934648 DOI: 10.1016/j.cyto.2015.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant stroma containing several pro-inflammatory cytokines, which are described to modulate the expression of important genes related to tumor promotion and progression. In the present work we have investigated the potential role of these cytokines in the biosynthesis of tumor-associated carbohydrate antigens such as sialyl-Lewis(x) (SLe(x)) through the regulation of specific glycosyltransferase genes. METHODS Two human PDAC cell lines MDAPanc-3 and MDAPanc-28 were treated with pro-inflammatory cytokines IL-1β, TNFα, IL-6 or IL-8, and the content of tumor-associated carbohydrate antigens at the cell membrane was analyzed by flow cytometry. In addition, variation in the mRNA expression of sialyltransferase (ST) and fucosyltransferase (FUT) genes, which codify for the ST and FucT enzymes involved in the carbohydrate antigens' biosynthesis, was determined. The inflammatory microenvironment of PDAC tissues and the expression of Lewis-type antigens were analyzed by immunohistochemistry to find a possible correlation between inflammation status and the presence of tumor-associated carbohydrate antigens. RESULTS IL-1β stimuli increased SLe(x) and α2,6-sialic acid levels in MDAPanc-28 cells and enhanced the mRNA levels of ST3GAL3-4 and FUT5-7, which codify for ST and FucT enzymes related to SLe(x) biosynthesis, and of ST6GAL1. IL-6 and TNFα treatments increased the levels of SLe(x) and Le(y) antigens in MDPanc-3 cells and, similarly, the mRNA expression of ST3GAL3-4, FUT1-2 and FUT6, related to these Lewis-type antigens' biosynthesis, were increased. Most PDAC tissues stained for SLe(x) and SLe(a) and tended to be expressed in the tumor samples with a higher presence of inflammatory immune cells. CONCLUSIONS The inflammatory microenvironment can modulate the glycosylation pattern of PDAC cells, increasing the expression of tumor-associated sialylated antigens such as SLe(x), which contributes to pancreatic tumor malignancy.
Collapse
Affiliation(s)
- Sònia Bassagañas
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Helena Allende
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lara Cobler
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - M Rosa Ortiz
- Department of Pathology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Carme de Bolós
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.
| |
Collapse
|
9
|
Abstract
Sialyl Lewis X (sLeX) antigen, Neu5Acα2,3Galβ1,4(Fucα1,3)GlcNAc-R, is expressed on the glycoproteins in sera or the surface of the cells and the expression of sLeX is enhanced in various conditions such as the inflammation and cancer. SLeX in the serum is utilized as a tumor marker. To clarify the roles of sLeX on secreted glycoproteins in vivo, we investigate the regulation of natural killer (NK) cell-dependent cytotoxicity through sLeX. NK cells express many receptors to kill the target cells such as cancerous cells and non-self, and their protein ligands have been elucidated. Of the killer lectin-like receptors (KLRs) on NK cells, several have been reported to recognize glycans. Using recombinant extracellular domains of KLRs (rKLRs: rNKG2A, C, D and rCD94), we evaluated their glycan ligand specificity and binding affinities using EIA methods. We clarified that all of these rKLRs can bind to high sLeX-expressing glycoprotein and heparin, heparan sulfate and highly sulfated polysaccharides and that glycan binding sites on NKG2D are mostly overlapped with those of protein ligands. In this review, we show the recent findings concerning the glycan ligands of these KLRs.
Collapse
Affiliation(s)
- Koji Higai
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, Toho University, Chiba, Japan.
| | | |
Collapse
|
10
|
Pulit-Penaloza JA, Scherbik SV, Brinton MA. Activation of Oas1a gene expression by type I IFN requires both STAT1 and STAT2 while only STAT2 is required for Oas1b activation. Virology 2012; 425:71-81. [PMID: 22305621 DOI: 10.1016/j.virol.2011.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/15/2011] [Accepted: 11/29/2011] [Indexed: 12/24/2022]
Abstract
The murine 2'-5' oligoadenylate synthetase 1a (Oas1a) and Oas1b genes are type 1 IFN responsive genes. Oas1a is an active synthetase with broad antiviral activity mediated through RNase L. Oas1b is inactive but can inhibit Oas1a synthetase activity and mediate a flavivirus-specific antiviral activity through an unknown RNase L-independent mechanism. Analysis of promoter elements regulating gene transcription confirmed that an IFN-stimulated response element (ISRE) is required for IFN beta-activation but neither the overlapping IRF binding site present in both promoters nor the adjacent Oas1b NF-kappa B site is required. Mutation of the overlapping STAT site negatively affected IFN beta-induction of Oas1a but not of Oas1b. Also, IFN beta induction of Oas1a was STAT1- and STAT2-dependent, while induction of Oas1b was STAT1-independent but STAT2-dependent. The two promoters differ at a single nucleotide in the STAT site. The data indicate that these two duplicated genes can be differentially regulated by IFN beta.
Collapse
|
11
|
Lauc G, Essafi A, Huffman JE, Hayward C, Knežević A, Kattla JJ, Polašek O, Gornik O, Vitart V, Abrahams JL, Pučić M, Novokmet M, Redžić I, Campbell S, Wild SH, Borovečki F, Wang W, Kolčić I, Zgaga L, Gyllensten U, Wilson JF, Wright AF, Hastie ND, Campbell H, Rudd PM, Rudan I. Genomics meets glycomics-the first GWAS study of human N-Glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet 2010; 6:e1001256. [PMID: 21203500 PMCID: PMC3009678 DOI: 10.1371/journal.pgen.1001256] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/19/2010] [Indexed: 12/14/2022] Open
Abstract
Over half of all proteins are glycosylated, and alterations in glycosylation have been observed in numerous physiological and pathological processes. Attached glycans significantly affect protein function; but, contrary to polypeptides, they are not directly encoded by genes, and the complex processes that regulate their assembly are poorly understood. A novel approach combining genome-wide association and high-throughput glycomics analysis of 2,705 individuals in three population cohorts showed that common variants in the Hepatocyte Nuclear Factor 1α (HNF1α) and fucosyltransferase genes FUT6 and FUT8 influence N-glycan levels in human plasma. We show that HNF1α and its downstream target HNF4α regulate the expression of key fucosyltransferase and fucose biosynthesis genes. Moreover, we show that HNF1α is both necessary and sufficient to drive the expression of these genes in hepatic cells. These results reveal a new role for HNF1α as a master transcriptional regulator of multiple stages in the fucosylation process. This mechanism has implications for the regulation of immunity, embryonic development, and protein folding, as well as for our understanding of the molecular mechanisms underlying cancer, coronary heart disease, and metabolic and inflammatory disorders. By combining recently developed high-throughput glycan analysis with genome-wide association study, we performed the first comprehensive analysis of common genetic polymorphisms that affect protein glycosylation. Over half of all proteins are glycosylated; but, due to difficulties in glycan analysis and the absence of a genetic template for their synthesis, knowledge about the complex processes that regulate glycan assembly is still limited. We demonstrated that HNF1α regulates the expression of key fucosyltransferase and fucose biosynthesis genes and acts as a master regulator of plasma protein fucosylation. Proper protein fucosylation is essential in numerous processes including inflammation, cancer, and coronary heart disease, thus the identification of a master regulator of plasma protein fucosylation has important implications for understanding both normal biological functions and disease processes.
Collapse
Affiliation(s)
- Gordan Lauc
- Glycobiology Laboratory, Genos Ltd., Zagreb, Croatia
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Abdelkader Essafi
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Jennifer E. Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Ana Knežević
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Jayesh J. Kattla
- National Institute for Bioprocessing Research and Training, Dublin-Oxford Glycobiology Lab, Conway Institute, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Ozren Polašek
- Gen Info Ltd., Zagreb, Croatia
- Medical School, University of Zagreb, Zagreb, Croatia
| | - Olga Gornik
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Jodie L. Abrahams
- National Institute for Bioprocessing Research and Training, Dublin-Oxford Glycobiology Lab, Conway Institute, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Maja Pučić
- Glycobiology Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Irma Redžić
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Susan Campbell
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Sarah H. Wild
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
| | | | - Wei Wang
- School of Public Health and Family Medicine, Capital Medical University, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Ivana Kolčić
- Medical School, University of Zagreb, Zagreb, Croatia
| | - Lina Zgaga
- Medical School, University of Zagreb, Zagreb, Croatia
| | - Ulf Gyllensten
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - James F. Wilson
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Alan F. Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Nicholas D. Hastie
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Harry Campbell
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Pauline M. Rudd
- National Institute for Bioprocessing Research and Training, Dublin-Oxford Glycobiology Lab, Conway Institute, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Igor Rudan
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Edinburgh, United Kingdom
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
- * E-mail:
| |
Collapse
|
12
|
Inhibition of protein deacetylation augments herpes simplex virus type 1-activated transcription of host fucosyltransferase genes associated with virus-induced sLex expression. Arch Virol 2009; 155:305-13. [DOI: 10.1007/s00705-009-0580-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/02/2009] [Indexed: 02/03/2023]
|
13
|
Carvalho AS, Harduin-Lepers A, Magalhães A, Machado E, Mendes N, Costa LT, Matthiesen R, Almeida R, Costa J, Reis CA. Differential expression of alpha-2,3-sialyltransferases and alpha-1,3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. Int J Biochem Cell Biol 2009; 42:80-9. [PMID: 19781661 DOI: 10.1016/j.biocel.2009.09.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 11/26/2022]
Abstract
Sialyl Lewis x and sialyl Lewis a expression depends on sialyltransferases and fucosyltransferases. In this study, we screened for major variations of sialyltransferases and fucosyltransferases involved in the synthesis and regulation of sialyl Lewis x and sialyl Lewis a epitopes in gastrointestinal carcinoma cells. Our results show that expression of ST3Gal IV in several gastrointestinal cell lines is correlated with the expression of sialyl Lewis x at the cell surface. ST3Gal IV overexpressed in the gastric MKN45 cell line, showed exclusive enzymatic activity towards glycoproteins containing terminal Galbeta1-4GlcNAc structure. On the other hand, when ST3Gal III was overexpressed in MKN45, an increase in the expression levels of both sialyl Lewis epitopes was observed. ST3Gal III and ST3Gal IV lead to de novo synthesis of sialyl Lewis x determinant on different molecular weight glycoproteins of MKN45 cells suggesting that each enzyme used different substrates within the available glycoproteome. The final glycosylation step in sialyl Lewis x and sialyl Lewis a biosynthesis in MKN45 cell line was shown to be associated to FUT5, which efficiently fucosylated sialyl Lewis precursors on glycoproteins. Moreover we demonstrate that the expression of sialyl Lewis epitopes in the MKN45 was induced by cell confluence, which can be regarded as a model to study altered glycosylation during tumour progression. This increase was observed together with an increase in mRNA levels of ST3GAL3, FUT5 and FUT6, and a decrease in FUT4 transcript levels in MKN45 confluent cells, suggesting a possible control at the transcriptional level.
Collapse
Affiliation(s)
- A S Carvalho
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|