1
|
Sangkuanun T, Tipbunjong C, Yasuhiko K, Watanabe H, Peerakietkhajorn S. Dragon fruit-derived oligosaccharides alter hemocyte-mediated immunity and expression of genes related to innate immunity and oxidative stress in Daphnia magna. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105251. [PMID: 39168396 DOI: 10.1016/j.dci.2024.105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/06/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Dragon fruit oligosaccharide (DFO) is an indigestible prebiotic that enhances the growth and reproduction of Daphnia magna, increases the expression of genes involved in immunity, and reduces oxidative stress. This study investigated the effects of DFO on the expression of innate immunity- (Toll, Pelle, proPO, A2M, and CTL), oxidative stress- (Mn-SOD), and nitric oxide (NO) synthesis-related genes (NOS1, NOS2, and arginase) as well as NO localization and number of hemocytes in D. magna. For this ten-day-old D. magna were treated with 0 or 9 mg l-1 of DFO for 24 and 85 h. Gene expression levels, NO intensity and localization, and total hemocytes were evaluated. After 24 h, the expression of Toll and proPO increased significantly (p < 0.05), while that of C-type lectins (CTL) was reduced (p < 0.05). At 85 h, Mn-SOD and CTL expressions were markedly suppressed (p < 0.05). NO was mostly localized in the foregut, midgut, hindgut, and carapace. The expression of NOS1 was reduced after 24 h (p < 0.05). In addition, NO intensity at 24 h was insignificantly lower than the control (p > 0.05). At 85 h, the expression of NOS1, NOS2, and arginase was higher than control, but NO intensity did not differ significantly (p > 0.05). Furthermore, the total hemocyte count elevated remarkably at 85 h (p < 0.05). Our study suggested that 9 mg l-1 of DFO could alter the expression of the genes related to innate immunity, oxidative stress, and NO synthesis in D. magna and significantly stimulate hemocyte production.
Collapse
Affiliation(s)
- Thanwarat Sangkuanun
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kato Yasuhiko
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 562-0082, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 562-0082, Japan
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
2
|
Bahavarnia F, Hasanzadeh M, Bahavarnia P, Shadjou N. Advancements in application of chitosan and cyclodextrins in biomedicine and pharmaceutics: recent progress and future trends. RSC Adv 2024; 14:13384-13412. [PMID: 38660530 PMCID: PMC11041621 DOI: 10.1039/d4ra01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
The global community is faced with numerous health concerns such as cancer, cardiovascular and neurological diseases, diabetes, joint pain, osteoporosis, among others. With the advancement of research in the fields of materials chemistry and medicine, pharmaceutical technology and biomedical analysis have entered a new stage of development. The utilization of natural oligosaccharides and polysaccharides in pharmaceutical/biomedical studies has gained significant attention. Over the past decade, several studies have shown that chitosan and cyclodextrin have promising biomedical implications in background analysis, ongoing development, and critical applications in biomedical and pharmaceutical research fields. This review introduces different types of saccharides/natural biopolymers such as chitosan and cyclodextrin and discusses their wide-ranging applications in the biomedical/pharmaceutical research area. Recent research advances in pharmaceutics and drug delivery based on cyclodextrin, and their response to smart stimuli, as well as the biological functions of cyclodextrin and chitosan, such as the immunomodulatory effects, antioxidant, and antibacterial properties, have also been discussed, along with their applications in tissue engineering, wound dressing, and drug delivery systems. Finally, the innovative applications of chitosan and cyclodextrin in the pharmaceutical/biomedicine were reviewed, and current challenges, research/technological gaps, and future development opportunities were surveyed.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Parinaz Bahavarnia
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
3
|
Thomas R, Fukamizo T, Suginta W. Green-Chemical Strategies for Production of Tailor-Made Chitooligosaccharides with Enhanced Biological Activities. Molecules 2023; 28:6591. [PMID: 37764367 PMCID: PMC10536575 DOI: 10.3390/molecules28186591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Chitooligosaccharides (COSs) are b-1,4-linked homo-oligosaccharides of N-acetylglucosamine (GlcNAc) or glucosamine (GlcN), and also include hetero-oligosaccharides composed of GlcNAc and GlcN. These sugars are of practical importance because of their various biological activities, such as antimicrobial, anti-inflammatory, antioxidant and antitumor activities, as well as triggering the innate immunity in plants. The reported data on bioactivities of COSs used to contain some uncertainties or contradictions, because the experiments were conducted with poorly characterized COS mixtures. Recently, COSs have been satisfactorily characterized with respect to their structures, especially the degree of polymerization (DP) and degree of N-acetylation (DA); thus, the structure-bioactivity relationship of COSs has become more unambiguous. To date, various green-chemical strategies involving enzymatic synthesis of COSs with designed sequences and desired biological activities have been developed. The enzymatic strategies could involve transglycosylation or glycosynthase reactions using reducing end-activated sugars as the donor substrates and chitinase/chitosanase and their mutants as the biocatalysts. Site-specific chitin deacetylases were also proposed to be applicable for this purpose. Furthermore, to improve the yields of the COS products, metabolic engineering techniques could be applied. The above-mentioned approaches will provide the opportunity to produce tailor-made COSs, leading to the enhanced utilization of chitin biomass.
Collapse
Affiliation(s)
- Reeba Thomas
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
| |
Collapse
|
4
|
Agostini SBN, Malta IHS, Rodrigues RF, Freitas JTJ, Lino MEDS, Dos Santos RS, Elisei LS, Moraes TR, Giusto LADR, de Oliveira MK, Bassi da Silva J, Bruschi ML, Santos AMD, Nogueira DA, Novaes RD, Pereira GR, Galdino G, Carvalho FC. Preclinical evaluation of methotrexate-loaded polyelectrolyte complexes and thermosensitive hydrogels as treatment for rheumatoid arthritis. Eur J Pharm Sci 2021; 163:105856. [PMID: 33882329 DOI: 10.1016/j.ejps.2021.105856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022]
Abstract
This work proposes new methotrexate (MTX) loaded drug delivery systems (DDS) to treat rheumatoid arthritis via the intra-articular route: a poloxamer based thermosensitive hydrogel (MTX-HG), oligochitosan and hypromellose phthalate-based polyelectrolyte complexes (MTX-PEC) and their association (MTX-PEC-HG). MTX-PEC showed 470 ± 166 nm particle size, 0.298 ± 0.108 polydispersity index, +26 ± 2 mV and 74.3 ± 5.8% MTX efficiency entrapment and particle formation was confirmed by infrared spectroscopy and thermal analysis. MTX-HG and MTX-PEC-HG gelled at 36.7°C. MTX drug release profile was prolonged for MTX-HG and MTX-PEC-HG, and faster for MTX-PEC and free MTX. The in vivo effect of the MTX-DDSs systems was evaluated in induced arthritis rats as single intra-articular dose. The assessed parameters were the mechanical nociceptive threshold, the plasmatic IL-1β level and histological analysis of the tibiofemoral joint. MTX-HG and MTX-PEC-HG performance were similar to free MTX and worse than oral MTX, used as positive control. All DDSs showed some irritative effect, for which further studies are required. MTX-PEC was the best treatment on recovering cartilage damage and decreasing allodynia. Thus, MTX-PEC demonstrated potential to treat rheumatoid arthritis, with the possibility of decreasing the systemic exposure to the drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Merelym Ketterym de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Ciências Fisiológicas, Universidade Federal de Alfenas, Brazil
| | - Jéssica Bassi da Silva
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Marcos Luciano Bruschi
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Aline Martins Dos Santos
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Julio de Mesquita Filho". UNESP, Araraquara, Brazil
| | | | - Rômulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Brazil
| | - Gislaine Ribeiro Pereira
- Escola de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil
| | - Giovane Galdino
- Instituto de Ciência da Motricidade, Universidade Federal de Alfenas, Brazil
| | - Flávia Chiva Carvalho
- Escola de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil
| |
Collapse
|
5
|
Zhou J, Wen B, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct 2021; 12:926-951. [PMID: 33434251 DOI: 10.1039/d0fo02768e] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COSs) are widely used biopolymers that have been studied in relation to a variety of abnormal biological activities in the food and biomedical fields. Since different COS preparation technologies produce COS compounds with different structural characteristics, it has not yet been possible to determine whether one or more chito-oligomers are primarily responsible for the bioactivity of COSs. The inherent biocompatibility, mucosal adhesion and nontoxic nature of COSs are well documented, as is the fact that they are readily absorbed from the intestinal tract, but their structure-activity relationship requires further investigation. This review summarizes the methods used for COS preparation, and the research findings with regard to the antioxidant, anti-inflammatory, anti-obesity, bacteriostatic and antitumour activity of COSs with different structural characteristics. The correlation between the molecular structure and bioactivities of COSs is described, and new insights into their structure-activity relationship are provided.
Collapse
Affiliation(s)
- Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
6
|
Sumayya AS, Muraleedhara Kurup G. In vitro anti-inflammatory potential of marine macromolecules cross-linked bio-composite scaffold on LPS stimulated RAW 264.7 macrophage cells for cartilage tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1040-1056. [PMID: 33682617 DOI: 10.1080/09205063.2021.1899590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework of native extracellular matrix so as to encourage cell growth and eventual tissue regeneration. Naturally occurring biopolymers as scaffolds offer options for cartilage tissue engineering due to anti-inflammatory, biocompatibility, biodegradability, low toxicity of degradation by-products and plasticity in processing into a variety of material formats. Here we studied in vitro anti-inflammatory potential of marine macromolecules cross-linked bio-composite scaffold composed of hydroxyapatite, alginate, chitosan and fucoidan named as HACF on LPS stimulated RAW 264.7 macrophage cells. The effects of HACF on the viability of RAW264.7 cells, nitrite level, intracellular ROS as well as the mRNA levels of NF-κB, iNOS, COX-2, TNF-α, IL-1β and IL-6 were examined in LPS induced RAW264.7 macrophage cells. The results revealed that HACF hydrogel scaffold exerts anti-inflammatory effect by inhibiting the production of ROS, suppress NF-kB translocation to the nucleus and thereby inhibiting the production of inflammatory mediators. Hence, our results confirm that HACF has a strong anti-oxidant capacity to inhibit inflammation associated gene expression by suppressing NF-kB signaling pathway. It clearly reveals the anti-oxidant and anti-inflammatory effect of HACF hydrogel scaffold on LPS induced RAW 264.7 cells.
Collapse
Affiliation(s)
- A S Sumayya
- Faculty, Department of Biochemistry, T.K.M. College of Arts and Science, Kollam, India
| | | |
Collapse
|
7
|
Benchamas G, Huang G, Huang S, Huang H. Preparation and biological activities of chitosan oligosaccharides. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Rameshthangam P, Solairaj D, Arunachalam G, Ramasamy P. Chitin and Chitinases: Biomedical And Environmental Applications of Chitin and its Derivatives. ACTA ACUST UNITED AC 2020. [DOI: 10.14302/issn.2690-4829.jen-18-2043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disposal of chitin wastes from crustacean shell can cause environmental and health hazards. Chitin is a well known abundant natural polymer extracted after deproteinization and demineralization of the shell wastes of shrimp, crab, lobster, and krill. Extraction of chitin and its derivatives from waste material is one of the alternative ways to turn the waste into useful products. Chitinases are enzymes that degrade chitin. Chitinases contribute to the generation of carbon and nitrogen in the ecosystem. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications. The presence of surface charge and multiple functional groups make chitin as a beneficial natural polymer. Due to the reactive functional groups chitin can be used for the preparation of a spectrum of chitin derivatives such as chitosan, alkyl chitin, sulfated chitin, dibutyryl chitin and carboxymethyl chitin for specific applications in different areas. The present review is aimed to summarize the efficacy of the chitinases on the chitin and its derivatives and their diverse applications in biomedical and environmental field. Further this review also discusses the synthesis of various chitin derivatives in detail and brings out the importance of chitin and its derivatives in biomedical and environmental applications.
Collapse
Affiliation(s)
| | - Dhanasekaran Solairaj
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamilnadu, India
| | - Gnanapragasam Arunachalam
- College of Poultry Productions and Management, Tamil Nadu Veterinary and Animal Sciences University, Hosur - 635 110, Tamil Nadu, India
| | - Palaniappan Ramasamy
- Director- Research, Sree Balaji Medical College and Hospital, BIHER- Bharath University, Chennai-600041, Tamil Nadu, India
| |
Collapse
|
9
|
Dietary Supplementation with Chitosan Oligosaccharides Alleviates Oxidative Stress in Rats Challenged with Hydrogen Peroxide. Animals (Basel) 2019; 10:ani10010055. [PMID: 31888046 PMCID: PMC7022516 DOI: 10.3390/ani10010055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Oxidative stress adversely affects animal health and performance. Feed additives with antioxidant abilities supplementation can alleviate oxidative stress. The aim of this study was to evaluate the hypothesis that dietary supplementation with COS alleviates the damage caused by oxidative stress in Sprague Dawley rats challenged with hydrogen peroxide (H2O2). The results shown that COS exhibited better radical scavenging capacity of 1, 1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion (O2−), H2O2, and ferric ion reducing antioxidant power (FRAP) than butylated hydroxy anisole (BHA), increasing activity of SOD, CAT, GSH-Px, GSH, and T-AOC, as well as decreasing MDA level in serum, liver, spleen, and kidney. Our results indicated that COS can protect Sprague Dawley rats from H2O2 challenge by reducing lipid peroxidation and restoring antioxidant capacity. Abstract Oxidative stress is induced by excessive oxidative radicals, which directly react with biomolecules, and damage lipids, proteins and DNA, leading to cell or organ injury. Supplementation of antioxidants to animals can be an effective way to modulate the antioxidant system. Chitosan oligosaccharides (COS) are the degraded products of chitosan or chitin, which has strong antioxidant, anti-inflammatory, and immune-enhancing competency. Therefore, the current study was conducted to evaluate the hypothesis that dietary supplementation with COS alleviates the damage caused by oxidative stress in Sprague Dawley rats challenged with hydrogen peroxide (H2O2). The rats were randomly divided into three groups: CON, control group, in which rats were fed a basal diet with normal drinking water; AS, H2O2 group, in which rats were fed the basal diet and 0.1% H2O2 in the drinking water; ASC, AS + COS group, in which rats were fed the basal diet with 200 mg/kg COS, and with 0.1% H2O2 in the drinking water. In vitro, COS exhibited better radical scavenging capacity of 1, 1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion (O2−), H2O2, and ferric ion reducing antioxidant power (FRAP) than butylated hydroxy anisole (BHA). In vivo, dietary supplementation with COS alleviated the H2O2-induced oxidative damage, evidenced by comparatively increasing activity of SOD, CAT, GSH-Px, GSH, and T-AOC, and comparatively decreasing level of MDA in serum, liver, spleen, and kidney. COS also comparatively alleviated the H2O2-induced inflammation. In conclusion, COS supplementation reduced lipid peroxidation and restored antioxidant capacity in Sprague Dawley rats, which were challenged with H2O2.
Collapse
|
10
|
Chitosan Oligosaccharides Protect Sprague Dawley Rats from Cyclic Heat Stress by Attenuation of Oxidative and Inflammation Stress. Animals (Basel) 2019; 9:ani9121074. [PMID: 31816916 PMCID: PMC6940990 DOI: 10.3390/ani9121074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Heat stress has negative effects on animal health and performance, and chitosan oligosaccharides (COS) exhibits antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the effects of COS alleviation of oxidative stress and inflammatory response in heat-stressed rats. The results indicated heat stress decreased (p < 0.05) growth performance; the relative weight of spleen and kidney; and the level of antioxidant enzymes and IL-10 in liver, spleen, and kidney, while it increased (p < 0.05) the MDA and inflammatory cytokines concentration. Dietary COS supplementation enhanced (p < 0.05) ADG, the relative weight of spleen and kidney, and the level of antioxidant enzymes and IL-10 in liver, spleen, and kidney. Collectively, COS was beneficial to heat-stressed rats by alleviating oxidative damage and inflammatory response. Abstract Chitosan oligosaccharides (COS) exhibits antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the effects of COS on antioxidant system and inflammatory response in heat-stressed rats. A total of 30 male rats were randomly divided to three groups and reared at either 24 °C or 35 °C for 4 h/d for this 7-day experiment: CON, control group with basal diet; HS, heat stress group with basal diet; HSC, heat stress with 200mg/kg COS supplementation. Compared with the CON group, HS significantly decreased (p < 0.05) average daily gain (ADG); average daily feed intake (ADFI); the relative weight of spleen and kidney; the level of liver CAT, GSH-Px, T-AOC, and IL-10; spleen SOD, GSH-Px, GSH, and IL-10; and kidney SOD, GSH-Px, T-AOC, and IL-10, while significantly increased the MDA concentration in liver, spleen, and kidney; the liver IL-1β concentration; and spleen and kidney IL-6 and TNF-α concentration. In addition, dietary COS supplementation significantly improved (p < 0.05) ADG; the relative weight of spleen and kidney; the level of liver GSH-Px, spleen GSH-Px, GSH, and IL-10; and kidney GSH-Px, while significantly decreased (p < 0.05) liver IL-1β concentration under heat stress condition. Collectively, COS was beneficial to heat-stressed rats by alleviating oxidative damage and inflammatory response.
Collapse
|
11
|
Understanding intracellular trafficking and anti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal disease treatment. Int J Pharm 2019; 572:118821. [DOI: 10.1016/j.ijpharm.2019.118821] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/23/2019] [Accepted: 10/22/2019] [Indexed: 11/20/2022]
|
12
|
Recent Updates in Pharmacological Properties of Chitooligosaccharides. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4568039. [PMID: 31781615 PMCID: PMC6875261 DOI: 10.1155/2019/4568039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Chemical structures derived from marine foods are highly diverse and pharmacologically promising. In particular, chitooligosaccharides (COS) present a safe pharmacokinetic profile and a great source of new bioactive polymers. This review describes the antioxidant, anti-inflammatory, and antidiabetic properties of COS from recent publications. Thus, COS constitute an effective agent against oxidative stress, cellular damage, and inflammatory pathogenesis. The mechanisms of action and targeted therapeutic pathways of COS are summarized and discussed. COS may act as antioxidants via their radical scavenging activity and by decreasing oxidative stress markers. The mechanism of COS antidiabetic effect is characterized by an acceleration of pancreatic islets proliferation, an increase in insulin secretion and sensitivity, a reduction of postprandial glucose, and an improvement of glucose uptake. COS upregulate the GLUT2 and inhibit digestive enzyme and glucose transporters. Furthermore, they resulted in reduction of gluconeogenesis and promotion of glucose conversion. On the other hand, the COS decrease inflammatory mediators, suppress the activation of NF-κB, increase the phosphorylation of kinase, and stimulate the proliferation of lymphocytes. Overall, this review brings evidence from experimental data about protective effect of COS.
Collapse
|
13
|
Farhadihosseinabadi B, Zarebkohan A, Eftekhary M, Heiat M, Moosazadeh Moghaddam M, Gholipourmalekabadi M. Crosstalk between chitosan and cell signaling pathways. Cell Mol Life Sci 2019; 76:2697-2718. [PMID: 31030227 PMCID: PMC11105701 DOI: 10.1007/s00018-019-03107-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/30/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
The field of tissue engineering (TE) experiences its most exciting time in the current decade. Recent progresses in TE have made it able to translate into clinical applications. To regenerate damaged tissues, TE uses biomaterial scaffolds to prepare a suitable backbone for tissue regeneration. It is well proven that the cell-biomaterial crosstalk impacts tremendously on cell biological activities such as differentiation, proliferation, migration, and others. Clarification of exact biological effects and mechanisms of a certain material on various cell types promises to have a profound impact on clinical applications of TE. Chitosan (CS) is one of the most commonly used biomaterials with many promising characteristics such as biocompatibility, antibacterial activity, biodegradability, and others. In this review, we discuss crosstalk between CS and various cell types to provide a roadmap for more effective applications of this polymer for future uses in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Behrouz Farhadihosseinabadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Eftekhary
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Chitosan oligosaccharide (COS): An overview. Int J Biol Macromol 2019; 129:827-843. [DOI: 10.1016/j.ijbiomac.2019.01.192] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
|
15
|
Tailored Enzymatic Synthesis of Chitooligosaccharides with Different Deacetylation Degrees and Their Anti-Inflammatory Activity. Catalysts 2019. [DOI: 10.3390/catal9050405] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
By controlled hydrolysis of chitosan or chitin with different enzymes, three types of chitooligosaccharides (COS) with MW between 0.2 and 1.2 kDa were obtained: fully deacetylated (fdCOS), partially acetylated (paCOS), and fully acetylated (faCOS). The chemical composition of the samples was analyzed by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry. The synthesized fdCOS was basically formed by GlcN, (GlcN)2, (GlcN)3, and (GlcN)4. On the contrary, faCOS contained mostly GlcNAc, (GlcNAc)2 and (GlcNAc)3, while paCOS corresponded to a mixture of at least 11 oligosaccharides with different proportions of GlcNAc and GlcN. The anti-inflammatory activity of the three COS mixtures was studied by measuring their ability to reduce the level of TNF-α (tumor necrosis factor) in murine macrophages (RAW 264.7) after stimulation with a mixture of lipopolysaccharides (LPS). Only fdCOS and faCOS were able to significantly reduce the production of tumor necrosis factor (TNF)-α at 6 h after stimulation with lipopolysaccharides.
Collapse
|
16
|
Youssef AEH, Dief AE, El Azhary NM, Abdelmonsif DA, El-fetiany OS. LINGO-1 siRNA nanoparticles promote central remyelination in ethidium bromide-induced demyelination in rats. J Physiol Biochem 2019; 75:89-99. [DOI: 10.1007/s13105-018-00660-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/13/2018] [Indexed: 12/20/2022]
|
17
|
Chlorogenic acid protects against aluminum toxicity via MAPK/Akt signaling pathway in murine RAW264.7 macrophages. J Inorg Biochem 2018; 190:113-120. [PMID: 30428426 DOI: 10.1016/j.jinorgbio.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 01/01/2023]
Abstract
Aluminum (Al), which may bring about damage to the macrophages, has been implicated in the development of immunological diseases. It has been reported that chlorogenic acid (CGA, 5‑caffeoylquinic acid, chemical formula: C16H18O9) is a natural antioxidant and chelating agent with the capacity against Al (III)-induced biotoxicity. The present study was carried out to investigate whether CGA could reduce AlCl3-induced cellular damage in RAW264.7 cells. After treatment with AlCl3, the inhibition rate of viability and phagocytic activity of RAW264.7 cells was 54.5% and 27.6%, respectively. Administration of CGA significantly improved the integrity and phagocytic activity, and attenuated the accumulation of intracellular Al(III) level and oxidative stress in Al(III)-treated cells. Furthermore, CGA significantly inhibited Al(III)-induced increase of phospho-Jun N-terminal kinase (p-JNK), a pro-apoptotic Bcl-2 family protein (Bad), cytochrome c and decrease of extracellular regulated protein kinases (ERK1/2), protein kinase B (Akt) protein expressions. These results showed that CGA has a protective effect against Al(III)-induced cytotoxicity through mitogen-activated protein kinase (MAPK)/Akt-mediated caspase pathways in RAW264.7 cells.
Collapse
|
18
|
Lin CW, Huang HH, Yang CM, Yang CH. Protective effect of chitosan oligosaccharides on blue light light-emitting diode induced retinal pigment epithelial cell damage. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
19
|
Mu H, Wang Y, Wei H, Lu H, Feng Z, Yu H, Xing Y, Wang H. Collagen peptide modified carboxymethyl cellulose as both antioxidant drug and carrier for drug delivery against retinal ischaemia/reperfusion injury. J Cell Mol Med 2018; 22:5008-5019. [PMID: 30030883 PMCID: PMC6156360 DOI: 10.1111/jcmm.13768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/03/2018] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress can cause injury in retinal endothelial cells. Carboxymethyl cellulose modified with collagen peptide (CMCC) is of a distinct antioxidant capacity and potentially a good drug carrier. In this study, the protective effects of CMCC against H2 O2 -induced injury of primary retinal endothelial cells were investigated. In vitro, we demonstrated that CMCC significantly promoted viability of H2 O2 -treated cells, efficiently restrained cellular reactive oxygen species (ROS) production and cell apoptosis. Then, the CMCC was employed as both drug and anti-inflammatory drug carrier for treatment of retinal ischaemia/reperfusion (I/R) in rats. Animals were treated with CMCC or interleukin-10-loaded CMCC (IL-10@CMCC), respectively. In comparisons, the IL-10@CMCC treatment exhibited superior therapeutic effects, including better restoration of retinal structural thickness and less retinal apoptosis. Also, chemiluminescence demonstrated that transplantation of IL-10@CMCC markedly reduced the retinal oxidative stress level compared with CMCC alone and potently recovered the activities of typical antioxidant enzymes, SOD and CAT. Therefore, it could be concluded that CMCC provides a promising platform to enhance the drug-based therapy for I/R-related retinal injury.
Collapse
Affiliation(s)
- Hua Mu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yeqing Wang
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Haiying Wei
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Hong Lu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Zhuolei Feng
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Hongmin Yu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yue Xing
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Haijing Wang
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
20
|
Ibtisham F, Zhao Y, Nawab A, Liguang H, Wu J, Xiao M, Zhao Z, An L. The Effect of High Temperature on Viability, Proliferation, Apoptosis and Anti-oxidant Status of Chicken Embryonic Fibroblast Cells. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Y Zhao
- Guangdong Ocean University, China
| | - A Nawab
- Guangdong Ocean University, China
| | | | - J Wu
- Guangdong Ocean University, China
| | - M Xiao
- Guangdong Ocean University, China
| | - Z Zhao
- Guangdong Ocean University, China
| | - L An
- Guangdong Ocean University, China
| |
Collapse
|
21
|
Wang F, Yu S, Xu Z, Li L, Dang Y, Xu X, Luo Y, Cheng Z, Yu H, Zhang W, Zhang A, Ding C. Acid-Promoted D-A-D Type Far-Red Fluorescent Probe with High Photostability for Lysosomal Nitric Oxide Imaging. Anal Chem 2018; 90:7953-7962. [DOI: 10.1021/acs.analchem.8b00612] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fengyang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shujuan Yu
- CAS Key Laboratory of Receptor Research, Synthetic Organic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Lingling Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaowei Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Stanford University, Stanford, California 94305-5344, United States
| | - Haijun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunyong Ding
- CAS Key Laboratory of Receptor Research, Synthetic Organic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
22
|
Phil L, Naveed M, Mohammad IS, Bo L, Bin D. Chitooligosaccharide: An evaluation of physicochemical and biological properties with the proposition for determination of thermal degradation products. Biomed Pharmacother 2018; 102:438-451. [DOI: 10.1016/j.biopha.2018.03.108] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 01/08/2023] Open
|
23
|
Ma Z, Wang C, Liu C, Yan DY, Deng Y, Liu W, Yang TY, Xu ZF, Xu B. The role S-nitrosylation in manganese-induced autophagy dysregulation in SH-SY5Y cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2428-2439. [PMID: 28856835 DOI: 10.1002/tox.22457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Overexposure to manganese (Mn) has been known to induce nitrosative stress. The dysregulation of autophagy has implicated in nitric oxide (NO) bioactivity alterations. However, the mechanism of Mn-induced autophagic dysregulation is unclear. The protein of Bcl-2 was considered as a key role that could participate to the autophagy signaling regulation. To further explore whether S-nitrosylation of Bcl-2 involved in Mn-induced autophagy dysregulation, we treated human neuroblastoma (SH-SY5Y) cells with Mn and pretreated cells with 1400 W, a selective iNOS inhibitor. After cells were treated with 400 μM Mn for 24 h, there were significant increases in production of NO, inducible NO synthase (iNOS) activity, the mRNA and protein expressions of iNOS. Interestingly, autophagy was activated after cells were treated with Mn for 0-12 h; while the degradation process of autophagy-lysosome pathway was blocked after cells were treated with Mn for 24 h. Moreover, S-nitrosylated JNK and Bcl-2 also increased and phospho-JNK and phospho-Bcl-2 reduced in Mn-treated cells. Then, the affinity between Bcl-2 and Beclin-1 increased significantly in Mn-treated cells. We used the 1400 W to neutralize Mn-induced nitrosative stress. The results showed that S-nitrosylated JNK and Bcl-2 reduced while their phosphorylation were recovered to some extent. The findings revealed that NO-mediated S-nitrosylation of Bcl-2 directly affected the interaction between Beclin-1 and Bcl-2 leading to autophagy inhibition.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Can Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Chang Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Dong-Ying Yan
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Tian-Yao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Zhao-Fa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| |
Collapse
|
24
|
Cupino TL, Watson BA, Cupino AC, Oda K, Ghamsary MG, Soriano S, Kirsch WM. Stability and bioactivity of chitosan as a transfection agent in primary human cell cultures: A case for chitosan-only controls. Carbohydr Polym 2017; 180:376-384. [PMID: 29103517 DOI: 10.1016/j.carbpol.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023]
Abstract
Chitosan polymers (Cs), from which microparticles (CsM) may be precipitated to deliver various intracellular payloads, are generally considered biologically inert. We examined the impact of cell culture conditions on CsM size and the effect of chitosan on CD59 expression in primary human smooth muscle cells. We found that particle concentration and incubation time in biological buffers augmented particle size. Between pH 7.0 and pH 7.5, CsM size increased abruptly. We utilized CsM containing a plasmid with a gene for CD59 (pCsM) to transfect cells. Both CD59 mRNA and the number of CD59-positive cells were increased after pCsM treatment. Unexpectedly, CsM also augmented the number of CD59-positive cells. Cs alone enhanced CD59 expression more potently than either pCSM or CsM. This observation strongly suggests that chitosan is in fact bioactive and that chitosan-only controls should be included to avoid misattributing the activity of the delivery agent with that of the payload.
Collapse
Affiliation(s)
- Tanya L Cupino
- Neurosurgery Center for Research, Training and Education, Loma Linda University School of Medicine, Loma Linda, CA, United States; Division of Microbiology and Molecular Genetics, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| | - Billy A Watson
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States; Division of Human Anatomy, Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Alan C Cupino
- Department of Epidemiology and Biostatistics, Loma Linda University School of Public Health, Loma Linda, CA, United States
| | - Keiji Oda
- Department of Epidemiology and Biostatistics, Loma Linda University School of Public Health, Loma Linda, CA, United States
| | - Mark G Ghamsary
- Department of Epidemiology and Biostatistics, Loma Linda University School of Public Health, Loma Linda, CA, United States (Retired)
| | - Salvador Soriano
- Division of Human Anatomy, Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Wolff M Kirsch
- Neurosurgery Center for Research, Training and Education, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| |
Collapse
|
25
|
Xu Q, Liu M, Liu Q, Wang W, Du Y, Yin H. The inhibition of LPS-induced inflammation in RAW264.7 macrophages via the PI3K/Akt pathway by highly N-acetylated chitooligosaccharide. Carbohydr Polym 2017; 174:1138-1143. [PMID: 28821038 DOI: 10.1016/j.carbpol.2017.07.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 01/19/2023]
Abstract
Chitooligosaccharide (COS) has been shown to regulate many biological functions, such as antimicrobial effect and antitumor activity. In the present study, highly N-acetylated chitooligosaccharide (NACOS) was prepared by N-acetylation of COS, and the anti-inflammatory activity of NACOS in macrophages were evaluated. The results indicated NACOS significantly suppressed the LPS-induced pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression. Furthermore, the increased levels of reactive oxygen species (ROS) and nitric oxide (NO) were repressed by NACOS in a dose dependent manner. However, NACOS itself had no significant effect on the cell viability and cellular morphology. Signal transduction studies demonstrated that NACOS remarkably inhibited LPS-enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt. These findings provide a possible molecular mechanism by which NACOS inhibit LPS-induced inflammatory response in macrophages, and a basis for utilizing NACOS in pharmaceutical therapy against inflammation.
Collapse
Affiliation(s)
- Qingsong Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Meisi Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qishun Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenxia Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Heng Yin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
26
|
Yeh MY, Shih YL, Chung HY, Chou J, Lu HF, Liu CH, Liu JY, Huang WW, Peng SF, Wu LY, Chung JG. Chitosan promotes immune responses, ameliorating total mature white blood cell numbers, but increases glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, and ameliorates lactate dehydrogenase levels in leukemia mice in vivo. Mol Med Rep 2017; 16:2483-2490. [PMID: 28677783 PMCID: PMC5547931 DOI: 10.3892/mmr.2017.6923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to investigate the effect of chitosan (a naturally derived polymer) on the immune responses and glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) levels in WEHI-3 cell-generated leukemia mice. Mice were divided into control, WEHI-3 control, acetic acid (vehicle)-treated, and 5 and 20 mg/kg chitosan-treated groups. Mice were subsequently weighed, blood was collected, and liver and spleen samples were isolated and weighed. Blood samples were measured for cell markers, the spleen underwent phagocytosis and natural killer (NK) cell activity examination, and cell proliferation was analyzed by flow cytometry. Chitosan did not significantly affect the weights of body, liver and spleen at 5 and 20 mg/kg treatment. Chitosan increased the percentage of CD3 (T cells marker), decreased the levels of CD19 (B-cell marker) and CD11b at 5 mg/kg treatment, and decreased the levels of Mac-3 at 5 and 20 mg/kg treatment. Chitosan significantly increased macrophage phagocytosis of PBMCs, but did not significantly affect macrophage phagocytosis in the peritoneal cavity. Chitosan treatment did not significantly affect the cytotoxic activity of NK cells, and also did not affect T- and B-cell proliferation. Chitosan significantly increased total white blood cell numbers, and GOT and GPT activities were both significantly increased. However, chitosan did not significantly affect LDH activity in leukemia mice. Chitosan may aid in future studies on improving immune responses in the treatment of leukemia.
Collapse
Affiliation(s)
- Ming-Yang Yeh
- Office of Director, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Yung-Luen Shih
- Department of School of Medicine, Fu‑Jen Catholic University, New Taipei 242, Taiwan, R.O.C
| | - Hsueh-Yu Chung
- Jen‑Teh Junior College of Medicine, Nursing and Management, Miaoli County 356, Taiwan, R.O.C
| | - Jason Chou
- Department of Anatomical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Chia-Hui Liu
- The Center of General Education, Chia‑Nan University of Pharmacy and Science, Tainan 717, Taiwan, R.O.C
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Lung-Yuan Wu
- The School of Chinese Medicine for Post‑Baccalaureate, I‑Shou University, Kaohsiung 840, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
27
|
Hyung JH, Ahn CB, Il Kim B, Kim K, Je JY. Involvement of Nrf2-mediated heme oxygenase-1 expression in anti-inflammatory action of chitosan oligosaccharides through MAPK activation in murine macrophages. Eur J Pharmacol 2016; 793:43-48. [PMID: 27826077 DOI: 10.1016/j.ejphar.2016.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023]
Abstract
Chitosan and its derivatives have been reported to have anti-inflammatory effects in vitro and in vivo. It is also suggested that chitosan and its derivatives could be up-regulating heme oxygenase-1 (HO-1) in different models. However, the up-regulation of HO-1 by chitosan oligosaccharides (COS) remains unexplored in regard to anti-inflammatory action in lipopolysaccharide (LPS)-stimulated murine macrophages (RAW264.7 cells). Treatment with COS induced HO-1 expression in LPS-stimulated RAW264.7 cells, whereas the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased. Pretreatment with ZnPP, a HO-1 inhibitor, reduced the COS-mediated anti-inflammatory action. HO-1 induction is mediated by activating the nuclear translocation of NF-E2-related factor 2 (Nrf2) using COS. Moreover, COS increased the phosphorylation of extracellular signal regulated kinase (ERK1/2), c-Jun N-terminal kinase/stress-activated protein kinase (JNK), and p38 MAPK. However, specific inhibitors of ERK, JNK, and p38 reduced COS-mediated nuclear translocation of Nrf2. Therefore, HO-1 induction also decreased in RAW264.7 cells. Collectively, COS exert an anti-inflammatory effect through Nrf2/MAPK-mediated HO-1 induction.
Collapse
Affiliation(s)
- Jun-Ho Hyung
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan 48547, Republic of Korea
| | - Chang-Bum Ahn
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Boo Il Kim
- Specialized Graduate School of Science & Technology Convergence, Pukyong National University, Busan 48547, Republic of Korea
| | - Kyunghoi Kim
- Depatment of Ocean Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan 48547, Republic of Korea.
| |
Collapse
|
28
|
Kerch G. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 2015; 13:2158-82. [PMID: 25871293 PMCID: PMC4413205 DOI: 10.3390/md13042158] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed.
Collapse
Affiliation(s)
- Garry Kerch
- Department of Materials Science and Applied Chemistry, Riga Technical University, Azenes 14/24, Riga, LV-1048, Latvia.
| |
Collapse
|
29
|
Azuma K, Osaki T, Minami S, Okamoto Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 2015; 6:33-49. [PMID: 25594943 PMCID: PMC4384099 DOI: 10.3390/jfb6010033] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/09/2015] [Indexed: 11/21/2022] Open
Abstract
Previous reports indicate that N-acetyl-d-glucosamine oligomers (chitin oligosaccharide; NACOS) and d-glucosamine oligomers (chitosan oligosaccharide; COS) have various biological activities, especially against cancer and inflammation. In this review, we have summarized the findings of previous investigations that have focused on anticancer or anti-inflammatory properties of NACOS and COS. Moreover, we have introduced recent evaluation of NACOS and COS as functional foods against cancer and inflammatory disease.
Collapse
Affiliation(s)
- Kazuo Azuma
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| | - Tomohiro Osaki
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| | - Saburo Minami
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| |
Collapse
|
30
|
Fang IM, Yang CM, Yang CH. Chitosan oligosaccharides prevented retinal ischemia and reperfusion injury via reduced oxidative stress and inflammation in rats. Exp Eye Res 2014; 130:38-50. [PMID: 25479043 DOI: 10.1016/j.exer.2014.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to investigate the protective effect and mechanism of chitosan oligonucleotides (COS) on retinal ischemia and reperfusion (I/R) injury. Rats pretreated with PBS, low-dose COS (5 mg/kg), or high-dose COS (10 mg/kg) were subjected to retinal ischemia by increasing their intraocular pressure to 130 mm Hg for 60 min. The protective effect of COS was evaluated by determining the electroretinograms (ERGs), morphology of the retina, and survival of retinal ganglion cells (RGCs). The oxidative damage was determined by imuunohistochemistry and ELISA, respectively. The expressions of inflammatory mediators (TNF-α, IL-1β, MCP-1, iNOS, ICAM-1) and apoptotic-related proteins (p53, Bax, Bcl-2) were quantified by PCR and Western blots. The detection of NF-κB p65 in the retina was performed by immunofluorescence. The protein levels of IκB and phosphorylated mitogen-activated protein kinases [MAPK; viz. extracellular signal-regulated protein kinases (ERK), c-Jun N-terminal kinases (JNK) and p38] and the NF-κB/DNA binding ability were assessed by Western blot analysis and EMSA. We found that pretreatment with COS, especially a high dosage, effectively ameliorated the I/R-induced reduction of the b-wave ratio in ERGs and the retinal thickness and the survival of RGCs at 24 h. COS decreased the expression of inflammatory mediators, p53 and Bax, increasing Bcl-2 expression and thereby reducing retinal oxidative damage and the number of apoptotic cells. More importantly, COS attenuated IκB degradation and p65 presence in the retina, thus decreasing NF-κB/DNA binding activity after I/R. In addition, COS decreased the phosphorylation levels of JNK and ERK but increased the phosphorylation level of p38. Pretreatment with p38 inhibitor (SB203580) abolished the protective effect of COS on retinal oxidative damage, as indicated by increased retinal 8-OHdG stains, and significantly increased the expression of inflammatory mediators (TNF-α, MCP-1, iNOS, ICAM-1) in I/R-injured rats. In conclusion, COS prevented retinal I/R injury through its inhibition of oxidative stress and inflammation. These effects were achieved by blocking the activation of NF-κB, JNK, and ERK but promoting the activation of p38 activation.
Collapse
Affiliation(s)
- I-Mo Fang
- Department of Ophthalmology, Taipei City Hospital Zhongxiao Branch, Taipei, Taiwan; Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
31
|
Azuma K, Osaki T, Kurozumi S, Kiyose M, Tsuka T, Murahata Y, Imagawa T, Itoh N, Minami S, Sato K, Okamoto Y. Anti-inflammatory effects of orally administered glucosamine oligomer in an experimental model of inflammatory bowel disease. Carbohydr Polym 2014; 115:448-56. [PMID: 25439918 DOI: 10.1016/j.carbpol.2014.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 01/12/2023]
Abstract
Anti-inflammatory effects of oral administration of the glucosamine oligomers (chito-oligosaccharides: COS) were evaluated in an experimental model of inflammatory bowel disease (IBD). Oral administration of COS improved shortening of colon length and tissue injury (as assessed by histology) in mice. Oral administration of COS inhibited inflammation in the colonic mucosa by suppression of myeloperoxidase activation in inflammatory cells, as well as activation of nuclear factor-kappa B, cyclooxygenase-2, and inducible nitric oxide synthase. Oral administration of COS also reduced serum levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-6). Moreover, it prolonged survival time in mice. These data suggest that COS have anti-inflammatory effects in an experimental model of IBD, and could be new functional foods for IBD patients.
Collapse
Affiliation(s)
- Kazuo Azuma
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| | - Tomohiro Osaki
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Seiji Kurozumi
- Koyo Chemical Co. Ltd., 3-11-15 Iidabashi, Chiyodaku, Tokyo 102-0072, Japan
| | - Masatoshi Kiyose
- Koyo Chemical Co. Ltd., 3-11-15 Iidabashi, Chiyodaku, Tokyo 102-0072, Japan
| | - Takeshi Tsuka
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Yusuke Murahata
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Tomohiro Imagawa
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Norihiko Itoh
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Saburo Minami
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Kimihiko Sato
- Koyo Chemical Co. Ltd., 3-11-15 Iidabashi, Chiyodaku, Tokyo 102-0072, Japan
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| |
Collapse
|
32
|
Luo Z, Dong X, Ke Q, Duan Q, Shen L. Chitooligosaccharides inhibit ethanol-induced oxidative stress via activation of Nrf2 and reduction of MAPK phosphorylation. Oncol Rep 2014; 32:2215-22. [PMID: 25189124 DOI: 10.3892/or.2014.3463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022] Open
Abstract
Chitooligosaccharides (COS) are hydrolyzed products of chitosan and have been proven to exhibit various biological functions. The aims of this study were to investigate the mechanisms underlying the hepatoprotective effects of COS against ethanol-induced oxidative stress in vitro. Human L02 normal liver cells were pretreated with COS (0.25, 0.5 and 1.0 mg/ml) and then hepatotoxicity was stimulated by the addition of ethanol (80 mM). Pretreatment with COS protected L02 cells from ethanol-induced cell cytotoxicity through inhibition of reactive oxygen species generation. Furthermore, ethanol-induced lipid peroxidation and glutathione depletion was inhibited by COS. The antioxidant potential of COS was correlated with the induction of antioxidant genes including HO-1, NQO1 and SOD via the transcriptional activation of nuclear factor erythroid-2‑related factor-2 (Nrf2). Additionally, the protective effects of COS against ethanol were blocked by Nrf2 knockdown. Moreover, signal transduction studies showed that COS was able to suppress the ethanol-induced phosphorylation of p38 MAPK, JNK and ERK. In conclusion, the COS-mediated activation of Nrf2 and reduction of MAPK phosphorylation may be important for its hepatoprotective action.
Collapse
Affiliation(s)
- Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Hubei 442000, P.R. China
| | - Xiaoxia Dong
- Department of Pharmacology, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qing Ke
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Hubei 442000, P.R. China
| | - Qiwen Duan
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Hubei 442000, P.R. China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Hubei 442000, P.R. China
| |
Collapse
|
33
|
Chitosan oligosaccharides attenuate ocular inflammation in rats with experimental autoimmune anterior uveitis. Mediators Inflamm 2014; 2014:827847. [PMID: 25147441 PMCID: PMC4131455 DOI: 10.1155/2014/827847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022] Open
Abstract
We investigated the protective effects and mechanisms of chitosan oligosaccharides (COS) on experimental autoimmune anterior uveitis (EAAU) in rats. EAAU was induced in Lewis rats by footpad and intraperitoneal injections of melanin-associated antigen. The rats received intraperitoneal injections of low-dose (5 mg/kg) or high-dose (10 mg/kg) COS or PBS daily after the immunization. The effects of COS were evaluated by determining the clinical scores and the morphology of the iris/ciliary body (ICB). The expression of inflammatory mediators was evaluated using western blot, immunofluorescence, and ELISA. Treatment with COS significantly attenuated the clinical scores and the leukocyte infiltration in the ICB in a dose-dependent manner. COS effectively reduced the expression of inflammatory mediators (TNF-α, iNOS, MCP-1, RANTES, fractalkine, and ICAM-1). Moreover, COS decreased the IκB degradation and p65 presence in the ICB, which resulted in the inhibition of NF-κB/DNA binding activity. In an in vitro study, sensitized spleen-derived lymphocytes of the COS-treated group showed less chemotaxis toward their aqueous humor and decreased secretion of the above inflammatory mediators in the culture media. COS treated EAAU by inhibiting the activation of NF-κB and reducing the expression of inflammatory mediators. COS might be a potential treatment for acute anterior uveitis.
Collapse
|
34
|
Alpha-Synuclein Oligomerization in Manganese-Induced Nerve Cell Injury in Brain Slices: A Role of NO-Mediated S-Nitrosylation of Protein Disulfide Isomerase. Mol Neurobiol 2014; 50:1098-110. [DOI: 10.1007/s12035-014-8711-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/09/2014] [Indexed: 12/14/2022]
|
35
|
Fang IM, Yang CH, Yang CM, Chen MS. Chitosan oligosaccharides attenuates oxidative-stress related retinal degeneration in rats. PLoS One 2013; 8:e77323. [PMID: 24155943 PMCID: PMC3796472 DOI: 10.1371/journal.pone.0077323] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/09/2013] [Indexed: 12/25/2022] Open
Abstract
This study investigated the therapeutic potential and mechanisms of chitosan oligosaccharides (COS) for oxidative stress-induced retinal diseases. Retinal oxidative damage was induced in Sprague-Dawley rats by intravitreal injection of paraquat (PQ). Low-dose (5 mg/kg) or high-dose (10 mg/kg) COS or PBS was intragastrically given for 14 days after PQ injection. Electroretinograms were performed to determine the functionality of the retinas. The surviving neurons in the retinal ganglion cell layer and retinal apoptosis were determined by counting Neu N-positive cells in whole-mounted retinas and TUNEL staining, respectively. The generation of reactive oxygen species (ROS) was determined by lucigenin- and luminol-enhanced chemiluminescence. Retinal oxidative damages were assessed by staining with nitrotyrosine, acrolein, and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Immunohistochemical studies were used to demonstrate the expression of nuclear factor-kappa B (NF-κB) p65 in retinas. An in vitro study using RGC-5 cells was performed to verify the results. We demonstrated COS significantly enhanced the recovery of retinal function, preserved inner retinal thickness, and decreased retinal neurons loss in a dose-dependent manner. COS administration demonstrated anti-oxidative effects by reducing luminol- and lucigenin-dependent chemiluminenscense levels and activating superoxide dismutase and catalase, leading to decreased retinal apoptosis. COS markedly reduced retinal NF-κB p65. An in vitro study demonstrated COS increased IκB expression, attenuated the increase of p65 and thus decreased NF-κB/DNA binding activity in PQ-stimulated RGC-5 cells. In conclusion, COS attenuates oxidative stress-induced retinal damages, probably by decreasing free radicals, maintaining the activities of anti-oxidative enzymes, and inhibiting the activation of NF-κB.
Collapse
Affiliation(s)
- I-Mo Fang
- Department of Ophthalmology, Taipei City Hospital Zhongxiao Branch, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Muh-Shy Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
36
|
Arancibia R, Maturana C, Silva D, Tobar N, Tapia C, Salazar JC, Martínez J, Smith PC. Effects of chitosan particles in periodontal pathogens and gingival fibroblasts. J Dent Res 2013; 92:740-5. [PMID: 23788611 DOI: 10.1177/0022034513494816] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chitosan is a naturally derived polymer with antimicrobial and anti-inflammatory properties. However, studies evaluating the role of chitosan in the control of periodontal pathogens and the responses of fibroblasts to inflammatory stimuli are lacking. In the present study, we analyzed whether chitosan particles may inhibit the growth of periodontal pathogens and modulate the inflammatory response in human gingival fibroblasts. Chitosan particles were generated through ionic gelation. They inhibited the growth of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans at 5 mg/mL. Conversely, IL-1β strongly stimulated PGE2 protein levels in gingival fibroblasts, and chitosan inhibited this response at 50 µg/mL. IL-1β-stimulated PGE2 production was dependent on the JNK pathway, and chitosan strongly inhibited this response. IL-1β stimulated NF-κB activation, another signaling pathway involved in PGE2 production. However, chitosan particles were unable to modify NF-κB signaling. The present study shows that chitosan exerts a predominantly anti-inflammatory activity by modulating PGE2 levels through the JNK pathway, which may be useful in the prevention or treatment of periodontal inflammation.
Collapse
Affiliation(s)
- R Arancibia
- Dentistry Academic Unit, Faculty of Medicine, Pontificia Universidad Católica de Chile
| | | | | | | | | | | | | | | |
Collapse
|