1
|
Ly TD, Wolny M, Lindenkamp C, Birschmann I, Hendig D, Knabbe C, Faust-Hinse I. The Human Myofibroblast Marker Xylosyltransferase-I: A New Indicator for Macrophage Polarization. Biomedicines 2022; 10:2869. [PMID: 36359389 PMCID: PMC9687871 DOI: 10.3390/biomedicines10112869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 09/04/2023] Open
Abstract
Chronic inflammation and excessive synthesis of extracellular matrix components, such as proteoglycans (PG), by fibroblast- or macrophage-derived myofibroblasts are the hallmarks of fibrotic diseases, including systemic sclerosis (SSc). Human xylosyltransferase-I (XT-I), which is encoded by the gene XYLT1, is the key enzyme that is involved in PG biosynthesis. Increased cellular XYLT1 expression and serum XT-I activity were measured in SSc. Nothing is known so far about the regulation of XT-I in immune cells, and their contribution to the increase in measurable serum XT-I activity. We utilized an in vitro model, with primary human CD14+CD16+ monocyte-derived macrophages (MΦ), in order to investigate the role of macrophage polarization on XT-I regulation. The MΦ generated were polarized towards two macrophage phenotypes that were associated with SSc, which were classified as classical pro-inflammatory (M1-like), and alternative pro-fibrotic (M2-like) MΦ. The fully characterized M1- and M2-like MΦ cultures showed differential XT-I gene and protein expressions. The fibrotic M2-like MΦ cultures exhibited higher XT-I secretion, as well as increased expression of myofibroblast marker α-smooth muscle actin, indicating the onset of macrophage-to-myofibroblast transition (MMT). Thus, we identified XT-I as a novel macrophage polarization marker for in vitro generated M1- and M2-like MΦ subtypes, and broadened the view of XT-I as a myofibroblast marker in the process of MMT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Isabel Faust-Hinse
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
2
|
Ly TD, Kleine A, Fischer B, Schmidt V, Hendig D, Kuhn J, Knabbe C, Faust I. Identification of Putative Non-Substrate-Based XT-I Inhibitors by Natural Product Library Screening. Biomolecules 2020; 10:E1467. [PMID: 33096778 PMCID: PMC7589200 DOI: 10.3390/biom10101467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/02/2023] Open
Abstract
Fibroproliferative diseases are characterized by excessive accumulation of extracellular matrix (ECM) components leading to organ dysfunction. This process is characterized by an increase in myofibroblast content and enzyme activity of xylosyltransferase-I (XT-I), the initial enzyme in proteoglycan (PG) biosynthesis. Therefore, the inhibition of XT-I could be a promising treatment for fibrosis. We used a natural product-inspired compound library to identify non-substrate-based inhibitors of human XT-I by UPLC-MS/MS. We combined this cell-free approach with virtual and molecular biological analyses to confirm and prioritize the inhibitory potential of the compounds identified. The characterization for compound potency in TGF-β1-driven XYLT1 transcription regulation in primary dermal human fibroblasts (key cells in ECM remodeling) was addressed by gene expression analysis. Consequently, we identified amphotericin B and celastrol as new non-substrate-based XT-I protein inhibitors. Their XT-I inhibitory effects were mediated by an uncompetitive or a competitive inhibition mode, respectively. Both compounds reduced the cellular XYLT1 expression level and XT-I activity. We showed that these cellular inhibitor-mediated changes involve the TGF-β and microRNA-21 signaling pathway. The results of our study provide a strong rationale for the further optimization and future usage of the XT-I inhibitors identified as promising therapeutic agents of fibroproliferative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany; (T.-D.L.); (A.K.); (B.F.); (V.S.); (D.H.); (J.K.); (C.K.)
| |
Collapse
|
3
|
Ly TD, Plümers R, Fischer B, Schmidt V, Hendig D, Kuhn J, Knabbe C, Faust I. Activin A-Mediated Regulation of XT-I in Human Skin Fibroblasts. Biomolecules 2020; 10:E609. [PMID: 32295230 PMCID: PMC7226200 DOI: 10.3390/biom10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022] Open
Abstract
Fibrosis is a fundamental feature of systemic sclerosis (SSc) and is characterized by excessive accumulation of extracellular matrix components like proteoglycans (PG) or collagens in skin and internal organs. Serum analysis from SSc patients showed an increase in the enzyme activity of xylosyltransferase (XT), the initial enzyme in PG biosynthesis. There are two distinct XT isoforms-XT-I and XT-II-in humans, but until now only XT-I is associated with fibrotic remodelling for an unknown reason. The aim of this study was to identify new XT mediators and clarify the underlying mechanisms, in view of developing putative therapeutic anti-fibrotic interventions in the future. Therefore, we used different cytokines and growth factors, small molecule inhibitors as well as small interfering RNAs, and assessed the cellular XT activity and XYLT1 expression in primary human dermal fibroblasts by radiochemical activity assays and qRT-PCR. We identified a new function of activin A as a regulator of XYLT1 mRNA expression and XT activity. While the activin A-induced XT-I increase was found to be mediated by activin A receptor type 1B, MAPK and Smad pathways, the activin A treatment did not alter the XYLT2 expression. Furthermore, we observed a reciprocal regulation of XYLT1 and XYLT2 transcription after inhibition of the activin A pathway components. These results improve the understanding of the differential expression regulation of XYLT isoforms under pathological fibroproliferative conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
4
|
Riedel L, Fischer B, Ly TD, Hendig D, Kuhn J, Knabbe C, Faust I. microRNA-29b mediates fibrotic induction of human xylosyltransferase-I in human dermal fibroblasts via the Sp1 pathway. Sci Rep 2018; 8:17779. [PMID: 30542210 PMCID: PMC6290791 DOI: 10.1038/s41598-018-36217-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Diminished microRNA-29b levels have recently been revealed to provoke increased expression and accumulation of extracellular matrix molecules, such as collagens in fibrotic remodeling. Subsequently, the aim of this study was to find out whether microRNA-29b might also regulate human xylosyltransferase (XT)-I expression. XT-I has been characterized previously as a fibrosis biomarker catalyzing the key step of proteoglycan biosynthesis. While we demonstrate that XYLT1 is neither a target of microRNA-29b identified in silico nor a direct 3' untranslated region binding partner of microRNA-29b, transfection of normal human dermal fibroblasts with microRNA-29b inhibitor strongly increased XYLT1 mRNA expression and XT activity. Combined results of the target prediction analysis and additional transfection experiments pointed out that microRNA-29b exerts indirect influence on XT-I by targeting the transcription factor specificity protein 1 (Sp1). We could confirm our hypothesis due to the decrease in XYLT1 promoter activity after Sp1 binding site mutation and the approval of occupancy of these binding sites by Sp1 in vitro. Taken together, a hitherto unidentified pathway of XT-I regulation via microRNA-29b/Sp1 was determined in this study. Our observations will facilitate the understanding of complex molecular fibrotic pathways and provide new opportunities to investigate microRNA-based antifibrotic tools.
Collapse
Affiliation(s)
- Lara Riedel
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Thanh-Diep Ly
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
5
|
Liu H, Wang J, Ren G, Zhang Y, Dong F. The relationship between proteoglycan inhibition via xylosyltransferase II silencing and the implantation of salivary pleomorphic adenoma. J Oral Pathol Med 2017; 46:504-512. [PMID: 27732748 DOI: 10.1111/jop.12510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To study the relationship between proteoglycan inhibition and the implantation of salivary pleomorphic adenoma (SPA). METHODS SPA fresh tissue was primitively cultured and identified. The Ad-shRNA-XT-II adenovirus vector was constructed and transfected into SPA cells to silence the XT-II gene. The expression of the XT-II gene and protein was detected using real-time PCR and Western blotting, respectively. The proteoglycan content of the cells was determined 48 h after transfection. The invasion and migration of SPA cells were observed using Matrigel invasion and wound-healing assays. Fibroblasts from the tumour capsule of the same patient were obtained, cultured and seeded onto an acellular dermal matrix (ADM) scaffold. Tumour cells were seeded onto the scaffold with the fibroblasts and then transferred to BALB/C-nu nude mice and allowed to grow in vivo for 3 months. RESULTS The SPA cells cultures were positive for human calponin, S-100 protein, α-SMA and CK. XT-II gene and protein expression was decreased by 42.72% and 34%, respectively. The proteoglycan content was downregulated by 41.15%. XT-II gene silencing decreased the invasion and migration abilities of SPA cells. The assessment of SPA growth in nude mice indicated an absence of tumour growth in the SPA-XT-II group (in which the XT-II gene was silenced), whereas SPA growth was observed in the other two groups (in which the XT-II gene was not silenced), and the tumour tissue was positive for the human S-100 protein, α-SMA and CK8&18. CONCLUSION Proteoglycan inhibition induced via XT-II gene silencing inhibited the implantation of SPA.
Collapse
Affiliation(s)
- Huijuan Liu
- Department of Oral Pathology, College and Hospital of Stomatology, Key Laboratory of Stomatology, Hebei Medical University, Hebei Province, China
| | - Jie Wang
- Department of Oral Pathology, College and Hospital of Stomatology, Key Laboratory of Stomatology, Hebei Medical University, Hebei Province, China
| | - Guiyun Ren
- Department of Oral & Maxillofacial Surgery, College and Hospital of Stomatology, Key Laboratory of Stomatology, Hebei Medical University, Hebei Province, China
| | - Yanning Zhang
- Department of Oral Pathology, College and Hospital of Stomatology, Key Laboratory of Stomatology, Hebei Medical University, Hebei Province, China
| | - Fusheng Dong
- Department of Oral & Maxillofacial Surgery, College and Hospital of Stomatology, Key Laboratory of Stomatology, Hebei Medical University, Hebei Province, China
| |
Collapse
|
6
|
Sikora AS, Delos M, Martinez P, Carpentier M, Allain F, Denys A. Regulation of the Expression of Heparan Sulfate 3-O-Sulfotransferase 3B (HS3ST3B) by Inflammatory Stimuli in Human Monocytes. J Cell Biochem 2015; 117:1529-42. [PMID: 26575945 DOI: 10.1002/jcb.25444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
Heparan sulfate (HS) is recognized as an important player in a wide range of dynamic steps of inflammatory reactions. Thereby, structural HS remodeling is likely to play an important role in the regulation of inflammatory and immune responses; however, little is known about underlying mechanism. In this study, we analyzed the regulation of expression of HS 3-O-sulfotransferases (HS3STs) in response to inflammatory stimuli. We found that among the seven HS3ST isoenzymes, only the expression of HS3ST3B was markedly up-regulated in human primary monocytes and the related cell line THP1 after exposure to TLR agonists. TNF-α was also efficient, to a lesser extent, to increase HS3ST3B expression, while IL-6, IL-4, and IFN-γ were poor inducers. We then analyzed the molecular mechanisms that regulate the high expression of HS3ST3B in response to LPS. Based on the expression of HS3ST3B transcripts and on the response of a reporter gene containing the HS3ST3B1 promoter, we provide evidence that LPS induces a rapid and strong transcription of HS3ST3B1 gene, which was mainly dependent on the activation of NF-κB and JNK signaling pathways. Additionally, active p38 MAPK and de novo synthesized proteins are involved in post-transcriptional mechanisms to maintain a high level of HS3ST3B mRNA to a steady state. Altogether, our findings indicate that HS3ST3B1 gene behaves as a primary response gene, suggesting that it may play an important role in making 3-O-sulfated HS with specific functions in the regulation of inflammatory and immune responses. J. Cell. Biochem. 117: 1529-1542, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anne-Sophie Sikora
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Maxime Delos
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Pierre Martinez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Mathieu Carpentier
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Fabrice Allain
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Agnès Denys
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| |
Collapse
|
7
|
Faust I, Böker KO, Eirich C, Akkermann D, Kuhn J, Knabbe C, Hendig D. Identification and characterization of human xylosyltransferase II promoter single nucleotide variants. Biochem Biophys Res Commun 2015; 458:901-7. [PMID: 25704086 DOI: 10.1016/j.bbrc.2015.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
The human isoenzymes xylosyltransferase-I and -II (XT-I, XT-II) catalyze the rate-limiting step in proteoglycan biosynthesis. Therefore, serum XT activity, mainly representing XT-II activity, displays a powerful biomarker to quantify the actual proteoglycan synthesis rate. Serum XT activity is increased up to 44% in disorders which are characterized by an altered proteoglycan metabolism, whereby underlying regulatory mechanisms remain unclear. The aim of this study was to investigate new regulatory pathways by identifying and characterizing naturally occurring XYLT2 promoter sequence variants as well as their potential influence on promoter activity and serum XT activity. XYLT2 promoter single nucleotide variants (SNVs) were identified and genotyped in the genomic DNA of 100 healthy blood donors by promoter amplification and sequencing or restriction fragment length polymorphism analysis. The SNVs were characterized by an in silico analysis considering genetic linkage and transcription factor binding sites (TBSs). The influence of SNVs on promoter activity and serum XT activity was determined by dual luciferase reporter assay and HPLC-ESI mass spectrometry. Allele frequencies of seven XYLT2 promoter sequence variants identified were investigated. In silico analyses revealed a strong genetic linkage of SNVs c.-80delG and c.-188G > A, c.-80delG and c.-1443G > A, as well as c.-188G > A and c.-1443G > A. However, despite the generation of several SNV-associated changes in TBSs in silico, XYLT2 promoter SNVs did not significantly affect promoter activity. Serum XT activities of SNV carriers deviated up to 8% from the wild-type, whereby the differences were also not statistically significant. This is the first study which identifies, genotypes and characterizes XYLT2 promoter SNVs. Our results reveal a weak genetic heterogeneity and a strong conservation of the human XYLT2 promoter region. Since the SNVs detected could be excluded as causatives for strong interindividual variabilities in serum XT activity, our data provide increasing evidence that XT-II activity is obviously regulated by hitherto unknown complex genetic pathways, such as cis- or trans-acting enhancers, silencers or miRNAs.
Collapse
Affiliation(s)
- Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Kai Oliver Böker
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Christina Eirich
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Dagmar Akkermann
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
8
|
Faust I, Böker KO, Lichtenberg C, Kuhn J, Knabbe C, Hendig D. First description of the complete human xylosyltransferase-I promoter region. BMC Genet 2014; 15:129. [PMID: 25480529 PMCID: PMC4264549 DOI: 10.1186/s12863-014-0129-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human xylosyltransferase-I (XT-I) catalyzes the rate-limiting step in proteoglycan glycosylation. An increase in XYLT1 mRNA expression and serum XT activity is associated with diseases characterized by abnormal extracellular matrix accumulation like, for instance, fibrosis. Nevertheless, physiological and pathological mechanisms of transcriptional XT regulation remain elusive. RESULTS To elucidate whether promoter variations might affect the naturally occurring variability in serum XT activity, a complete sequence analysis of the XYLT1 promoter was performed in genomic DNA of healthy blood donors. Based on promoter amplification by a specialized PCR technique, sequence analysis revealed a fragment of 238 bp, termed XYLT1 238*, which has never been described in the human XYLT1 reference sequence so far. In silico characterization of this unconsidered fragment depicted an evolutionary conservation between sequences of Homo sapiens and Pan troglodytes (chimpanzee) or Mus musculus (mouse), respectively. Promoter activity studies indicated that XYLT1 238* harbors various transcription factor binding sites affecting basal XYLT1 expression and inducibility by transforming growth factor-β1, the key fibrotic mediator. A microsatellite and two single nucleotide variants (SNV), c.-403C>T and c.-1088C>A, were identified and genotyped in 100 healthy blood donors. Construct associated changes in XYLT1 promoter activity were detected for several sequence variants, whereas serum XT activity was only marginally affected. CONCLUSIONS Our findings describe for the first time the entire XYLT1 promoter sequence and provide new insights into transcriptional regulation of XT-I. Future studies should analyze the impact of regulatory XYLT1 promoter variations on XT-associated diseases.
Collapse
Affiliation(s)
- Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Kai Oliver Böker
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Christoph Lichtenberg
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
9
|
Sánchez J, Bonet ML, Keijer J, van Schothorst EM, Mölller I, Chetrit C, Martinez-Puig D, Palou A. Blood cells transcriptomics as source of potential biomarkers of articular health improvement: effects of oral intake of a rooster combs extract rich in hyaluronic acid. GENES AND NUTRITION 2014; 9:417. [PMID: 25024048 DOI: 10.1007/s12263-014-0417-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022]
Abstract
The aim of the study was to explore peripheral blood gene expression as a source of biomarkers of joint health improvement related to glycosaminoglycan (GAG) intake in humans. Healthy individuals with joint discomfort were enrolled in a randomized, double-blind, placebo-controlled intervention study in humans. Subjects ate control yoghurt or yoghurt supplemented with a recently authorized novel food in Europe containing hyaluronic acid (65 %) from rooster comb (Mobilee™ as commercial name) for 90 days. Effects on functional quality-of-life parameters related to joint health were assessed. Whole-genome microarray analysis of peripheral blood samples from a subset of 20 subjects (10 placebo and 10 supplemented) collected pre- and post-intervention was performed. Mobilee™ supplementation reduced articular pain intensity and synovial effusion and improved knee muscular strength indicators as compared to placebo. About 157 coding genes were differentially expressed in blood cells between supplemented and placebo groups post-intervention, but not pre-intervention (p < 0.05; fold change ≥1.2). Among them, a reduced gene expression of glucuronidase-beta (GUSB), matrix metallopeptidase 23B (MMP23B), xylosyltransferase II (XYLT2), and heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) was found in the supplemented group. Correlation analysis indicated a direct relationship between blood cell gene expression of MMP23B, involved in the breakdown of the extracellular matrix, and pain intensity, and an inverse relationship between blood cell gene expression of HS6ST1, responsible for 6-O-sulfation of heparan sulfate, and indicators of knee muscular strength. Expression levels of specific genes in blood cells, in particular genes related to GAG metabolism and extracellular matrix dynamics, are potential biomarkers of beneficial effects on articular health.
Collapse
Affiliation(s)
- Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Edifici Mateu Orfila. Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain
| | | | | | | | | | | | | | | |
Collapse
|