1
|
Esselman AB, Moser FA, Tideman LEM, Migas LG, Djambazova KV, Colley ME, Pingry EL, Patterson NH, Farrow MA, Yang H, Fogo AB, de Caestecker M, Van de Plas R, Spraggins JM. In situ molecular profiles of glomerular cells by integrated imaging mass spectrometry and multiplexed immunofluorescence microscopy. Kidney Int 2024:S0085-2538(24)00801-9. [PMID: 39571907 DOI: 10.1016/j.kint.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Glomeruli filter blood through the coordination of podocytes, mesangial cells, fenestrated endothelial cells, and the glomerular basement membrane. Cellular changes, such as podocyte loss, are associated with pathologies like diabetic kidney disease. However, little is known regarding the in situ molecular profiles of specific cell types and how these profiles change with disease. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is well-suited for untargeted tissue mapping of a wide range of molecular classes. Importantly, additional imaging modalities can be integrated with MALDI IMS to associate these biomolecular distributions to specific cell types. Here, we integrated workflow combining MALDI IMS and multiplexed immunofluorescence (MxIF) microscopy. High spatial resolution MALDI IMS (5 μm) was used to determine lipid distributions within human glomeruli from a normal portion of fresh-frozen kidney cancer nephrectomy tissue revealing intra-glomerular lipid heterogeneity. Mass spectrometric data were linked to specific glomerular cell types and substructures through new methods that enable MxIF microscopy to be performed on the same tissue section following MALDI IMS, without sacrificing signal quality from either modality. Machine learning approaches were combined enabling cell type segmentation and identification based on MxIF data. This was followed by mining of cell type or cluster-associated MALDI IMS signatures using classification and interpretable machine learning. This allowed automated discovery of spatially specific molecular markers for glomerular cell types and substructures as well as lipids correlated to deep and superficial glomeruli. Overall, our work establishes a toolbox for probing molecular signatures of glomerular cell types and substructures within tissue microenvironments providing a framework applicable to other kidney tissue features and organ systems.
Collapse
Affiliation(s)
- Allison B Esselman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Felipe A Moser
- Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
| | - Léonore E M Tideman
- Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
| | - Lukasz G Migas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Madeline E Colley
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Ellie L Pingry
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Melissa A Farrow
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Haichun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark de Caestecker
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Paz-Barba M, Muñoz Garcia A, de Winter TJJ, de Graaf N, van Agen M, van der Sar E, Lambregtse F, Daleman L, van der Slik A, Zaldumbide A, de Koning EJP, Carlotti F. Apolipoprotein L genes are novel mediators of inflammation in beta cells. Diabetologia 2024; 67:124-136. [PMID: 37924378 PMCID: PMC10709252 DOI: 10.1007/s00125-023-06033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 11/06/2023]
Abstract
AIMS/HYPOTHESIS Inflammation induces beta cell dysfunction and demise but underlying molecular mechanisms remain unclear. The apolipoprotein L (APOL) family of genes has been associated with innate immunity and apoptosis in non-pancreatic cell types, but also with metabolic syndrome and type 2 diabetes mellitus. Here, we hypothesised that APOL genes play a role in inflammation-induced beta cell damage. METHODS We used single-cell transcriptomics datasets of primary human pancreatic islet cells to study the expression of APOL genes upon specific stress conditions. Validation of the findings was carried out in EndoC-βH1 cells and primary human islets. Finally, we performed loss- and gain-of-function experiments to investigate the role of APOL genes in beta cells. RESULTS APOL genes are expressed in primary human beta cells and APOL1, 2 and 6 are strongly upregulated upon inflammation via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. APOL1 overexpression increases endoplasmic reticulum stress while APOL1 knockdown prevents cytokine-induced beta cell death and interferon-associated response. Furthermore, we found that APOL genes are upregulated in beta cells from donors with type 2 diabetes compared with donors without diabetes mellitus. CONCLUSIONS/INTERPRETATION APOLs are novel regulators of islet inflammation and may contribute to beta cell damage during the development of diabetes. DATA AVAILABILITY scRNAseq data generated by our laboratory and used in this study are available in the Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/ ), accession number GSE218316.
Collapse
Affiliation(s)
- Miriam Paz-Barba
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Amadeo Muñoz Garcia
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Twan J J de Winter
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Natascha de Graaf
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten van Agen
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Elisa van der Sar
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ferdy Lambregtse
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Lizanne Daleman
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Savas B, Astarita G, Aureli M, Sahali D, Ollero M. Gangliosides in Podocyte Biology and Disease. Int J Mol Sci 2020; 21:E9645. [PMID: 33348903 PMCID: PMC7766259 DOI: 10.3390/ijms21249645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Gangliosides constitute a subgroup of glycosphingolipids characterized by the presence of sialic acid residues in their structure. As constituents of cellular membranes, in particular of raft microdomains, they exert multiple functions, some of them capital in cell homeostasis. Their presence in cells is tightly regulated by a balanced expression and function of the enzymes responsible for their biosynthesis, ganglioside synthases, and their degradation, glycosidases. The dysregulation of their abundance results in rare and common diseases. In this review, we make a point on the relevance of gangliosides and some of their metabolic precursors, such as ceramides, in the function of podocytes, the main cellular component of the glomerular filtration barrier, as well as their implications in podocytopathies. The results presented in this review suggest the pertinence of clinical lipidomic studies targeting these metabolites.
Collapse
Affiliation(s)
- Berkan Savas
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 20007 Washington, DC, USA;
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano Italy, 20090 Segrate (Milano), Italy;
| | - Dil Sahali
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
- Service Néphrologie, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Mario Ollero
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
| |
Collapse
|