1
|
Gregory CA, Ma J, Lomeli S. The coordinated activities of collagen VI and XII in maintenance of tissue structure, function and repair: evidence for a physical interaction. Front Mol Biosci 2024; 11:1376091. [PMID: 38606288 PMCID: PMC11007232 DOI: 10.3389/fmolb.2024.1376091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Collagen VI and collagen XII are structurally complex collagens of the extracellular matrix (ECM). Like all collagens, type VI and XII both possess triple-helical components that facilitate participation in the ECM network, but collagen VI and XII are distinct from the more abundant fibrillar collagens in that they also possess arrays of structurally globular modules with the capacity to propagate signaling to attached cells. Cell attachment to collagen VI and XII is known to regulate protective, proliferative or developmental processes through a variety of mechanisms, but a growing body of genetic and biochemical evidence suggests that at least some of these phenomena may be potentiated through mechanisms that require coordinated interaction between the two collagens. For example, genetic studies in humans have identified forms of myopathic Ehlers-Danlos syndrome with overlapping phenotypes that result from mutations in either collagen VI or XII, and biochemical and cell-based studies have identified accessory molecules that could form bridging interactions between the two collagens. However, the demonstration of a direct or ternary structural interaction between collagen VI or XII has not yet been reported. This Hypothesis and Theory review article examines the evidence that supports the existence of a functional complex between type VI and XII collagen in the ECM and discusses potential biological implications.
Collapse
Affiliation(s)
- Carl A. Gregory
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX, United States
| | | | | |
Collapse
|
2
|
Colorectal cancer in Crohn's disease evaluated with genes belonging to fibroblasts of the intestinal mucosa selected by NMF. Pathol Res Pract 2021; 229:153728. [PMID: 34953405 DOI: 10.1016/j.prp.2021.153728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022]
Abstract
Crohn's disease (CD) is a type of chronic, inflammatory bowel disease (IBD) which affects any part of the gastrointestinal tract. This study aims to understand the mechanism which activate mucosal fibroblasts in the microenvironment of the colon in CD and colorectal carcinomas and to extract fibroblasts phenotypes via a novel framework based on non-negative factorization of matrix (NMF). The results identify a fibroblast phenotype characterized by intense pro-inflammatory activity ensured by the presence of genes belonging to the APOBEC1 family, such as APOBEC3F and APOBEC3G. These results demonstrated that there is a difference in fibroblast response in producing a pro-tumorigenic effect in CD. The different activation mechanisms could represent useful biomarkers in controlling CD development without generalizing its significance as IBD.
Collapse
|
3
|
Onursal C, Dick E, Angelidis I, Schiller HB, Staab-Weijnitz CA. Collagen Biosynthesis, Processing, and Maturation in Lung Ageing. Front Med (Lausanne) 2021; 8:593874. [PMID: 34095157 PMCID: PMC8172798 DOI: 10.3389/fmed.2021.593874] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.
Collapse
Affiliation(s)
- Ceylan Onursal
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
4
|
Workalemahu T, Ouidir M, Shrestha D, Wu J, Grantz KL, Tekola-Ayele F. Differential DNA Methylation in Placenta Associated With Maternal Blood Pressure During Pregnancy. Hypertension 2020; 75:1117-1124. [PMID: 32078381 PMCID: PMC7122078 DOI: 10.1161/hypertensionaha.119.14509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abnormal blood pressure during pregnancy is associated with impaired fetal growth, predisposing the offspring to cardiometabolic abnormalities over the life-course. Placental DNA methylation may be the regulatory pathway through which maternal blood pressure influences fetal and adult health outcomes. Epigenome-wide association study of 301 participants with placenta sample examined associations between DNA methylation and millimetre of mercury increases in systolic and diastolic blood pressure in each trimester. Findings were further examined using gene expression, gene pathway, and functional annotation analyses. Cytosine-(phosphate)-guanine (CpGs) known to be associated with cardiometabolic traits were evaluated. Increased maternal systolic and diastolic blood pressure were associated with methylation of 3 CpGs in the first, 6 CpGs in the second, and 15 CpGs in the third trimester at 5% false discovery rate (P values ranging from 6.6×10-15 to 2.3×10-7). Several CpGs were enriched in pathways including cardiovascular-metabolic development (P=1.0×10-45). Increased systolic and diastolic blood pressure were associated with increased CpG methylation and gene expression at COL12A1, a collagen family gene known for regulatory functions in the heart. Out of 304 previously reported CpGs known to be associated with cardiometabolic traits, 36 placental CpGs were associated with systolic and diastolic blood pressure in our data. The present study provides the first evidence for associations between placental DNA methylation and increased maternal blood pressure during pregnancy at genes implicated in cardiometabolic diseases. Identification of blood pressure-associated methylated sites in the placenta may provide clues to early origins of cardiometabolic dysfunction and inform guidelines for early prevention. Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00912132.
Collapse
Affiliation(s)
- Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Deepika Shrestha
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jing Wu
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Katherine L. Grantz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Nauroy P, Guiraud A, Chlasta J, Malbouyres M, Gillet B, Hughes S, Lambert E, Ruggiero F. Gene profile of zebrafish fin regeneration offers clues to kinetics, organization and biomechanics of basement membrane. Matrix Biol 2018; 75-76:82-101. [PMID: 30031067 DOI: 10.1016/j.matbio.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
How some animals regenerate missing body parts is not well understood. Taking advantage of the zebrafish caudal fin model, we performed a global unbiased time-course transcriptomic analysis of fin regeneration. Biostatistics analyses identified extracellular matrix (ECM) as the most enriched gene sets. Basement membranes (BMs) are specialized ECM structures that provide tissues with structural cohesion and serve as a major extracellular signaling platform. While the embryonic formation of BM has been extensively investigated, its regeneration in adults remains poorly studied. We therefore focused on BM gene expression kinetics and showed that it recapitulates many aspects of development. As such, the re-expression of the embryonic col14a1a gene indicated that col14a1a is part of the regeneration-specific program. We showed that laminins and col14a1a genes display similar kinetics and that the corresponding proteins are spatially and temporally controlled during regeneration. Analysis of our CRISPR/Cas9-mediated col14a1a knockout fish showed that collagen XIV-A contributes to timely deposition of laminins. As changes in ECM organization can affect tissue mechanical properties, we analyzed the biomechanics of col14a1a-/- regenerative BM using atomic force microscopy (AFM). Our data revealed a thinner BM accompanied by a substantial increase of the stiffness when compared to controls. Further AFM 3D-reconstructions showed that BM is organized as a checkerboard made of alternation of soft and rigid regions that is compromised in mutants leading to a more compact structure. We conclude that collagen XIV-A transiently acts as a molecular spacer responsible for BM structure and biomechanics possibly by helping laminins integration within regenerative BM.
Collapse
Affiliation(s)
- Pauline Nauroy
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Alexandre Guiraud
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Julien Chlasta
- BioMeca, ENSL, Université de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Marilyne Malbouyres
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Benjamin Gillet
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Sandrine Hughes
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Elise Lambert
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Florence Ruggiero
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France.
| |
Collapse
|
6
|
Rennie MY, Stovall S, Carson JP, Danilchik M, Thornburg KL, Rugonyi S. Hemodynamics Modify Collagen Deposition in the Early Embryonic Chicken Heart Outflow Tract. J Cardiovasc Dev Dis 2017; 4:jcdd4040024. [PMID: 29367553 PMCID: PMC5753125 DOI: 10.3390/jcdd4040024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Blood flow is critical for normal cardiac development. Hemodynamic stimuli outside of normal ranges can lead to overt cardiac defects, but how early heart tissue remodels in response to altered hemodynamics is poorly understood. This study investigated changes in tissue collagen in response to hemodynamic overload in the chicken embryonic heart outflow tract (OFT) during tubular heart stages (HH18 to HH24, ~24 h). A suture tied around the OFT at HH18 was tightened to constrict the lumen for ~24 h (constriction range at HH24: 15–60%). Expression of fibril collagens I and III and fibril organizing collagens VI and XIV were quantified at the gene and protein levels via qPCR and quantitative immunofluorescence. Collagen I was slightly elevated upstream of the band and in the cushions in banded versus control OFTs. Changes in collagen III were not observed. Collagen VI deposition was elevated downstream of the band, but not overall. Collagen XIV deposition increased throughout the OFT, and strongly correlated to lumen constriction. Interestingly, organization of collagen I fibrils was observed for the tighter banded embryos in regions that also showed increase in collagen XIV deposition, suggesting a potentially key role for collagens I and XIV in the structural adaptation of embryonic heart tissue to hemodynamic overload.
Collapse
Affiliation(s)
- Monique Y Rennie
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Stephanie Stovall
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | - James P Carson
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758, USA.
| | - Michael Danilchik
- Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Kent L Thornburg
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Sandra Rugonyi
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Marro J, Pfefferli C, de Preux Charles AS, Bise T, Jaźwińska A. Collagen XII Contributes to Epicardial and Connective Tissues in the Zebrafish Heart during Ontogenesis and Regeneration. PLoS One 2016; 11:e0165497. [PMID: 27783651 PMCID: PMC5081208 DOI: 10.1371/journal.pone.0165497] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022] Open
Abstract
Zebrafish heart regeneration depends on cardiac cell proliferation, epicardium activation and transient reparative tissue deposition. The contribution and the regulation of specific collagen types during the regenerative process, however, remain poorly characterized. Here, we identified that the non-fibrillar type XII collagen, which serves as a matrix-bridging component, is expressed in the epicardium of the zebrafish heart, and is boosted after cryoinjury-induced ventricular damage. During heart regeneration, an intense deposition of Collagen XII covers the outer epicardial cap and the interstitial reparative tissue. Analysis of the activated epicardium and fibroblast markers revealed a heterogeneous cellular origin of Collagen XII. Interestingly, this matrix-bridging collagen co-localized with fibrillar type I collagen and several glycoproteins in the post-injury zone, suggesting its role in tissue cohesion. Using SB431542, a selective inhibitor of the TGF-β receptor, we showed that while the inhibitor treatment did not affect the expression of collagen 12 and collagen 1a2 in the epicardium, it completely suppressed the induction of both genes in the fibrotic tissue. This suggests that distinct mechanisms might regulate collagen expression in the outer heart layer and the inner injury zone. On the basis of this study, we postulate that the TGF-β signaling pathway induces and coordinates formation of a transient collagenous network that comprises fibril-forming Collagen I and fiber-associated Collagen XII, both of which contribute to the reparative matrix of the regenerating zebrafish heart.
Collapse
Affiliation(s)
- Jan Marro
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Catherine Pfefferli
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | | | - Thomas Bise
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Gutiérrez JM, Escalante T, Rucavado A, Herrera C, Fox JW. A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming. Toxins (Basel) 2016; 8:toxins8100304. [PMID: 27782073 PMCID: PMC5086664 DOI: 10.3390/toxins8100304] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022] Open
Abstract
Snake venom metalloproteinases (SVMPs) affect the extracellular matrix (ECM) in multiple and complex ways. Previously, the combination of various methodological platforms, including electron microscopy, histochemistry, immunohistochemistry, and Western blot, has allowed a partial understanding of such complex pathology. In recent years, the proteomics analysis of exudates collected in the vicinity of tissues affected by SVMPs has provided novel and exciting information on SVMP-induced ECM alterations. The presence of fragments of an array of ECM proteins, including those of the basement membrane, has revealed a complex pathological scenario caused by the direct action of SVMPs. In addition, the time-course analysis of these changes has underscored that degradation of some fibrillar collagens is likely to depend on the action of endogenous proteinases, such as matrix metalloproteinases (MMPs), synthesized as a consequence of the inflammatory process. The action of SVMPs on the ECM also results in the release of ECM-derived biologically-active peptides that exert diverse actions in the tissue, some of which might be associated with reparative events or with further tissue damage. The study of the effects of SVMP on the ECM is an open field of research which may bring a renewed understanding of snake venom-induced pathology.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Cristina Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Jay W Fox
- School of Medicine, University of Virginia, Charlottesville, VA 22959, USA.
| |
Collapse
|
9
|
Zou Y, Zwolanek D, Izu Y, Gandhy S, Schreiber G, Brockmann K, Devoto M, Tian Z, Hu Y, Veit G, Meier M, Stetefeld J, Hicks D, Straub V, Voermans NC, Birk DE, Barton ER, Koch M, Bönnemann CG. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum Mol Genet 2013; 23:2339-52. [PMID: 24334604 DOI: 10.1093/hmg/ddt627] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Collagen VI-related myopathies are disorders of connective tissue presenting with an overlap phenotype combining clinical involvement from the muscle and from the connective tissue. Not all patients displaying related overlap phenotypes between muscle and connective tissue have mutations in collagen VI. Here, we report a homozygous recessive loss of function mutation and a de novo dominant mutation in collagen XII (COL12A1) as underlying a novel overlap syndrome involving muscle and connective tissue. Two siblings homozygous for a loss of function mutation showed widespread joint hyperlaxity combined with weakness precluding independent ambulation, while the patient with the de novo missense mutation was more mildly affected, showing improvement including the acquisition of walking. A mouse model with inactivation of the Col12a1 gene showed decreased grip strength, a delay in fiber-type transition and a deficiency in passive force generation while the muscle seems more resistant to eccentric contraction induced force drop, indicating a role for a matrix-based passive force-transducing elastic element in the generation of the weakness. This new muscle connective tissue overlap syndrome expands on the emerging importance of the muscle extracellular matrix in the pathogenesis of muscle disease.
Collapse
Affiliation(s)
- Yaqun Zou
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bader HL, Lambert E, Guiraud A, Malbouyres M, Driever W, Koch M, Ruggiero F. Zebrafish collagen XIV is transiently expressed in epithelia and is required for proper function of certain basement membranes. J Biol Chem 2013; 288:6777-87. [PMID: 23325806 DOI: 10.1074/jbc.m112.430637] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found that zebrafish has two differentially expressed col14a1 paralogs. col14a1a expression peaked between 18-somite stage and 24 hours postfertilization (hpf), whereas col14a1b was first expressed at 32 hpf. To uncover functions of collagen XIV (COLXIV) during early embryogenesis, we focused our study on col14a1a. We characterized the α1 (XIV-A) chain as a collagenase-sensitive 200-kDa protein that formed dimer that could be reduced at high pH. As observed for the transcript, COLXIV-A protein expression peaked between 24 and 48 hpf. Using antisense probes and polyclonal antibodies, we show that col14a1a and its protein product COLXIV-A are transiently expressed in several epithelia, including epithelia undergoing shape changes, such as the fin folds. In contrast, anti-COLXII antibodies stained only connective tissues. COLXIV-A was also detected in the basement membrane (BM), where it co-localized with COLXII. At later developmental stages, COLXIV-A was not expressed in epithelia anymore but persisted in the BM. Morpholino knockdown of COLXIV-A provoked a skin detachment phenotype. Electron microscopy analysis revealed that morpholino-injected embryos lacked a lamina densa and lamina lucida at 24 hpf, and BM defects, such as gaps in the adepidermal granules, were still detected at 48 hpf. These BM defects were accompanied by a rupture of the dermis and detachment of the epidermis. Taken together, these data suggest an unexpected role of COLXIV-A in undifferentiated epithelia and in the formation of embryonic basement membranes.
Collapse
Affiliation(s)
- Hannah L Bader
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 CNRS, Ecole Normale Supérieure de Lyon, Université Lyon 1, F-69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Peng Y, Bocker MT, Holm J, Toh WS, Hughes CS, Kidwai F, Lajoie GA, Cao T, Lyko F, Raghunath M. Human fibroblast matrices bio-assembled under macromolecular crowding support stable propagation of human embryonic stem cells. J Tissue Eng Regen Med 2012; 6:e74-86. [DOI: 10.1002/term.1560] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 05/09/2012] [Accepted: 05/29/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Yanxian Peng
- Department of Bioengineering, Faculty of Engineering; National University of Singapore; Singapore
| | - Michael Thomas Bocker
- Division of Epigenetics, DKFZ-ZMBH Alliance; German Cancer Research Center; Heidelberg; Germany
| | - Jennifer Holm
- Department of Biomedical Engineering; Texas A&M University; College Station; Texas; 77843-3120; USA
| | | | - Christopher Stephen Hughes
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry; University of Western Ontario; London; ON; Canada
| | - Fahad Kidwai
- Dental Research Lab, Discipline of Oral Sciences, Faculty of Dentistry; National University of Singapore; Singapore
| | - Gilles Andre Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry; University of Western Ontario; London; ON; Canada
| | - Tong Cao
- Dental Research Lab, Discipline of Oral Sciences, Faculty of Dentistry; National University of Singapore; Singapore
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance; German Cancer Research Center; Heidelberg; Germany
| | | |
Collapse
|
12
|
Bader HL, Keene DR, Charvet B, Veit G, Driever W, Koch M, Ruggiero F. Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes. Matrix Biol 2008; 28:32-43. [PMID: 18983916 DOI: 10.1016/j.matbio.2008.09.580] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 01/28/2023]
Abstract
Connective tissues ensure the cohesion of the tissues of the body, but also form specialized structures such as tendon and bone. Collagen XII may enhance the stability of connective tissues by bridging collagen fibrils, but its function is still unclear. Here, we used the zebrafish model to visualize its expression pattern in the whole organism. The zebrafish col12a1 gene is homologous to the small isoform of the tetrapod col12a1 gene. In agreement with the biochemical data reported for the small isoform, the zebrafish collagen XII alpha1 chain was characterized as a collagenase sensitive band migrating at approximately 200 kDa. Using newly generated polyclonal antibodies and anti-sense probes, we performed a comprehensive analysis of its expression in developing zebrafish. Collagen XII exhibited a much broader expression pattern than previously thought: it was ubiquitously expressed in the connective tissue sheaths (fascia) that encase the tissues and organs of the body. For example, it was found in sclera, meninges, epimysia and horizontal and vertical myosepta. Collagen XII was also detected in head mesenchyme, pharyngeal arches and within the spinal cord, where it was first expressed within and then at the lateral borders of the floor plate and at the dorsal midline. Furthermore, double immunofluorescence staining with laminin and immunogold electron microscopy revealed that collagen XII is associated with basement membranes. These data suggest that collagen XII is implicated in tissue cohesion by stabilizing fascia and by linking fascia to basement membranes.
Collapse
|