1
|
Fakatava N, Mitarai H, Yuda A, Haraguchi A, Wada H, Hasegawa D, Maeda H, Wada N. Actin alpha 2, smooth muscle, a transforming growth factor-β1-induced factor, regulates collagen production in human periodontal ligament cells via Smad2/3 pathway. J Dent Sci 2022; 18:567-576. [PMID: 37021273 PMCID: PMC10068375 DOI: 10.1016/j.jds.2022.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Background/purpose Actin alpha 2, smooth muscle (ACTA2) is an actin isoform that forms the cytoskeleton. Actin plays a crucial role in numerous cellular functions. ACTA2 is a marker of functional periodontal ligament (PDL) fibroblasts and is upregulated by transforming growth factor-β1 (TGF-β1); however, the underlying function of ACTA2 in PDL tissue is unknown. We aimed to examine the localization and potential function of ACTA2 in PDL tissues and cells. Materials and methods RNA expression was determined using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and quantitative RT-PCR. Protein expression was determined using immunofluorescence staining and Western blot analysis. Soluble and insoluble collagen production was examined using the Sircol collagen assay and picrosirius red staining, respectively. Small interfering RNA (siRNA) was used for knockdown assay to examine the effect of ACTA2 in human PDL cells. Results ACTA2 expression was observed in human primary PDL cells and PDL cell line (2-23 cells). TGF-β1 upregulated ACTA2, collagen type Ⅰ alpha1 chain (COL1A1), periostin (POSTN), and fibrillin-Ⅰ(FBN1) expression and soluble and insoluble collagen production in 2-23 cells. However, ACTA2 depletion by siRNA strongly suppressed PDL-related gene expression and collagen production compared with those of TGF-β1-stimulated control cells. Furthermore, ACTA2 knockdown significantly suppressed the phosphorylation of Smad2 and Smad3. Conclusion ACTA2 plays a crucial role in PDL-related marker expression and collagen production via Smad2/3 phosphorylation. Our findings might contribute to the development of novel and effective periodontal therapies.
Collapse
Affiliation(s)
- Naati Fakatava
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiromi Mitarai
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
- Corresponding author. Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Asuka Yuda
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Akira Haraguchi
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hiroko Wada
- Laboratory of Oral Pathology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naohisa Wada
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Decreased Expression of Semaphorin3A/Neuropilin-1 Signaling Axis in Apical Periodontitis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8724503. [PMID: 29457037 PMCID: PMC5804370 DOI: 10.1155/2017/8724503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/23/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022]
Abstract
Apical periodontitis (AP) is a chronic infection of endodontic origin accompanied with bone destruction around the apical region. Semaphorin3A (Sema3A) and neuropilin-1 (Nrp1) are regarded as a pair of immune regulators in bone metabolism. In this study, we firstly investigated the expression pattern of Sema3A/Nrp1 in apical periodontitis and its correlation with bone destruction. Using rat animal model, we analysed the level of mandibular bone destruction and the expression of Sema3A/Nrp1 on days 0, 7, 14, 21, 28, and 35 after pulp exposure. In addition, clinical samples from apical periodontitis patients were obtained to analyse the expression of Sema3A/Nrp1. These results indicated that the bone destruction level expanded from days 7 to 35. The number of positive cells and level of mRNA expression of Sema3A/Nrp1 were significantly decreased from days 7 to 35, with a negative correlation with bone destruction. Moreover, expression of Sema3A/Nrp1 in the AP group was reduced compared to the control group of clinical samples. In conclusion, decreased expression of Sema3A/Nrp1 was observed in periapical lesions and is potentially involved in the bone resorption of the periapical area, suggesting that Sema3A/Nrp1 may contribute to the pathological development of apical periodontitis.
Collapse
|
3
|
Hasegawa D, Wada N, Yoshida S, Mitarai H, Arima M, Tomokiyo A, Hamano S, Sugii H, Maeda H. Wnt5a suppresses osteoblastic differentiation of human periodontal ligament stem cell-like cells via Ror2/JNK signaling. J Cell Physiol 2017; 233:1752-1762. [PMID: 28681925 DOI: 10.1002/jcp.26086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/05/2017] [Indexed: 01/14/2023]
Abstract
Wnt5a, a non-canonical Wnt protein, is known to play important roles in several cell functions. However, little is known about the effects of Wnt5a on osteoblastic differentiation of periodontal ligament (PDL) cells. Here, we examined the effects of Wnt5a on osteoblastic differentiation and associated intracellular signaling in human PDL stem/progenitor cells (HPDLSCs). We found that Wnt5a suppressed expression of bone-related genes (ALP, BSP, and Osterix) and alizarin red-positive mineralized nodule formation in HPDLSCs under osteogenic conditions. Immunohistochemical analysis revealed that a Wnt5a-related receptor, receptor tyrosine kinase-like orphan receptor 2 (Ror2), was expressed in rat PDL tissue. Interestingly, knockdown of Ror2 by siRNA inhibited the Wnt5a-induced downregulation of bone-related gene expression in HPDLSCs. Moreover, Western blotting analysis showed that phosphorylation of the intracellular signaling molecule, c-Jun N-terminal kinase (JNK) was upregulated in HPDLSCs cultured in osteoblast induction medium with Wnt5a, but knockdown of Ror2 by siRNA downregulated the phosphorylation of JNK. We also examined the effects of JNK inhibition on Wnt5a-induced suppression of osteoblastic differentiation of HPDLSCs. The JNK inhibitor, SP600125 inhibited the Wnt5a-induced downregulation of bone-related gene expression in HPDLSCs. Additionally, SP600125 inhibited the Wnt5a-induced suppression of the alizarin red-positive reaction in HPDLSCs. These results suggest that Wnt5a suppressed osteoblastic differentiation of HPDLSCs through Ror2/JNK signaling. Non-canonical Wnt signaling, including Wnt5a/Ror2/JNK signaling, may function as a negative regulator of mineralization, preventing the development of non-physiological mineralization in PDL tissue.
Collapse
Affiliation(s)
- Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Naohisa Wada
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hiromi Mitarai
- Department of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Mai Arima
- Faculty of Dental Science, Department of Endodontology and Operative Dentistry, Kyushu University, Fukuoka, Japan
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Sayuri Hamano
- Faculty of Dental Science, Department of Endodontology and Operative Dentistry, Kyushu University, Fukuoka, Japan.,Faculty of Dental Science, OBT Research Center, Kyushu University, Fukuoka, Japan
| | - Hideki Sugii
- Department of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan.,Faculty of Dental Science, Department of Endodontology and Operative Dentistry, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Hasegawa D, Wada N, Maeda H, Yoshida S, Mitarai H, Tomokiyo A, Monnouchi S, Hamano S, Yuda A, Akamine A. Wnt5a Induces Collagen Production by Human Periodontal Ligament Cells Through TGFβ1-Mediated Upregulation of Periostin Expression. J Cell Physiol 2015; 230:2647-60. [DOI: 10.1002/jcp.24950] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 01/23/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Daigaku Hasegawa
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Naohisa Wada
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Hidefumi Maeda
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Shinichiro Yoshida
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Hiromi Mitarai
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Atsushi Tomokiyo
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Satoshi Monnouchi
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Sayuri Hamano
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Asuka Yuda
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| | - Akifumi Akamine
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry; Kyushu University; Higashi-ku Fukuoka Japan
| |
Collapse
|
5
|
Sawada T, Yamazaki T, Shibayama K, Yamaguchi Y, Ohshima M. Ultrastructural immunolocalization of laminin 332 (laminin 5) at dento-gingival interface in Macaca fuscata monkey. Med Mol Morphol 2015; 48:104-11. [PMID: 25055992 DOI: 10.1007/s00795-014-0085-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
Although laminin 332 (laminin 5), an extracellular matrix molecule involved in cell adhesion and migration, has been localized at the interface between the tooth enamel and junctional epithelium, its ultrastructural localization remains to be fully clarified. The purpose of the present study was to investigate the ultrastructural distribution of laminin 332 at the dento-gingival interface in Japanese monkey (Macaca fuscata) using pre- and post-embedding immunoelectron microscopy. Pre-embedding immunoelectron microscopy revealed a broad band of internal basal lamina together with supplementary lamina densa, and both showed immunolabeling for laminin 332. Immunoreaction products for laminin 332 were observed in the rough-surfaced endoplasmic reticulum of the junctional epithelial cells close to the tooth enamel. Post-embedding immunoelectron microscopy revealed an increase in the number of immunogold particles toward the coronal portion, resulting in a large accumulation of particles on the basal lamina, preferentially on the lamina densa. Concomitantly the dental cuticle at the dento-gingival interface was sporadically, but specifically, immunogold-labeled with anti-laminin 332 antibody. These data suggest that junctional epithelium actively produces laminin 332, and that the products accumulate at the dento-gingival interface during cell migration coronally towards the gingival sulcus.
Collapse
Affiliation(s)
- Takashi Sawada
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan,
| | | | | | | | | |
Collapse
|
6
|
Kawagoe M, Tsuruga E, Oka K, Sawa Y, Ishikawa H. Matrix metalloproteinase-2 degrades fibrillin-1 and fibrillin-2 of oxytalan fibers in the human eye and periodontal ligaments in vitro. Acta Histochem Cytochem 2013; 46:153-9. [PMID: 24194629 PMCID: PMC3813822 DOI: 10.1267/ahc.13024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 01/07/2023] Open
Abstract
Oxytalan fibers are distributed in the eye and periodontal ligaments (PDL). The ciliary zonule, known as Zinn’s zonule, in the eye is composed of oxytalan fibers, which are bundles of microfibrils consisting mainly of fibrillin-1 and fibrillin-2. As turnover of oxytalan fibers is slow during life, their degradation mechanism remains unclarified. This study was performed to examine degradation pattern of fibrillin-1 and fibrillin-2 by experimental MMP activation. We cultured human non-pigmented ciliary epithelial cells (HNPCEC) and PDL fibroblasts for 7 days, then treated them with concanavalin A to activate matrix metalloproteinase (MMP)-2, and examined the degradation of fibrillin-1 and fibrillin-2 for 72 hr using immunofluorescence. At 7 days of HNPCEC culture, fibrillin-1-positive fibers were observed, some of which merged with fibrillin-2. After MMP-2 activation, fibrillin-1-positive fibers became thin and disappeared by 72 hr, while fibrillin-2-positive fibers disappeared almost completely within 24 hr. At 7 days of PDL fibroblast culture, fibrillin-1-positive fibers were mostly merged with fibrillin-2. After MMP-2 activation, fibrillin-1-positive fibers became thin by 24 hr and had almost disappeared by 48 hr, while fibrillin-2-positive fibers decreased constantly after 24 hr. A MMP-2 inhibitor completely suppressed these degradations. These results suggest that the patterns of fibrillin-1 and fibrillin-2 degradation differ between the eye and the PDL, possibly reflecting the sensitivity of fibrillin-1 and fibrillin-2 of each type of oxytalan fiber against MMP-2.
Collapse
Affiliation(s)
- Megumi Kawagoe
- Section of Orthodontics, Department of Oral Growth and Development, Division of Clinical Dentistry, Fukuoka Dental College
| | - Eichi Tsuruga
- Section of Functional Structure, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College
| | - Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Division of Clinical Dentistry, Fukuoka Dental College
| | - Yoshihiko Sawa
- Section of Functional Structure, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College
| | - Hiroyuki Ishikawa
- Section of Orthodontics, Department of Oral Growth and Development, Division of Clinical Dentistry, Fukuoka Dental College
| |
Collapse
|
7
|
Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines. Cell Tissue Res 2013; 352:249-63. [PMID: 23324989 DOI: 10.1007/s00441-012-1543-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/29/2012] [Indexed: 12/17/2022]
Abstract
Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.
Collapse
|
8
|
Maeda H, Wada N, Tomokiyo A, Monnouchi S, Akamine A. Prospective potency of TGF-β1 on maintenance and regeneration of periodontal tissue. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:283-367. [PMID: 23809439 DOI: 10.1016/b978-0-12-407696-9.00006-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontal ligament (PDL) tissue, central in the periodontium, plays crucial roles in sustaining tooth in the bone socket. Irreparable damages of this tissue provoke tooth loss, causing a decreased quality of life. The question arises as to how PDL tissue is maintained or how the lost PDL tissue can be regenerated. Stem cells included in PDL tissue (PDLSCs) are widely accepted to have the potential to maintain or regenerate the periodontium, but PDLSCs are very few in number. In recent studies, undifferentiated clonal human PDL cell lines were developed to elucidate the applicable potentials of PDLSCs for the periodontal regenerative medicine based on cell-based tissue engineering. In addition, it has been suggested that transforming growth factor-beta 1 is an eligible factor for the maintenance and regeneration of PDL tissue.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
9
|
Inoue K, Hara Y, Sato T. Development of the oxytalan fiber system in the rat molar periodontal ligament evaluated by light- and electron-microscopic analyses. Ann Anat 2012; 194:482-8. [PMID: 22727934 DOI: 10.1016/j.aanat.2012.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/23/2012] [Accepted: 03/30/2012] [Indexed: 11/27/2022]
Abstract
In the elastic fiber system of the periodontal ligaments only oxytalan fibers can be identified, whereas all three types of fibers, oxytalan, elaunin and elastic fibers, are present in the gingiva. However, little information is available concerning their organization in the developing periodontal ligament. In the present study, growth and distribution of the oxytalan fiber system were examined in the developing periodontal ligament of rat molars using the specific staining for oxytalan, elastic and collagen fibers, and electron-microscopic analyses. Oxytalan staining clearly confirmed the earliest oxytalan fibers in a bell-staged tooth germ at embryonic day 18, which were tiny violet-colored fibers in the dental follicle. Their cross images were made up of dot-like microfibrils of 10-15nm in diameter close to fibroblasts in the dental follicle of the rat molars aged 1 day. These microfibrils appeared to be linked to one another through delicate filaments in 3-nm-diameter. At the beginning of root formation, the cross figures of oxytalan fibers were found as dot-like structures around the root sheath as well as in areas very close to blood vessels. As development proceeded, longer oxytalan fibers were produced in the apico-occlusal direction along with blood vessels. In addition, the immunoreactive products to anti-amyloid β protein on the surface of blood vessels suggest that this molecule might be involved in the adhesion of oxytalan fibers to vascular basement membranes. Thus, the oxytalan fiber system might regulate periodontal ligament function through tensional variations registered on the walls of the vascular structures.
Collapse
Affiliation(s)
- Kouji Inoue
- Research Center of Electron Microscopy, School of Dental Medicine, Tsurumi University, Yokohama, Japan.
| | | | | |
Collapse
|
10
|
Kumazawa K, Sawada T, Yanagisawa T, Shintani S. Effect of single-dose amoxicillin on rat incisor odontogenesis: a morphological study. Clin Oral Investig 2011; 16:835-42. [DOI: 10.1007/s00784-011-0581-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/16/2011] [Indexed: 01/11/2023]
|
11
|
Sawada T. Resorption of elastic fibers in monkey gingival connective tissue: ultrastructural and immunocytochemical evidence. J Mol Histol 2011; 42:123-8. [PMID: 21279424 DOI: 10.1007/s10735-011-9314-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
Little is known about the remodeling of elastic fibers in gingival connective tissue. In this study, elastic fibers in the lamina propria of monkey gingiva were examined by transmission electron microscopy and immunocytochemistry. Some elastic fibers were localized at invagination on the surface of the narrow processes of fibroblasts distributed among dense assemblies of collagen fibrils, and also within coated pits, which were pinching off as coated vesicles. At a higher magnification, the coated vesicles contained filamentous structures, as well as pentagonal structures similar those previously reported in elastic fibers. Immunoelectron microscopy demonstrated positive staining for fibrillin, one of the main components of microfibril, localized either in the coated pits or vesicles. These observations indicate that at least some elastic fibers were resorbed by fibroblasts, and that, in spite of the general belief that little remodeling of elastic fibers occurs under normal conditions, resorption of elastic fibers does occur in monkey gingival connective tissue. The functional significance of this is not yet clear, but it may be involved in facilitating the delicate and efficient adaptation of tissue to physical requirements during mastication.
Collapse
Affiliation(s)
- Takashi Sawada
- Department of Ultrastructural Science, Tokyo Dental College, Masago 1-2-2, Mihama-ku, Chiba City, 261-8502, Japan.
| |
Collapse
|