1
|
Herrera A, Menendez A, Ochoa A, Bardia L, Colombelli J, Pons S. Neurogenesis redirects β-catenin from adherens junctions to the nucleus to promote axonal growth. Development 2023; 150:dev201651. [PMID: 37519286 PMCID: PMC10482005 DOI: 10.1242/dev.201651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Here, we show that, in the developing spinal cord, after the early Wnt-mediated Tcf transcription activation that confers dorsal identity to neural stem cells, neurogenesis redirects β-catenin from the adherens junctions to the nucleus to stimulate Tcf-dependent transcription in a Wnt-independent manner. This new β-catenin activity regulates genes implicated in several aspects of contralateral axon growth, including axon guidance and adhesion. Using live imaging of ex-vivo chick neural tube, we showed that the nuclear accumulation of β-catenin and the rise in Tcf-dependent transcription both initiate before the dismantling of the adherens junctions and remain during the axon elongation process. Notably, we demonstrated that β-catenin activity in post-mitotic cells depends on TCF7L2 and is central to spinal commissural axon growth. Together, our results reveal Wnt-independent Tcf/β-catenin regulation of genes that control the growth and guidance of commissural axons in chick spinal cord.
Collapse
Affiliation(s)
- Antonio Herrera
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Anghara Menendez
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Andrea Ochoa
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Sebastian Pons
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| |
Collapse
|
2
|
Yang C, Shi Y, Li X, Guan L, Li H, Lin J. Cadherins and the pathogenesis of epilepsy. Cell Biochem Funct 2022; 40:336-348. [PMID: 35393670 DOI: 10.1002/cbf.3699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 12/13/2022]
Abstract
Epilepsy is a nervous system disease caused by abnormal discharge of brain neurons, which is characterized by recurrent seizures. The factors that induce epilepsy include genetic and environmental factors. Genetic factors are important pathogenic factors of epilepsy, such as epilepsy caused by protocadherin-19 (PCDH-19) mutation, which is an X-linked genetic disease. It is more common in female heterozygotes, which are caused by mutations in the PCDH-19 gene. Epilepsy caused by environmental factors is mainly caused by brain injury, which is commonly caused by brain tumors, brain surgery, or trauma to the brain. In addition, the pathogenesis of epilepsy is closely related to abnormalities in some signaling pathways. The Wnt/β-catenin signaling pathway is considered a new target for the treatment of epilepsy. This review summarizes these factors inducing epilepsy and the research hypotheses regarding the pathogenesis of epilepsy. The focus of this review centers on cadherins and the pathogenesis of epilepsy. We analyzed the pathogenesis of epilepsy induced by N-cadherin and PCDH-19 in the cadherin family members. Finally, we expect that in the future, new breakthroughs will be made in the study of the pathogenesis and mechanism of epilepsy at the cellular and molecular levels.
Collapse
Affiliation(s)
- Ciqing Yang
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Yaping Shi
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaoying Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lihong Guan
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| |
Collapse
|
3
|
Shao S, Li J, Chen S, Dong Y, Wang S, Zhu Z, Xie L, Li H. Sex-dependent expression of N-cadherin-GluA1 pathway-related molecules in the prefrontal cortex mediates anxiety-like behavior in male offspring following prenatal stress. Stress 2021; 24:612-620. [PMID: 34184955 DOI: 10.1080/10253890.2021.1942829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Prenatal stress (PS) affects neurodevelopment and increases the risk for anxiety in adolescence in male offspring, but the mechanism is still unclear. N-Cadherin regulates the expression of AMPA receptors (AMPARs), which mediate anxiety by modulating network excitability in the prefrontal cortex (PFC). Our results revealed that in adolescent male, but not female, offspring rats, PS induced anxiety-like behavior, as assessed by the open field test (OFT). Furthermore, N-cadherin and AMPAR subunit GluA1 were colocalized in the PFC, and the expression of the N-cadherin and the GluA1 decreased following PS exposure in male offspring rats. We also found that the AMPAR agonist CX546 did not alleviate anxiety-like behavior in adolescent male offspring rats; however, it increased the expression of GluA1 in the PFC but did not alter the expression of N-cadherin. In conclusion, our study suggested that the N-cadherin-GluA1 pathway in the PFC mediates anxiety-like behavior in adolescent male offspring rats and that N-cadherin might be required for sex differences in the effect of PS on adolescent offspring.
Collapse
Affiliation(s)
- Shuya Shao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengquan Chen
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - YanKai Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Maternal and Infant Health Research Institute and Medical College, Northwestern University, Xi'an, China
| | - Shang Wang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongliang Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Maternal and Infant Health Research Institute and Medical College, Northwestern University, Xi'an, China
| | - Longshan Xie
- Department of Functional Neuroscience, The First People's Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Li X, Yang C, Shi Y, Guan L, Li H, Li S, Li Y, Zhang Y, Lin J. Abnormal neuronal damage and inflammation in the hippocampus of kainic acid-induced epilepsy mice. Cell Biochem Funct 2021; 39:791-801. [PMID: 34057222 DOI: 10.1002/cbf.3651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022]
Abstract
In this study, we established a mouse model of epilepsy and analysed abnormal neuronal damage and inflammation in the hippocampus of mice with kainic acid (KA)-induced epilepsy to provide the basis for the pathogenesis of epilepsy. C57 mice, aged 4 weeks, were injected intraperitoneally in the KA group with 20 mg/kg of KA and in the sham experimental group with normal saline. The whole brain and hippocampus of mice in the sham experimental group and KA epilepsy model group were collected on days 7, 14, 21 and 28 after injection. The difference in the protein expression in the hippocampus was detected using fluorescence immunohistochemistry. The hippocampal tissue was also collected and frozen to detect protein expression by western blot. The results of the haematoxylin and eosin (HE) and Nissl staining showed that the mouse model of temporal lobe epilepsy could be established by intraperitoneal injection of KA, and the success rate of the model was 53.8%. The expression of DCX-, β-catenin-, GFAP- and Iba-1-labelled glial cells in the KA-induced epilepsy model group were higher than those in the sham group. The results of western blotting showed that the expression of DCX and β-catenin in the KA-induced epilepsy model group was higher than that in the sham experimental group, while the expression of N-cadherin and Iba-1 on days 14 and 28 was significantly (P < .05) higher than that in the sham experimental group. In KA-induced epilepsy model group, the expression of Bcl-2 was decreased, while the expression of Bad and PUMA was increased.
Collapse
Affiliation(s)
- Xiaoying Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.,Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Ciqing Yang
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yaping Shi
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lihong Guan
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Shuanqing Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yunxiao Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Juntang Lin
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
The impact of N-cadherin–β-catenin signaling on the analgesic effects of glial cell-derived neurotrophic factor in neuropathic pain. Biochem Biophys Res Commun 2020; 522:463-470. [DOI: 10.1016/j.bbrc.2019.11.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
|
6
|
Li S, Li Y, Li H, Yang C, Lin J. Use of in vitro electroporation and slice culture for gene function analysis in the mouse embryonic spinal cord. Mech Dev 2019; 158:103558. [PMID: 31212004 DOI: 10.1016/j.mod.2019.103558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
The spinal cord is an important part of the central nervous system (CNS). At present, the expression of the exogenous gene in the spinal cord of the embryonic mouse needs in utero spinal cord electroporation, but the success rate of this technique is very low. In this study, we have demonstrated the expression of an exogenous gene on one side of the spinal cord by combining two methods-in vitro electroporation of embryonic mouse spinal cord and organ spinal cord slices culture. We took 12-day embryonic mice, injected the green fluorescent protein (pCAGGS-GFP) plasmid into the spinal cord cavity in vitro, and then electroporated. The spinal cord was cut into 300-μm slices using a vibratory microtome. After cultured for 48 h, GFP-positive neurons were clearly observed on one side of the spinal cord, indicating that the exogenous gene was successfully transferred. The axon projection direction is basically unanimous from the inside to the lateral edge of the spinal cord. Compared to neurons in vivo, a single neuron in the culturing section has more complete neurites and is conducive to studying changes in the structure and behavior of individual neurons. Based on the above results, we have successfully established a convenient and efficient method for expressing the exogenous gene in the spinal cord of the mouse.
Collapse
Affiliation(s)
- Shuanqing Li
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yunxiao Li
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Han Li
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ciqing Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China.
| | - Juntang Lin
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China; College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
7
|
Yang C, Li X, Li S, Chai X, Guan L, Qiao L, Li H, Lin J. Organotypic slice culture based on in ovo electroporation for chicken embryonic central nervous system. J Cell Mol Med 2018; 23:1813-1826. [PMID: 30565384 PMCID: PMC6378233 DOI: 10.1111/jcmm.14080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022] Open
Abstract
Organotypic slice culture is a living cell research technique which blends features of both in vivo and in vitro techniques. While organotypic brain slice culture techniques have been well established in rodents, there are few reports on the study of organotypic slice culture, especially of the central nervous system (CNS), in chicken embryos. We established a combined in ovo electroporation and organotypic slice culture method to study exogenous genes functions in the CNS during chicken embryo development. We performed in ovo electroporation in the spinal cord or optic tectum prior to slice culture. When embryonic development reached a specific stage, green fluorescent protein (GFP)-positive embryos were selected and fluorescent expression sites were cut under stereo fluorescence microscopy. Selected tissues were embedded in 4% agar. Tissues were sectioned on a vibratory microtome and 300 μm thick sections were mounted on a membrane of millicell cell culture insert. The insert was placed in a 30-mm culture dish and 1 ml of slice culture media was added. We show that during serum-free medium culture, the slice loses its original structure and propensity to be strictly regulated, which are the characteristics of the CNS. However, after adding serum, the histological structure of cultured-tissue slices was able to be well maintained and neuronal axons were significantly longer than that those of serum-free medium cultured-tissue slices. As the structure of a complete single neuron can be observed from a slice culture, this is a suitable way of studying single neuronal dynamics. As such, we present an effective method to study axon formation and migration of single neurons in vitro.
Collapse
Affiliation(s)
- Ciqing Yang
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Xiaoying Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Shuanqing Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xuejun Chai
- Department of Anatomy, Xi'an Medical University, Xi'an, China
| | - Lihong Guan
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Liang Qiao
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Advanced Medical and Dental Institute, University Sains Malaysia, Bertam, Penang, Malaysia
| | - Juntang Lin
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Effects of N-cadherin on neuronal migration during chicken optic tectum development. Histochem Cell Biol 2018; 151:239-248. [PMID: 30250974 DOI: 10.1007/s00418-018-1733-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
N-cadherin, a member of the cadherin family, plays an important role in neural development. In addition, N-cadherin has been reported to be crucial in neuronal migration, axonal outgrowth, and axonal path-finding. However, the mechanism underlying the effects of N-cadherin in neuronal migration is not entirely clear. In this study, we investigated the overexpression or knockdown of N-cadherin in the optic tectum during chicken embryo development, and then analyzed the effect of N-cadherin on neuronal migration. The results showed that compared with the control group, in the N-cadherin knockdown group, the neuronal migration of the optic tectum was significantly affected and could not arrive at destination. The stratum griseum central layer of the optic tectum mainly includes multipolar neurons, which could not be formed after the knockdown of N-cadherin, and more neurons form the bipolar or monopolar neurons compared with the control group. Compared with the control group, more cells stayed in the neuroepithelium layer. The axonal length in the optic tectum was significantly (P < 0.001) shorter in the N-cadherin knockdown group than in the control group. These results reveal that the knockdown of N-cadherin mainly affects the length of axons and formation of multipolar neurons in the development of the chicken optic tectum, which eventually results in the inhibition of neuronal migration.
Collapse
|
9
|
Chen Z. Common cues wire the spinal cord: Axon guidance molecules in spinal neuron migration. Semin Cell Dev Biol 2018; 85:71-77. [PMID: 29274387 DOI: 10.1016/j.semcdb.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/28/2023]
Abstract
Topographic arrangement of neuronal cell bodies and axonal tracts are crucial for proper wiring of the nervous system. This involves often-coordinated neuronal migration and axon guidance during development. Most neurons migrate from their birthplace to specific topographic coordinates as they adopt the final cell fates and extend axons. The axons follow temporospatial specific guidance cues to reach the appropriate targets. When neuronal or axonal migration or their coordination is disrupted, severe consequences including neurodevelopmental disorders and neurological diseases, can arise. Neuronal and axonal migration shares some molecular mechanisms, as genes originally identified as axon guidance molecules have been increasingly shown to direct both navigation processes. This review focuses on axon guidance pathways that are shown to also direct neuronal migration in the vertebrate spinal cord.
Collapse
Affiliation(s)
- Zhe Chen
- Department of MCD Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
10
|
Combined use of in ovo electroporation and cultured neurons for gene function analysis of embryogenesis in the chicken optic tectum. Neuroreport 2017; 28:1180-1185. [PMID: 28953094 DOI: 10.1097/wnr.0000000000000903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chicken embryos are used widely in the fields of developmental biology and neurobiology. The chicken embryo also serves as a model to analyze gene expression and function using in ovo electroporation. Plasmids may be injected into the spinal cord or tectum of the chicken central nervous system by microinjection for electroporation. Here, we developed a novel method that combines in ovo electroporation and neuronal culturing to study gene function in the chicken tectum during embryo development. Our method can be used to study in-vivo and in-vitro exogenous genes' function. In addition, live cell imaging microscopy, immunostaining, and transfection can be used with our method to study neuronal growth, development, neurite growth and retraction, and axonal pathfinding. Our result showed that axons were present in isolated neurons after culturing for 24 h, and cell debris was low after replacing the media at 48 h. Many GFP-expressing neurons were observed in the cultured cells after 48 h. We successfully cultured the neurons for 3 weeks. Together, this method combines in ovo electroporation and neuronal culturing advantages and is more convenient for the gene function analysis.
Collapse
|