1
|
Hong SH, Yu X, Zhu Y, Chen Y. Liver epigenomic signature associated with chronic oxidative stress in a mouse model of glutathione deficiency. Chem Biol Interact 2024; 398:111093. [PMID: 38830566 PMCID: PMC11223951 DOI: 10.1016/j.cbi.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Oxidative stress is intimately involved in the pathogenesis of fatty liver disease (FLD). A major factor contributing to oxidative stress is the depletion of the ubiquitous antioxidant glutathione (GSH). Unexpectedly, chronic GSH deficiency renders glutamate-cysteine ligase modifier subunit (Gclm)-null mice protected from fatty liver injuries. Epigenetic regulation serves as an important cellular mechanism in modulating gene expression and disease outcome in FLD, although it is not well understood how systemic redox imbalance modifies the liver epigenome. In the current study, utilizing the Gclm-null mouse model, we aimed to elucidate redox-associated epigenomic changes and their implications in liver stress response. We performed high-throughput array-based DNA methylation profiling (MeDIP array) in 22,327 gene promoter regions (from -1300 bp to +500 bp of the Transcription Start Sites) in the liver and peripheral blood cells. Results from the MeDIP array demonstrate that, although global methylation enrichment in gene promoters did not change, low GSH resulted in prevalent demethylation at the individual promoter level. Such an effect likely attributed to a declined availability of the methyl donor S-adenosyl methionine (SAM) in Gclm-null liver. Functional enrichment analysis of liver target genes is suggestive of a potential role of epigenetic mechanisms in promoting cellular survival and lipid homeostasis in Gclm-null liver. In comparison with the liver tissue, MeDIP array in peripheral blood cells revealed a panel of 19 gene promoters that are candidate circulating biomarkers for hepatic epigenomic changes associated with chronic GSH deficiency. Collectively, our results provided new insights into the in vivo interplay between liver redox state and DNA methylation status. The current study laid the groundwork for future epigenetic/epigenomic investigations in experimental settings or human populations under conditions of liver oxidative stress induced by environmental or dietary challenges.
Collapse
Affiliation(s)
- Seong Hwi Hong
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Xiaoqing Yu
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
2
|
Aoki S, Inoue Y, Hamazaki M, Hara S, Noguchi T, Shirasuna K, Iwata H. miRNAs in Follicular and Oviductal Fluids Support Global DNA Demethylation in Early-Stage Embryos. Int J Mol Sci 2024; 25:5872. [PMID: 38892059 PMCID: PMC11172648 DOI: 10.3390/ijms25115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Global methylation levels differ in in vitro- and in vivo-developed embryos. Follicular fluid (FF) contains extracellular vesicles (EVs) containing miRNAs that affect embryonic development. Here, we examined our hypothesis that components in FF affect global DNA methylation and embryonic development. Oocytes and FF were collected from bovine ovaries. Treatment of zygotes with a low concentration of FF induced global DNA demethylation, improved embryonic development, and reduced DNMT1/3A levels. We show that embryos take up EVs containing labeled miRNA secreted from granulosa cells and the treatment of zygotes with EVs derived from FF reduces global DNA methylation in embryos. Furthermore, the methylation levels of in vitro-developed blastocysts were higher than those of in their vivo counterparts. Based on small RNA-sequencing and in silico analysis, we predicted miR-29b, -199a-3p, and -148a to target DNMTs and to induce DNA demethylation, thereby improving embryonic development. Moreover, among FF from 30 cows, FF with a high content of these miRNAs demethylated more DNA in the embryos than FF with a lower miRNA content. Thus, miRNAs in FF play a role in early embryonic development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hisataka Iwata
- Department of Animal Science, Graduate School of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Kanagawa, Japan; (S.A.)
| |
Collapse
|
3
|
Kubo N, Uehara R, Uemura S, Ohishi H, Shirane K, Sasaki H. Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells. Nat Commun 2024; 15:3266. [PMID: 38627502 PMCID: PMC11021467 DOI: 10.1038/s41467-024-47699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
DNA methyltransferase 3A (DNMT3A) and its catalytically inactive cofactor DNA methyltransferase 3-Like (DNMT3L) proteins form functional heterotetramers to deposit DNA methylation in mammalian germ cells. While both proteins have an ATRX-DNMT3-DNMT3L (ADD) domain that recognizes histone H3 tail unmethylated at lysine-4 (H3K4me0), the combined and differential roles of the domains in the two proteins have not been fully defined in vivo. Here we investigate DNA methylation landscapes in female and male germ cells derived from mice with loss-of-function amino acid substitutions in the ADD domains of DNMT3A and/or DNMT3L. Mutations in either the DNMT3A-ADD or the DNMT3L-ADD domain moderately decrease global CG methylation levels, but to different degrees, in both germ cells. Furthermore, when the ADD domains of both DNMT3A and DNMT3L lose their functions, the CG methylation levels are much more reduced, especially in oocytes, comparable to the impact of the Dnmt3a/3L knockout. In contrast, aberrant accumulation of non-CG methylation occurs at thousands of genomic regions in the double mutant oocytes and spermatozoa. These results highlight the critical role of the ADD-H3K4me0 binding in proper CG and non-CG methylation in germ cells and the various impacts of the ADD domains of the two proteins.
Collapse
Affiliation(s)
- Naoki Kubo
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Ryuji Uehara
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shuhei Uemura
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hiroaki Ohishi
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenjiro Shirane
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Han Y, Meng J, Ling X, Pan Z, Zhang H, Zhong B, Chen S, Pang J, Ma Y, Chen J, Liu L. DNMT1 regulates hypermethylation and silences hsa_circ_401351 in hydroquinone-induced malignant TK6 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:2092-2101. [PMID: 38108535 DOI: 10.1002/tox.24089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Benzene and its metabolite hydroquinone (HQ) are widely used in daily life, and long-term exposure to benzene or HQ can induce acute myeloid leukemia (AML). Circular RNAs (circRNAs) are mostly produced by reverse splicing of gene exon mRNA precursors. The modulation of circRNA expression is connected to leukemia progression; however, the molecular mechanism is still unknown. MATERIALS AND METHODS In this study, the cells were divided into four groups: PBS control group (PBS-TK6), TK6 malignantly transformed cells induced by 10.0 μmol/L HQ (HQ-TK6), and HQ-TK6 cells treated with 5 μmol/L 5-AzaC (DNA methyltransferase inhibitor) for 24 h (HQ + 5-AzaC). HQ-TK6 cells were treated with 200 nmol/L TSA (histone deacetylation inhibitor) for 24 h (HQ + TSA). qRT-PCR was used to identify the differential hsa_circ_401351 expression between the four groups. We further determined the hsa_circ_401351 promoter methylation level with methylation-specific PCR. DNMT1 and DNMT3b were knocked down by CRISPR/Cas9 to elucidate the specific molecular mechanism of hsa_circ_401351 in HQ-TK6 cells. CCK-8 and flow cytometry detected cell proliferation and apoptosis, respectively, after hsa_circ_401351 was overexpressed in HQ-TK6 cells. RESULTS Compared with the PBS-TK6 group, the expression of hsa_circ_401351 was found to be lower in the HQ-TK6 group. Nevertheless, treatment with 5-AzaC or TSA increased hsa_circ_401351 expression, with the upregulation being more pronounced in the TSA group. The expression of hsa_circ_401351 in the DNMT1 knockdown group was dramatically increased by 50% compared to that in the control group, and the DNA methylation level of the hsa_circ_401351 promoter region was decreased. When hsa_circ_401351 was overexpressed, HQ-TK6 cell proliferation was significantly slowed after 48 h compared with the control group. Flow cytometry showed that cells were mainly arrested in G1 phase, and apoptosis was significantly enhanced. Similarly, qRT-PCR and Western blot data showed significant reductions in Caspase-3 mRNA and protein production, and Bcl-2 mRNA levels were also elevated. CONCLUSIONS Overall, our research showed that elevated DNMT1 expression in HQ-TK6 cells increased methylation levels and decreased expression of the hsa_circ_401351 promoter region, limiting its ability to suppress HQ-TK6 cell growth and enhance apoptosis.
Collapse
Affiliation(s)
- Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Zhijie Pan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Haiqiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Hospital Infection Management, Dongguan Maternal and Child Health Care Hospital, Dongguan, People's Republic of China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Shi Chen
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Jing Pang
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Yuliang Ma
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| |
Collapse
|
5
|
Alhosin M. Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Epigenet Insights 2023; 16:25168657231213717. [PMID: 38033464 PMCID: PMC10687967 DOI: 10.1177/25168657231213717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Early diets in honeybees have effects on epigenome with consequences on their phenotype. Depending on the early larval diet, either royal jelly (RJ) or royal worker, 2 different female castes are generated from identical genomes, a long-lived queen with fully developed ovaries and a short-lived functionally sterile worker. To generate these prominent physiological and morphological differences between queen and worker, honeybees utilize epigenetic mechanisms which are controlled by nutritional input. These mechanisms include DNA methylation and histone post-translational modifications, mainly histone acetylation. In honeybee larvae, DNA methylation and histone acetylation may be differentially altered by RJ. This diet has biologically active ingredients with inhibitory effects on the de novo methyltransferase DNMT3A or the histone deacetylase 3 HDAC3 to create and maintain the epigenetic state necessary for developing larvae to generate a queen. DNMT and HDAC enzymes work together to induce the formation of a compacted chromatin structure, repressing transcription. Such dialog could be coordinated by their association with other epigenetic factors including the ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1). Through its multiple functional domains, UHRF1 acts as an epigenetic reader of both DNA methylation patterns and histone marks. The present review discusses the epigenetic regulation of honeybee's chromatin and how the early diets in honeybees can affect the DNA/histone modifying types of machinery that are necessary to stimulate the larvae to turn into either queen or worker. The review also looks at future directions in epigenetics mechanisms of honeybees, mainly the potential role of UHRF1 in these mechanisms.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Gaggi G, Di Credico A, Barbagallo F, Ghinassi B, Di Baldassarre A. Bisphenols and perfluoroalkyls alter human stem cells integrity: A possible link with infertility. ENVIRONMENTAL RESEARCH 2023; 235:116487. [PMID: 37419196 DOI: 10.1016/j.envres.2023.116487] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Bisphenols and Perfluoroalkyls are chemical compounds widely used in industry known to be endocrine disruptors (EDs). Once ingested through contaminated aliments, they mimic the activity of endogenous hormones leading to a broad spectrum of diseases. Due to the extensive use of plastic in human life, particular attention should be paid to antenatal exposure to Bisphenols and Perfluoroalkyls since they cross the placental barrier and accumulates in developing embryo. Here we investigated the effects of Bisphenol-A (BPA), Bisphenol-S (BPS), perfluorooctane-sulfonate (PFOS) and perfluorooctanoic-acid (PFOA), alone or combined, on human-induced pluripotent stem cells (hiPSCs) that share several biological features with the stem cells of blastocysts. Our data show that these EDs affect hiPSC inducing a great mitotoxicity and dramatic changes in genes involved in the maintenance of pluripotency, germline specification, and epigenetic regulation. We also evidenced that these chemicals, when combined, may have additive, synergistic but also negative effects. All these data suggest that antenatal exposure to these EDs may affect the integrity of stem cells in the developing embryos, interfering with critical stages of early human development that might be determinant for fertility. The observation that the effects of exposure to a combination of these chemicals are not easily foreseeable further highlights the need for wider awareness of the complexity of the EDs effects on human health and of the social and economic burden attributable to these compounds.
Collapse
Affiliation(s)
- Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | - Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy.
| | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" , University of Chieti-Pescara, 66100, Chieti, Italy; UdA -TechLab, "G. D'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
7
|
Di Credico A, Gaggi G, Bucci I, Ghinassi B, Di Baldassarre A. The Effects of Combined Exposure to Bisphenols and Perfluoroalkyls on Human Perinatal Stem Cells and the Potential Implications for Health Outcomes. Int J Mol Sci 2023; 24:15018. [PMID: 37834465 PMCID: PMC10573528 DOI: 10.3390/ijms241915018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The present study investigates the impact of two endocrine disruptors, namely Bisphenols (BPs) and Perfluoroalkyls (PFs), on human stem cells. These chemicals leach from plastic, and when ingested through contaminated food and water, they interfere with endogenous hormone signaling, causing various diseases. While the ability of BPs and PFs to cross the placental barrier and accumulate in fetal serum has been documented, the exact consequences for human development require further elucidation. The present research work explored the effects of combined exposure to BPs (BPA or BPS) and PFs (PFOS and PFOA) on human placenta (fetal membrane mesenchymal stromal cells, hFM-MSCs) and amniotic fluid (hAFSCs)-derived stem cells. The effects of the xenobiotics were assessed by analyzing cell proliferation, mitochondrial functionality, and the expression of genes involved in pluripotency and epigenetic regulation, which are crucial for early human development. Our findings demonstrate that antenatal exposure to BPs and/or PFs may alter the biological characteristics of perinatal stem cells and fetal epigenome, with potential implications for health outcomes at birth and in adulthood. Further research is necessary to comprehend the full extent of these effects and their long-term consequences.
Collapse
Affiliation(s)
- Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| | - Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| | - Ines Bucci
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy; (A.D.C.); (I.B.); (B.G.); (A.D.B.)
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- UdA TechLab Center (UdATech), 66100 Chieti, Italy
| |
Collapse
|
8
|
Huang J, Chen P, Jia L, Li T, Yang X, Liang Q, Zeng Y, Liu J, Wu T, Hu W, Kee K, Zeng H, Liang X, Zhou C. Multi-Omics Analysis Reveals Translational Landscapes and Regulations in Mouse and Human Oocyte Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301538. [PMID: 37401155 PMCID: PMC10502832 DOI: 10.1002/advs.202301538] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/28/2023] [Indexed: 07/05/2023]
Abstract
Abnormal resumption of meiosis and decreased oocyte quality are hallmarks of maternal aging. Transcriptional silencing makes translational control an urgent task during meiosis resumption in maternal aging. However, insights into aging-related translational characteristics and underlying mechanisms are limited. Here, using multi-omics analysis of oocytes, it is found that translatomics during aging is related to changes in the proteome and reveals decreased translational efficiency with aging phenotypes in mouse oocytes. Translational efficiency decrease is associated with the N6-methyladenosine (m6A) modification of transcripts. It is further clarified that m6A reader YTHDF3 is significantly decreased in aged oocytes, inhibiting oocyte meiotic maturation. YTHDF3 intervention perturbs the translatome of oocytes and suppress the translational efficiency of aging-associated maternal factors, such as Hells, to affect the oocyte maturation. Moreover, the translational landscape is profiled in human oocyte aging, and the similar translational changes of epigenetic modifications regulators between human and mice oocyte aging are observed. In particular, due to the translational silence of YTHDF3 in human oocytes, translation activity is not associated with m6A modification, but alternative splicing factor SRSF6. Together, the findings profile the specific translational landscapes during oocyte aging in mice and humans, and uncover non-conservative regulators on translation control in meiosis resumption and maternal aging.
Collapse
Affiliation(s)
- Jiana Huang
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Peigen Chen
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Lei Jia
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Tingting Li
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Xing Yang
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Qiqi Liang
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Yanyan Zeng
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Jiawen Liu
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Taibao Wu
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Wenqi Hu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijing100084China
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijing100084China
| | - Haitao Zeng
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Xiaoyan Liang
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Chuanchuan Zhou
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| |
Collapse
|
9
|
Xu R, Zhu Q, Zhao Y, Chen M, Yang L, Shen S, Yang G, Shi Z, Zhang X, Shi Q, Kou X, Zhao Y, Wang H, Jiang C, Li C, Gao S, Liu X. Unreprogrammed H3K9me3 prevents minor zygotic genome activation and lineage commitment in SCNT embryos. Nat Commun 2023; 14:4807. [PMID: 37558707 PMCID: PMC10412629 DOI: 10.1038/s41467-023-40496-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) can be used to reprogram differentiated somatic cells to a totipotent state but has poor efficiency in supporting full-term development. H3K9me3 is considered to be an epigenetic barrier to zygotic genomic activation in 2-cell SCNT embryos. However, the mechanism underlying the failure of H3K9me3 reprogramming during SCNT embryo development remains elusive. Here, we perform genome-wide profiling of H3K9me3 in cumulus cell-derived SCNT embryos. We find redundant H3K9me3 marks are closely related to defective minor zygotic genome activation. Moreover, SCNT blastocysts show severely indistinct lineage-specific H3K9me3 deposition. We identify MAX and MCRS1 as potential H3K9me3-related transcription factors and are essential for early embryogenesis. Overexpression of Max and Mcrs1 significantly benefits SCNT embryo development. Notably, MCRS1 partially rescues lineage-specific H3K9me3 allocation, and further improves the efficiency of full-term development. Importantly, our data confirm the conservation of deficient H3K9me3 differentiation in Sertoli cell-derived SCNT embryos, which may be regulated by alternative mechanisms.
Collapse
Affiliation(s)
- Ruimin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Qianshu Zhu
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Yuyan Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Mo Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, 400013, Chongqing, China
| | - Lingyue Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Shijun Shen
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Guang Yang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhifei Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Xiaolei Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Qi Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Cizhong Jiang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Chong Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Xiaoyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
10
|
Agarwal A, Kansal V, Farooqi H, Prasad R, Singh VK. Epigallocatechin Gallate (EGCG), an Active Phenolic Compound of Green Tea, Inhibits Tumor Growth of Head and Neck Cancer Cells by Targeting DNA Hypermethylation. Biomedicines 2023; 11:biomedicines11030789. [PMID: 36979768 PMCID: PMC10045148 DOI: 10.3390/biomedicines11030789] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Head and neck cancers are among the deadliest cancers, ranked sixth globally in rates of high mortality and poor patient prognoses. The prevalence of head and neck squamous cell carcinoma (HNSCC) is associated with smoking and excessive alcohol consumption. Despite several advances in diagnostic and interventional methods, the morbidity of subjects with HNSCC has remained unchanged over the last 30 years. Epigenetic alterations, such as DNA hypermethylation, are commonly associated with several cancers, including HNSCC. Thus, epigenetic changes are considered promising therapeutic targets for chemoprevention. Here, we investigated the effect of EGCG on DNA hypermethylation and the growth of HNSCC. First, we assessed the expression levels of global DNA methylation in HNSCC cells (FaDu and SCC-1) and observed enhanced methylation levels compared with normal human bronchial epithelial cells (NHBE). Treatment of EGCG to HNSCC cells significantly inhibited global DNA hypermethylation by up to 70–80% after 6 days. Inhibition of DNA hypermethylation in HNSCC cells was confirmed by the conversion of 5-methylcytosine (5-mc) into 5-hydroxy methylcytosine (5hmC). DNA methyltransferases regulate DNA methylation. Next, we checked the effect of EGCG on the expression levels of DNA methyltransferases (DNMTs) and DNMT activity. Treatment of EGCG to HNSCC cells significantly reduced DNMT activity to 60% in SCC-1 and 80% in FaDu cells. The protein levels of DNMT3a and DNMT3b were downregulated in both cell lines after EGCG treatment. EGCG treatment to HNSCC cells reactivated tumor suppressors and caused decreased cell proliferation. Our in vivo study demonstrated that administration of EGCG (0.5%, w/w) as a supplement within an AIN76A diet resulted in inhibition of tumor growth in FaDu xenografts in nude mice (80%; p < 0.01) compared with non-EGCG-treated controls. The growth inhibitory effect of dietary EGCG on the HNSCC xenograft tumors was associated with the inhibition of DNMTs and reactivation of silenced tumor suppressors. Together, our study provides evidence that EGCG acts as a DNA demethylating agent and can reactivate epigenetically silenced tumor suppressors to inhibit the growth of HNSCC cells.
Collapse
Affiliation(s)
- Anshu Agarwal
- Department of Zoology, Agra College, Dr. Bhimrao Ambedkar University, Agra 282004, India
| | - Vikash Kansal
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Humaira Farooqi
- Department of Biochemistry, Hamdard University, New Delhi 110062, India
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (R.P.); (V.K.S.); Tel.: +1-205-996-8685 (R.P.); +91-9412137516 (V.K.S.); Fax: +1-205-996-8653 (R.P.)
| | - Vijay Kumar Singh
- Department of Zoology, Agra College, Dr. Bhimrao Ambedkar University, Agra 282004, India
- Narain PG Degree College, Shikohabad, Dr. Bhimrao Ambedkar University, Agra 282004, India
- Correspondence: (R.P.); (V.K.S.); Tel.: +1-205-996-8685 (R.P.); +91-9412137516 (V.K.S.); Fax: +1-205-996-8653 (R.P.)
| |
Collapse
|
11
|
Epigenetic Differences Arise in Endothelial Cells Responding to Cobalt–Chromium. J Funct Biomater 2023; 14:jfb14030127. [PMID: 36976051 PMCID: PMC10052026 DOI: 10.3390/jfb14030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Cobalt–chromium (Co-Cr)-based alloys are emerging with important characteristics for use in dentistry, but the knowledge of epigenetic mechanisms in endothelial cells has barely been achieved. In order to address this issue, we have prepared a previously Co-Cr-enriched medium to further treat endothelial cells (HUVEC) for up to 72 h. Our data show there is important involvement with epigenetic machinery. Based on the data, it is believed that methylation balance in response to Co-Cr is finely modulated by DNMTs (DNA methyltransferases) and TETs (Tet methylcytosine dioxygenases), especially DNMT3B and both TET1 and TET2. Additionally, histone compaction HDAC6 (histone deacetylase 6) seems to develop a significant effect in endothelial cells. The requirement of SIRT1 seems to have a crucial role in this scenario. SIRT1 is associated with a capacity to modulate the expression of HIF-1α in response to hypoxia microenvironments, thus presenting a protective effect. As mentioned previously, cobalt is able to prevent HIF1A degradation and maintain hypoxia-related signaling in eukaryotic cells. Together, our results show, for the first time, a descriptive study reporting the relevance of epigenetic machinery in endothelial cells responding to cobalt–chromium, and it opens new perspectives to better understand their repercussions as prerequisites for driving cell adhesion, cell cycle progression, and angiogenesis surrounding this Co-Cr-based implantable device.
Collapse
|
12
|
High-fat diet induced obesity alters Dnmt1 and Dnmt3a levels and global DNA methylation in mouse ovary and testis. Histochem Cell Biol 2023; 159:339-352. [PMID: 36624173 DOI: 10.1007/s00418-022-02173-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
Obesity impairs reproductive capacity, and the link between imprinting disorders and obesity has been discussed in many studies. Recent studies indicate that a high-fat diet may cause epigenetic changes in maternal and paternal genes, which may be transmitted to offspring and negatively affect their development. On this basis, our study aims to reveal the changes in DNA methylation and DNA methyltransferase enzymes in the ovaries and testes of C57BL/6 mice fed a high-fat diet and created a model of obesity, by comparing them with the control group. For this purpose, we demonstrated the presence and quantitative differences of DNA methyltransferase 1 and DNA methyltransferase 3a enzymes as well as global DNA methylation in ovaries and testis of C57BL/6 mice fed a high-fat diet by using immunohistochemistry and western blot methods. We found that a high-fat diet induces the levels of Dnmt1 and Dnmt3a proteins (p < 0.05). We observed increased global DNA methylation in testes but, interestingly, decreased global DNA methylation in ovaries. We think that our outcomes have significant value to demonstrate the effects of obesity on ovarian follicle development and testicular spermatogenesis and may bring a new perspective to obesity-induced infertility treatments. Additionally, to the best of our knowledge, this is the first study to document dynamic alteration of Dnmt1 and Dnmt3a as well as global DNA methylation patterns during follicle development in healthy mouse ovaries.
Collapse
|
13
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
14
|
Ansari S, Saini S, Jamwal S, Thakur A, Kumar A, Sehrawat P, Devi P, Malakar D. Stage specific gene expression of folate mediated one-carbon metabolism enzymes and transporters in buffalo oocytes and pre-implantation embryos. Gene Expr Patterns 2022; 46:119282. [PMID: 36244619 DOI: 10.1016/j.gep.2022.119282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/04/2022]
Abstract
DNA synthesis and methylations are crucial during pre-implantation embryonic development, and are mediated by one-carbon metabolism of folates. Folates, transported into the cells via folate receptors (FOLR1 and FOLR2) and carriers (SLC19A1), are metabolized by various enzymes involved in folate-methionine cycle. However, the variations in temporal expression of folate transporters and folate-methionine cycle enzymes during pre-implantation embryo development is obscure. Thus, the present study aimed to investigate the differential expression of the genes for folate transporters and folate-methionine cycle enzymes. We also examined the expression of folate transport proteins in different pre-implantation development stages. Immature buffalo oocytes were matured in maturation medium followed by in vitro fertilization and culture at standard culture conditions. The temporal pattern of gene expression in buffalo, when compared to previous studies, indicated an inter-specific variation. The transcripts of some enzymes and folate transporters were significantly upregulated after zygotic genome activation. The transcripts as well as proteins for FOLR1, FOLR2 and SLC19A1 were present in oocytes and all the pre-implantation embryo stages. FOLR1 was present in the nuclei of different stages of developing embryos but not in the metaphase (MII) oocytes. As a result, the present study advocates the existence of active folate transport in buffalo oocytes and pre-implantation embryos. The data provided by the analysis of differential gene expression of folate transporters and metabolic enzymes would likely contribute to a better understanding of the role of folates in embryo development as well as advancements in assisted reproductive technologies.
Collapse
Affiliation(s)
- Shama Ansari
- ICAR-National Dairy Research Institute, Karnal, India
| | | | | | | | - Amit Kumar
- ICAR-National Dairy Research Institute, Karnal, India
| | | | - Preeti Devi
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
15
|
Milazzotto MP, Ispada J, de Lima CB. Metabolism-epigenetic interactions on in vitro produced embryos. Reprod Fertil Dev 2022; 35:84-97. [PMID: 36592974 DOI: 10.1071/rd22203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metabolism and epigenetics, which reciprocally regulate each other in different cell types, are fundamental aspects of cellular adaptation to the environment. Evidence in cancer and stem cells has shown that the metabolic status modifies the epigenome while epigenetic mechanisms regulate the expression of genes involved in metabolic processes, thereby altering the metabolome. This crosstalk occurs as many metabolites serve as substrates or cofactors of chromatin-modifying enzymes. If we consider the intense metabolic dynamic and the epigenetic remodelling of the embryo, the comprehension of these regulatory networks will be important not only for understanding early embryonic development, but also to determine in vitro culture conditions that support embryo development and may insert positive regulatory marks that may persist until adult life. In this review, we focus on how metabolism may affect epigenetic reprogramming of the early stages of development, in particular acetylation and methylation of histone and DNA. We also present other metabolic modifications in bovine embryos, such as lactylation, highlighting the promising epigenetic and metabolic targets to improve conditions for in vitro embryo development.
Collapse
Affiliation(s)
- Marcella Pecora Milazzotto
- Laboratory of Embryo Metabolism and Epigenomic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil
| | - Jessica Ispada
- Laboratory of Embryo Metabolism and Epigenomic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil
| | - Camila Bruna de Lima
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
16
|
Hajarizadeh A, Eidi A, Arefian E, Tvrda E, Mohammadi-Sangcheshmeh A. Aflatoxin B1 impairs in vitro early developmental competence of ovine oocytes. Theriogenology 2022; 183:53-60. [DOI: 10.1016/j.theriogenology.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
17
|
Li P, Zhang H, Yan K, Sui L, Du Y, Hu J, Xu H, Yang X, Liang X. Insufficient pyruvate in culture medium arrests mouse embryos at the first cleavage stage associated with abnormal epigenetic modifications. Theriogenology 2022; 181:119-125. [PMID: 35078124 DOI: 10.1016/j.theriogenology.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 01/17/2023]
Abstract
Energy is essential for early embryogenesis, and fertilized eggs can successfully develop to blastocyst in in vitro culture medium with an appropriate energy supply. Conversely, embryonic development is negatively affected by a suboptimal energy supply. We previously observed that a low level of pyruvate greatly arrests mouse embryos at the 2-cell stage. However, how methylation modifications are affected at this specific stage remains unknown. In this study, we found that mouse embryos could timely develop to the 4-cell stage in K+simplex optimized medium (KSOM) with control level of pyruvate, but embryos were significantly arrested at the 2-cell stage when pyruvate was reduced to 0.2-fold of the control level. Moreover, the fluorescence intensities of 5 mC, H3K4me2, H3K9me2 and H3K27me2 in the 2-cell stage embryos of the 0.2-fold pyruvate group were notedly lower than those of the control group, but N6-methyladenosine (m6A) fluorescence intensity was higher, suggesting that global genomic DNA, histone and m6A methylation modifications are disrupted with low levels of pyruvate. Consistently, the mRNA levels of genes related to DNA methylation, histone methylation and m6A modifications were also disturbed in the 2-cell stage embryos cultured with low levels of pyruvate. In summary, our findings demonstrate that insufficient pyruvate in culture medium results in mouse embryonic developmental arrest, at least in part due to defects in methylation modifications.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hengye Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Lumin Sui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ya Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiahao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
18
|
WGBS combined with RNA-seq analysis revealed that Dnmt1 affects the methylation modification and gene expression changes during mouse oocyte vitrification. Theriogenology 2022; 177:11-21. [PMID: 34653792 DOI: 10.1016/j.theriogenology.2021.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023]
Abstract
Understanding the molecular level changes of oocyte cryopreservation and the subsequent warming process is essential for improving the oocyte cryopreservation technologies. Here, we collected the mature metaphase II (MII) oocytes from mice and vitrified. After thawing, single-cell whole-genome bisulphite sequencing (scWGBS) and single-cell RNA sequencing (scRNA-seq) were used to investigate the molecular attributes of this process. Compared to the fresh oocytes, the vitrified oocytes had lower global methylation and gene expression levels, and 1426 genes up-regulated and 3321 genes down-regulated. The 1426 up-regulated differentially expressed genes (DEGs) in the vitrified oocytes were mainly associated with the histone ubiquitination, while the 3321 down-regulated genes were mainly enriched in the mitochondrion organisation and ATP metabolism processes. The differentially methylated regions (DMRs) were mainly located in promoter, intron and exon region of genes, and the length of DMRs in the vitrified oocytes were also significantly lower than that of the fresh oocytes. Notably, there were no significant difference in the expression levels of DNA demethylases (Tet1, Tet2 and Tet3) and methyltransferases (Dnmt3a and Dnmt3b) between two treatments of oocytes. However, Dnmt1 and kcnq1ot1, which are responsible for maintaining DNA methylation, were significantly down regulated in the vitrified oocytes. Gene regulatory network (GRN) analysis showed the Dnmt1 and kcnq1ot1 play a core role in regulating methylation and expression levels of downstream genes. Moreover, some genes associated with oocyte quality were significantly down-regulated in the vitrified oocytes. The present data provides a new perspective for understanding the impact of vitrification on oocytes.
Collapse
|
19
|
Wang F, Qin Z, Li Z, Yang S, Gao T, Sun L, Wang D. Dnmt3aa but Not Dnmt3ab Is Required for Maintenance of Gametogenesis in Nile Tilapia ( Oreochromis niloticus). Int J Mol Sci 2021; 22:ijms221810170. [PMID: 34576333 PMCID: PMC8469005 DOI: 10.3390/ijms221810170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Dnmt3a, a de novo methyltransferase, is essential for mammalian germ line DNA methylation. Only one Dnmt3a is identified in mammals, and homozygous mutants of Dnmt3a are lethal, while two Dnmt3a paralogs, dnmt3aa and dnmt3ab, are identified in teleosts due to the third round of genome duplication, and homozygous mutants of dnmt3aa and dnmt3ab are viable in zebrafish. The expression patterns and roles of dnmt3aa and dnmt3ab in gonadal development remain poorly understood in teleosts. In this study, we elucidated the precise expression patterns of dnmt3aa and dnmt3ab in tilapia gonads. Dnmt3aa was highly expressed in oogonia, phase I and II oocytes and granulosa cells in ovaries and spermatogonia and spermatocytes in testes, while dnmt3ab was mainly expressed in ovarian granulosa cells and testicular spermatocytes. The mutation of dnmt3aa and dnmt3ab was achieved by CRISPR/Cas9 in tilapia. Lower gonadosomatic index (GSI), increased apoptosis of oocytes and spermatocytes and significantly reduced sperm quality were observed in dnmt3aa−/− mutants, while normal gonadal development was observed in dnmt3ab−/− mutants. Consistently, the expression of apoptotic genes was significantly increased in dnmt3aa−/− mutants. In addition, the 5-methylcytosine (5-mC) level in dnmt3aa−/− gonads was decreased significantly, compared with that of dnmt3ab−/− and wild type (WT) gonads. Taken together, our results suggest that dnmt3aa, not dnmt3ab, plays important roles in maintaining gametogenesis in teleosts.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Sun
- Correspondence: (L.S.); (D.W.); Tel.: +86-23-6825-3702 (D.W.)
| | - Deshou Wang
- Correspondence: (L.S.); (D.W.); Tel.: +86-23-6825-3702 (D.W.)
| |
Collapse
|
20
|
Uysal F, Cinar O, Can A. Knockdown of Dnmt1 and Dnmt3a gene expression disrupts preimplantation embryo development through global DNA methylation. J Assist Reprod Genet 2021; 38:3135-3144. [PMID: 34533678 DOI: 10.1007/s10815-021-02316-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE DNA methylation is one of the epigenetic mechanisms that plays critical roles in preimplantation embryo development executed by DNA methyltransferase (Dnmt) enzymes. Dnmt1, responsible for the maintenance of methylation, and Dnmt3a, for de novo methylation, are gradually erased from the zygote in succeeding stages and then reestablished in the blastocyst. This study was designed to address the vital role of Dnmt1 and Dnmt3a enzymes by silencing their gene expressions in embryonic development in mice. METHODS Groups were (i) control, (ii) Dnmt1-siRNA, (iii) Dnmt3a-siRNA, and (iv) non-targeted (NT) siRNA. Knockdown of Dnmt genes using siRNAs was confirmed by measuring the targeted proteins using Western blot and immunofluorescence. Following knockdown of Dnmt1 and Dnmt3a in zygotes, the developmental competence and global DNA methylation levels were analyzed after 96 h in embryo cultures. RESULTS A significant number of embryos arrested at the 2-cell stage or had undergone degeneration in the Dnmt1 and Dnmt3a knocked-down groups. By 3D observations in super-resolution microscopy, we noted that Dnmt1 was exclusively found in juxtanuclear cytoplasm, while the Dnmt3a signal was preferentially localized in the nucleus, both in trophoblasts (TBs) and embryoblasts (EBs). Interestingly, the global DNA methylation level decreased in the Dnmt1 knockdown group, while it increased in the Dnmt3a knockdown group. CONCLUSION Precisely aligned expression of Dnmt genes is highly essential for the fate of an embryo in the early developmental period. Our data indicates that further analysis is mandatory to designate the specific targets of these methylation/demethylation processes in mouse and human preimplantation embryos.
Collapse
Affiliation(s)
- Fatma Uysal
- Laboratory for Stem Cells and Reproductive Cell Biology, Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Ozgur Cinar
- Laboratory for Stem Cells and Reproductive Cell Biology, Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Alp Can
- Laboratory for Stem Cells and Reproductive Cell Biology, Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey.
| |
Collapse
|
21
|
The molecular pathway triggered by zirconia in endothelial cells involves epigenetic control. Tissue Cell 2021; 73:101627. [PMID: 34425516 DOI: 10.1016/j.tice.2021.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/14/2021] [Accepted: 08/14/2021] [Indexed: 11/24/2022]
Abstract
The requirement to achieve natural looking restorations is one of the most challenging aspects in dentistry. Although zirconia has provided new opportunities for achieving superior aesthetics and physicochemical outcomes, very little has been achieved for its cellular and molecular performance, especially considering angiogenesis and osteogenesis. As angiogenesis is a secondary event and concomitant to osteogenesis, an indirect effect of dental implant on endothelial cells could be the release of active molecules such as those already reported affecting osteoblasts. To better address this issue, we challenged human endothelial cells (HUVECs) with zirconia-conditioned medium up to 72 h to allow analysis specific gene expression and protein pattern of mediators of epigenetic machinery in full. Our data shows involvement of zirconia in triggering intracellular signaling through MAPK-ERK activation, leading the signal to activate histone deacetylase HDAC6 likely with concomitant well-modulated DNA methylation profile by DNMTs and TETs. These signaling pathways seem to culminate in cytoskeleton rearrangement of endothelial cells, an important prerequisite to cell migration expected in angiogenesis. Collectively, this study demonstrates for the first time epigenetic-related molecular mechanism involved in endothelial cells responding to zirconia, revealing a repertoire of signaling molecules capable of executing the reprogramming process of gene expression, which are necessary to drive cell proliferation, migration, and consequently angiogenesis. This set of data can further studies using gene editing approaches to better elucidate functional roles.
Collapse
|
22
|
Chung DD, Pinson MR, Bhenderu LS, Lai MS, Patel RA, Miranda RC. Toxic and Teratogenic Effects of Prenatal Alcohol Exposure on Fetal Development, Adolescence, and Adulthood. Int J Mol Sci 2021; 22:ijms22168785. [PMID: 34445488 PMCID: PMC8395909 DOI: 10.3390/ijms22168785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can have immediate and long-lasting toxic and teratogenic effects on an individual’s development and health. As a toxicant, alcohol can lead to a variety of physical and neurological anomalies in the fetus that can lead to behavioral and other impairments which may last a lifetime. Recent studies have focused on identifying mechanisms that mediate the immediate teratogenic effects of alcohol on fetal development and mechanisms that facilitate the persistent toxic effects of alcohol on health and predisposition to disease later in life. This review focuses on the contribution of epigenetic modifications and intercellular transporters like extracellular vesicles to the toxicity of PAE and to immediate and long-term consequences on an individual’s health and risk of disease.
Collapse
|
23
|
KŠiŇanovÁ M, KovaŘÍkovÁ V, ŠefČÍkovÁ Z, ŠpirkovÁ A, ČikoŠ Š, Pisko J, Fabian D. Different response of embryos originating from control and obese mice to insulin in vitro. J Reprod Dev 2021; 67:25-34. [PMID: 33250503 PMCID: PMC7902211 DOI: 10.1262/jrd.2020-096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the present work was to investigate the impact of maternal obesity on DNA methylation in ovulated oocytes, and to compare the response of in vitro-developing preimplantation embryos originating from control and obese mice to insulin. An intergenerational, diet-induced obesity model was used to produce outbred mice with an increased body weight and body fat. Two-cell and eight-cell embryos recovered from obese and control mice were cultured in a medium supplemented with 1 or 10 ng/ml insulin until blastocyst formation. In the derived blastocysts, cell proliferation, differentiation, and death rates were determined. The results of immunochemical visualization of 5-methylcytosine indicated a slightly higher DNA methylation in ovulated metaphase II oocytes recovered from obese females; however, the difference between groups did not reach statistical significance. Expanded blastocysts developed from embryos provided by control dams showed increased mean cell numbers (two and eight-cell embryos exposed to 10 ng/ml), an increased inner-cell-mass/trophectoderm ratio (two-cell embryos exposed to 1 ng/ml and eight-cell embryos exposed to 10 ng/ml), and a reduced level of apoptosis (two and eight-cell embryos exposed to 10 ng/ml). In contrast, embryos originating from obese mice were significantly less sensitive to insulin; indeed, no difference was recorded in any tested variable between the embryos exposed to insulin and those cultured in insulin-free medium. Real-time RT-PCR analysis showed a significant increase in the amount of insulin receptor transcripts in blastocysts recovered from obese dams. These results suggest that maternal obesity might modulate the mitogenic and antiapoptotic responses of preimplantation embryos to insulin.
Collapse
Affiliation(s)
- Martina KŠiŇanovÁ
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Veronika KovaŘÍkovÁ
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Zuzana ŠefČÍkovÁ
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Alexandra ŠpirkovÁ
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Štefan ČikoŠ
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Jozef Pisko
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Dušan Fabian
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| |
Collapse
|
24
|
Yang CX, Wu ZW, Liu XM, Liang H, Gao ZR, Wang Y, Fang T, Liu YH, Miao YL, Du ZQ. Single-cell RNA-seq reveals mRNAs and lncRNAs important for oocytes in vitro matured in pigs. Reprod Domest Anim 2021; 56:642-657. [PMID: 33496347 DOI: 10.1111/rda.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
The faithful execution of molecular programme underlying oocyte maturation and meiosis is vital to generate competent haploid gametes for efficient mammalian reproduction. However, the organization and principle of molecular circuits and modules for oocyte meiosis remain obscure. Here, we employed the recently developed single-cell RNA-seq technique to profile the transcriptomes of germinal vesicle (GV) and metaphase II (MII) oocytes, aiming to discover the dynamic changes of mRNAs and long non-coding RNAs (lncRNAs) during oocyte in vitro meiotic maturation. During the transition from GV to MII, total number of detected RNAs (mRNAs and lncRNAs) in oocytes decreased. Moreover, 1,807 (602 up- and 1,205 down-regulated) mRNAs and 313 (177 up- and 136 down-regulated) lncRNAs were significantly differentially expressed (DE), i.e., more mRNAs down-regulated, but more lncRNAs up-regulated. During maturation of pig oocytes, mitochondrial mRNAs were actively transcribed, eight of which (ND6, ND5, CYTB, ND1, ND2, COX1, COX2 and COX3) were significantly up-regulated. Both DE mRNAs and targets of DE lncRNAs were enriched in multiple biological and signal pathways potentially associated with oocyte meiosis. Highly abundantly expressed mRNAs (including DNMT1, UHRF2, PCNA, ARMC1, BTG4, ASNS and SEP11) and lncRNAs were also discovered. Weighted gene co-expression network analysis (WGCNA) revealed 20 hub mRNAs in three modules to be important for oocyte meiosis and maturation. Taken together, our findings provide insights and resources for further functional investigation of mRNAs/lncRNAs in in vitro meiotic maturation of pig oocytes.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zi-Wei Wu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao-Man Liu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhuo-Ran Gao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yi Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Role, function and regulation of the thymocyte selection-associated high mobility group box protein in CD8 + T cell exhaustion. Immunol Lett 2020; 229:1-7. [PMID: 33186634 DOI: 10.1016/j.imlet.2020.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/25/2020] [Accepted: 11/07/2020] [Indexed: 12/31/2022]
Abstract
Thymocyte selection-associated high mobility group box protein (TOX), a member of the high-motility group box (HMG) protein superfamily, is an evolutionarily conserved DNA-binding protein. It functions as a transcription factor that modulates transcriptional programs by binding to DNA in a structure-dependent manner. It has been well established that TOX is required for the development of CD4+ T cells, natural killer (NK) cells and innate lymphoid cells (ILCs), as well as the autoimmunity mediated by CD8+ T cells. Recently, emerging evidence supports an essential role for TOX in the induction of T cell exhaustion in the setting of tumor or chronic viral infection by mediating transcriptional and epigenetic changes, which are cardinal hallmarks of exhausted T cells. Moreover, TOX plays a key role in the persistence of antigen-specific T cells and in the mitigation of tissue damage caused by immunopathology over the course of tumorigenesis and chronic infection. Additionally, TOX contributes to the high level of programmed cell death protein 1 (PD-1) on the cell surface by participating in the process of endocytic recycling of PD-1. In this review, we summarize the most recent information about the role of TOX in the process of T cell exhaustion, which enriches our understanding of the molecular mechanisms of CD8+ T cell exhaustion upon chronic antigen stimulation and reveals promising therapeutic targets for persisting infection and cancer.
Collapse
|
26
|
Li Y, Luo Q, Li Z, Wang Y, Zhu C, Li T, Li X. Long Non-coding RNA IRAIN Inhibits VEGFA Expression via Enhancing Its DNA Methylation Leading to Tumor Suppression in Renal Carcinoma. Front Oncol 2020; 10:1082. [PMID: 32983957 PMCID: PMC7492562 DOI: 10.3389/fonc.2020.01082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/29/2020] [Indexed: 01/19/2023] Open
Abstract
Aims: Long non-coding RNA IRAIN (lncRNA IRAIN) plays a critical role in numerous malignancies. However, the function of lncRNA IRAIN in renal carcinoma (RC) remains enigmatic. The purpose of this study is to characterize the effects of lncRNA IRAIN on RC progression. Methods: The expression pattern of lncRNA IRAIN and the vascular endothelial growth factor A (VEGFA) in RC tissues and cells was characterized by RT-qPCR and Western blot analysis. The roles of lncRNA IRAIN and VEGFA in the progression of RC were studied by gain- or loss-of-function experiments. Bioinformatics data analysis was used to predict CpG islands in the VEGFA promoter region. MSP was applied to detect the level of DNA methylation in RC cells. The interaction between lncRNA IRAIN and VEGFA was identified by RNA immunoprecipitation and RNA-protein pull down assays. Recruitment of DNA methyltransferases (Dnmt) to the VEGFA promoter region was achieved by chromatin immunoprecipitation. The subcellular localization of lncRNA IRAIN was detected by fractionation of nuclear and cytoplasmic RNA. Cell viability was investigated by CCK-8 assay, cell migration was tested by transwell migration assay, and apoptosis was analyzed by flow cytometry. The expression of epithelial–mesenchymal transition-related and apoptotic factors was evaluated by Western blot analysis. Finally, the effect of the lncRNA IRAIN/VEGFA axis was confirmed in an in vivo tumor xenograft model. Results: LncRNA IRAIN was poorly expressed in RC tissues and cells with a primary localization in the nucleus, while VEGFA was highly expressed. Overexpression of lncRNA IRAIN or knockdown of VEGFA inhibited cell proliferation and migration and induced the apoptosis of RC cells. Bioinformatics analysis indicated the presence of CpG islands in the VEGFA promoter region. Lack of methylation at specific sites in the VEGFA promoter region was detected through MSP assay. We found that lncRNA IRAIN was able to inhibit VEGFA expression through recruitment of Dnmt1, Dnmt3a, and Dnmt3b to the VEGFA promoter region. LncRNA IRAIN was also able to suppress RC tumor growth via repression of VEGFA in an in vivo mouse xenograft model. Conclusion: Our data shows that by downregulating VEGFA expression in RC, the lncRNA IRAIN has tumor-suppressive potential.
Collapse
Affiliation(s)
- Yang Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Qingyang Luo
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Zun Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yun Wang
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Chaoyang Zhu
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Tieqiang Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaodong Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Dulman RS, Wandling GM, Pandey SC. Epigenetic mechanisms underlying pathobiology of alcohol use disorder. CURRENT PATHOBIOLOGY REPORTS 2020; 8:61-73. [PMID: 33747641 DOI: 10.1007/s40139-020-00210-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Chronic alcohol use is a worldwide problem with multifaceted consequences including multiplying medical costs and sequelae, societal effects like drunk driving and assault, and lost economic productivity. These large-scale outcomes are driven by the consumption of ethanol, a small permeable molecule that has myriad effects in the human body, particularly in the liver and brain. In this review, we have summarized effects of acute and chronic alcohol consumption on epigenetic mechanisms that may drive pathobiology of Alcohol Use Disorder (AUD) while identifying areas of need for future research. Recent findings Epigenetics has emerged as an interesting field of biology at the intersection of genetics and the environment, and ethanol in particular has been identified as a potent modulator of the epigenome with various effects on DNA methylation, histone modifications, and non-coding RNAs. These changes alter chromatin dynamics and regulate gene expression that contribute to behavioral and physiological changes leading to the development of AUD psychopathology and cancer pathology. Summary Evidence and discussion presented here from preclinical results and available translational studies have increased our knowledge of the epigenetic effects of alcohol consumption. These studies have identified targets that can be used to develop better therapies to reduce chronic alcohol abuse and mitigate its societal burden and pathophysiology.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
28
|
The role and mechanisms of DNA methylation in the oocyte. Essays Biochem 2020; 63:691-705. [PMID: 31782490 PMCID: PMC6923320 DOI: 10.1042/ebc20190043] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Epigenetic information in the mammalian oocyte has the potential to be transmitted to the next generation and influence gene expression; this occurs naturally in the case of imprinted genes. Therefore, it is important to understand how epigenetic information is patterned during oocyte development and growth. Here, we review the current state of knowledge of de novo DNA methylation mechanisms in the oocyte: how a distinctive gene-body methylation pattern is created, and the extent to which the DNA methylation machinery reads chromatin states. Recent epigenomic studies building on advances in ultra-low input chromatin profiling methods, coupled with genetic studies, have started to allow a detailed interrogation of the interplay between DNA methylation establishment and chromatin states; however, a full mechanistic description awaits.
Collapse
|
29
|
Li Z, Ma Y, Wang G, Wang H, Dai Y, Zhu Y, Chen S, Zheng X, Sun F. Overexpression of human-derived DNMT3A induced intergenerational inheritance of DNA methylation and gene expression variations in rat brain and testis. Epigenetics 2020; 15:1107-1120. [PMID: 32338148 DOI: 10.1080/15592294.2020.1749962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In mammals, DNA methylation patterns are established by various types of DNA methyltransferases and can be stably passed on during cell division, thus creating a paradigm for epigenetic regulation that can mediate long-lasting changes in gene expression even when the initial triggering signal has disappeared. Although functional deficiency of DNMT3A, one of the methyltransferases, leads to abnormal DNA methylation patterns that result in developmental deficits in mammals, the impacts of its overexpression on tissue gene expression and DNA methylation patterns remain unclear. Here, our previously established hDNMT3A transgenic rat model and mRNA sequencing and bisulphite sequencing PCR were used to analyse the impact of hDNMT3A overexpression on tissue transcriptome and methylome, and whether the impact could be inherited intergenerationally was subsequently investigated. Our results revealed that the overexpression of hDNMT3A could induce notable gene expression variations in rat testis and brain. More importantly, 36.02% and 38.89% of these variations could be intergenerationally inherited to offspring without the transmission of the initial endogenic trigger in the brain and testis, respectively. Furthermore, we found that intergenerationally inherited DNA methylation variations in their promoters and exons could be the underlying mechanism. Compared with inheritable variations that were passively induced by environmental factors, these variations were actively induced by endogenous epigenetic modifiers. This study provided evidence for the epigenetic inheritance of endogenous factors that actively induce gene expression and DNA methylation variations; however, more studies are needed to determine the number of generations that these variations can be stably inherited.
Collapse
Affiliation(s)
- Zhenhua Li
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease , Shanghai, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences , Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences , Beijing, China
| | - Guishuan Wang
- Medical School, Institute of Reproductive Medicine, Nantong University , Nantong, Jiangsu, China
| | - Hanshu Wang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease , Shanghai, China
| | - Yubing Dai
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease , Shanghai, China
| | - Yu Zhu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease , Shanghai, China
| | - Shitao Chen
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease , Shanghai, China
| | - Xiaoguo Zheng
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease , Shanghai, China
| | - Fei Sun
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease , Shanghai, China.,Medical School, Institute of Reproductive Medicine, Nantong University , Nantong, Jiangsu, China
| |
Collapse
|
30
|
Bozack AK, Cardenas A, Geldhof J, Quamruzzaman Q, Rahman M, Mostofa G, Christiani DC, Kile ML. Cord blood DNA methylation of DNMT3A mediates the association between in utero arsenic exposure and birth outcomes: Results from a prospective birth cohort in Bangladesh. ENVIRONMENTAL RESEARCH 2020; 183:109134. [PMID: 32018205 PMCID: PMC7167334 DOI: 10.1016/j.envres.2020.109134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 06/05/2023]
Abstract
BACKGROUND Fetal epigenetic programming plays a critical role in development. DNA methyltransferase 3 alpha (DNMT3A), which is involved in de novo DNA methylation (DNAm), is a prime candidate gene as a mediator between prenatal exposures and birth outcomes. We evaluated the relationships between in utero arsenic (As) exposure, birth outcomes, and DNMT3A DNAm. METHODS In a prospective Bangladeshi birth cohort, cord blood DNAm of three DNMT3A CpGs was measured using bisulfite pyrosequencing. Maternal toenail As concentrations at birth were measured to estimate in utero exposure. Among vaginal births (N = 413), structural equation models (SEMs) were used to evaluate relationships between DNMT3A methylation, log2 (toenail As), birth weight, and gestational age. RESULTS In an adjusted SEM including birth weight and gestational age, maternal toenail As levels were associated with DNMT3A DNAm (B = 0.40; 95% CI: 0.15, 0.66) and gestational age (B = -0.19 weeks; 95% CI: 0.36, -0.03). DNMT3A DNAm was associated with gestational age (B = -0.10 weeks; 95% CI: 0.16, -0.04) and birth weight (B = -11.0 g; 95% CI: 21.5, 0.4). There was an indirect effect of As on gestational age mediated through DNMT3A DNAm (B = -0.04; 95% CI: 0.08, -0.01), and there were indirect effects of maternal toenail As levels on birth weight through pathways including gestational age (B = -14.4 g; 95% CI: 29.2, -1.9), DNMT3A DNAm and gestational age (B = -3.1 g; 95% CI: 6.6, -0.8), and maternal weight gain and gestational age (B = -5.1 g; 95% CI: 9.6, -1.5). The total effect of a doubling in maternal toenail As concentration is a decrease in gestational age of 2.1 days (95% CI: 0.9, 3.3) and a decrease in birth weight of 29 g (95% CI: 14, 46). CONCLUSIONS DNMT3A plays a critical role in fetal epigenetic programming. In utero arsenic exposure was associated with greater methylation of CpGs in DNMT3A which partially mediated associations between prenatal As exposure and birth outcomes. Additional studies are needed to verify this finding.
Collapse
Affiliation(s)
- Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th St., New York, NY, 10032, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 2121 Berkeley Way, Room 5302, Berkeley, CA, 94720, USA
| | - John Geldhof
- School of Social and Behavioral Health Sciences, College of Public Health and Human Sciences, Oregon State University, Waldo Hall 470, 2250 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Quazi Quamruzzaman
- Dhaka Community Hospital, 190 Wireless Railgate, Baro Moghbazar, Dhaka, 1217, Bangladesh
| | - Mahmuder Rahman
- Dhaka Community Hospital, 190 Wireless Railgate, Baro Moghbazar, Dhaka, 1217, Bangladesh
| | - Golam Mostofa
- Dhaka Community Hospital, 190 Wireless Railgate, Baro Moghbazar, Dhaka, 1217, Bangladesh
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA, 02115, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, 15 Milam Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|
31
|
Chen F, Fu Q, Pu L, Hou Z, Xu Z, Zhang P, Deng T, Pang C, Liang X, Lu Y, Zhang M. Maternal transcription profiles at different stages for the development of early embryo in buffalo. Reprod Domest Anim 2020; 55:503-514. [PMID: 31971628 DOI: 10.1111/rda.13644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
Maternal mRNAs deposited in the egg during oogenesis are critical during the development of early embryo, before the activation of the embryonic genome. However, there is little known about the dynamic expression of maternally expressed genes in mammals. In this study, we made buffalo parthenogenesis as our research model to analyse maternal transcription profiles of pre-implantation embryo in buffalo using RNA sequencing. In total, 3,567 unique genes were detected to be differentially expressed among all constant stages during early embryo development (FPKM > 0). Interestingly, a total of 10,442 new genes were discovered in this study, and gene ontology analysis of the new differentially expressed genes indicated that the new genes have a wide cellular localization and are involved in many molecular functions and biological processes. Moreover, we identified eight clusters that were only highly expressed in a particular developmental stage and enriched a number of GO terms and KEGG pathways that were related to specific stage. Furthermore, we identified 1,530 hub genes (or key members) from the maternally expressed gene networks, and these hub genes were involved in 11 stage-specific modules. After visualization using Cytoscape 3.2.1 software, we obtained complex interaction network of hub genes, indicating the highly efficient cooperation between genes during the development in buffalo embryos. Further research of these genes will greatly deepen our understanding of embryo development in buffalo. Collectively, this research lays the foundation for future studies on the maternal genome function, buffalo nuclear transfer and parthenogenetic embryonic stem cells.
Collapse
Affiliation(s)
- Fumei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Liping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Zhen Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Zhuangzhuang Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Pengfei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Tingxian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Chunying Pang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Xianwei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
32
|
PFA is superior to glyoxal in preserving oocyte, embryo, and stem cell proteins evidenced by super-resolution microscopical surveys of epitopes. J Assist Reprod Genet 2020; 37:369-384. [PMID: 31930433 DOI: 10.1007/s10815-019-01666-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Chemical fixation is a critical step to retaining cellular targets as naturally as possible. Recent developments in microscopy allow sophisticated detection and measuring techniques with which spatio-temporal molecular alterations are conceivable. In this study, we compare two members of aldehyde fixatives [i.e., glyoxal (Gly) and paraformaldehyde (PFA)] to determine whether Gly, a less toxic dialdehyde fixative that is considered to retain immunoreactivity could provide a successful and consistent cell fixation in favor of PFA in various cell preparations and types. METHODS We document the fixation competence of Gly and PFA side-by-side (with or without Triton X-100 permeabilization) in live- and fixed-cell preparations in mouse oocytes, embryos, and human somatic cells (human umbilical cord-derived mesenchymal stromal cells) using protein quantification by Western blot assay and super-resolution microscopy. RESULTS Although Gly seemed to act faster than PFA, catastrophic consequences were found not acceptable, especially in oocytes and embryos. Due to cell lysate and immunocytochemistry surveys, it was obvious that PFA is superior to Gly in retaining cellular proteins in situ with little/no background staining. In many samples, PFA revealed more reliable and consistent results regarding the protein quantity and cellular localization corresponding to previously defined patterns in the literature. CONCLUSION Although the use of Gly is beneficial as indicated by previous reports, we concluded that it does not meet the requirement for proper fixation, at least for the tested cell types and proteins. However, PFA alone with no addition of TX displayed a significant cytoplasmic loss by generating membrane blebs during fixation.
Collapse
|
33
|
Harris KD, Lloyd JPB, Domb K, Zilberman D, Zemach A. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. Epigenetics Chromatin 2019; 12:62. [PMID: 31601251 PMCID: PMC6786280 DOI: 10.1186/s13072-019-0307-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation of active genes, also known as gene body methylation, is found in many animal and plant genomes. Despite this, the transcriptional and developmental role of such methylation remains poorly understood. Here, we explore the dynamic range of DNA methylation in honey bee, a model organism for gene body methylation. RESULTS Our data show that CG methylation in gene bodies globally fluctuates during honey bee development. However, these changes cause no gene expression alterations. Intriguingly, despite the global alterations, tissue-specific CG methylation patterns of complete genes or exons are rare, implying robust maintenance of genic methylation during development. Additionally, we show that CG methylation maintenance fluctuates in somatic cells, while reaching maximum fidelity in sperm cells. Finally, unlike universally present CG methylation, we discovered non-CG methylation specifically in bee heads that resembles such methylation in mammalian brain tissue. CONCLUSIONS Based on these results, we propose that gene body CG methylation can oscillate during development if it is kept to a level adequate to preserve function. Additionally, our data suggest that heightened non-CG methylation is a conserved regulator of animal nervous systems.
Collapse
Affiliation(s)
- Keith D Harris
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - James P B Lloyd
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Katherine Domb
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Center, Norwich, UK.
| | - Assaf Zemach
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
34
|
Lin X, Pavani KC, Smits K, Deforce D, Heindryckx B, Van Soom A, Peelman L. Bta-miR-10b Secreted by Bovine Embryos Negatively Impacts Preimplantation Embryo Quality. Front Genet 2019; 10:757. [PMID: 31507632 PMCID: PMC6713719 DOI: 10.3389/fgene.2019.00757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
In a previous study, we found miR-10b to be more abundant in a conditioned culture medium of degenerate embryos compared to that of blastocysts. Here, we show that miR-10b mimics added to the culture medium can be taken up by embryos. This uptake results in an increase in embryonic cell apoptosis and aberrant expression of DNA methyltransferases (DNMTs). Using several algorithms, Homeobox A1 (HOXA1) was identified as one of the potential miR-10b target genes and dual-luciferase assay confirmed HOXA1 as a direct target of miR-10b. Microinjection of si-HOXA1 into embryos also resulted in an increase in embryonic cell apoptosis and downregulation of DNMTs. Cell progression analysis using Madin–Darby bovine kidney cells (MDBKs) showed that miR-10b overexpression and HOXA1 knockdown results in suppressed cell cycle progression and decreased cell viability. Overall, this work demonstrates that miR-10b negatively influences embryo quality and might do this through targeting HOXA1 and/or influencing DNA methylation.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Katrien Smits
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Franchi FF, Satrapa RA, Fontes PK, Santos PH, Razza EM, Emanuelli IP, Ereno RL, Mareco EA, Nogueira MFG, Barros CM, de Souza Castilho AC. Equine chorionic gonadotropin drives the transcriptional profile of immature cumulus-oocyte complexes and in vitro-produced blastocysts of superstimulated Nelore cows. Mol Reprod Dev 2019; 86:1639-1651. [PMID: 31389116 DOI: 10.1002/mrd.23251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/13/2019] [Indexed: 12/30/2022]
Abstract
Studies have shown that the use of equine chorionic gonadotropin (eCG), which binds both follicle stimulating hormone (FSH) and luteinizing hormone (LH) receptors, could modify the female reproductive tract. We, thus, aimed to quantify the messenger RNA (mRNA) abundance of genes related to cumulus-oocyte complexes (COCs) and embryo quality in Nelore cows (Bos taurus indicus) submitted to ovarian superstimulation using only FSH (FSH group; n = 10) or replacement of the last two doses of FSH by eCG (FSH/eCG group; n = 10). All animals were slaughtered and the ovarian antral follicles from both groups (10-14 mm in diameter) were aspirated for cumulus, oocyte and in vitro embryo production gene expression analysis. The relative mRNA abundance of 96 genes related to COCs development and embryo quality was measured by RT-qPCR. We found that oocytes are more affected by eCG use and that 35 genes involved in lipid metabolism, oxidative stress, transcriptional control, and cellular development were upregulated in the FSH/eCG group. In blastocysts, lipid metabolism seems to be the main pathway regulated by eCG use. We suggest that these multiple effects could be due to the ability of eCG to bind LHR and FSHR, which could activate multiple signal transduction pathways in the superstimulated ovary, further impacting the transcriptional profile of COCs and blastocysts.
Collapse
Affiliation(s)
- Fernanda Fagali Franchi
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Rafael Augusto Satrapa
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Patrícia Kubo Fontes
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Priscila Helena Santos
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Eduardo Montanari Razza
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Isabele Picada Emanuelli
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ronaldo Luiz Ereno
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Ciro Moraes Barros
- Departamento de Farmacologia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
36
|
Yu M, Li D, Cao W, Chen X, Du W. Effects of ten–eleven translocation 1 (Tet1) on DNA methylation and gene expression in chicken primordial germ cells. Reprod Fertil Dev 2019; 31:509-520. [DOI: 10.1071/rd18145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.
Collapse
|
37
|
Asenso J, Wang L, Du Y, Liu QH, Xu BJ, Guo MZ, Tang DQ. Advances in detection and quantification of methylcytosine and its derivatives. J Sep Sci 2018; 42:1105-1116. [PMID: 30575277 DOI: 10.1002/jssc.201801100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 11/08/2022]
Abstract
Methylation of the fifth carbon atom in cytosine is an epigenetic modification of deoxyribonucleic acid that plays important roles in numerous cellular processes and disease pathogenesis. Three additional states of cytosine, that is, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine, have been identified and associated with the diagnosis and/or prognosis of diseases. However, accurate measurement of those intermediates is a challenge since their global levels are relatively low. A number of innovative methods have been developed to detect and quantify these compounds in biological samples, such as blood, tissue and urine, etc. This review focuses on recent advancement in detection and quantification of four cytosine modifications, based on which, the development, diagnosis, and prognosis of diseases could be monitored through non-invasive procedures.
Collapse
Affiliation(s)
- James Asenso
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, P. R. China
| | - Yan Du
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Qing-Hua Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Bing-Ju Xu
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Meng-Zhe Guo
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Dao-Quan Tang
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| |
Collapse
|
38
|
Su T, Yang X, Deng JH, Huang QJ, Huang SC, Zhang YM, Zheng HM, Wang Y, Lu LL, Liu ZQ. Evodiamine, a Novel NOTCH3 Methylation Stimulator, Significantly Suppresses Lung Carcinogenesis in Vitro and in Vivo. Front Pharmacol 2018; 9:434. [PMID: 29765324 PMCID: PMC5938359 DOI: 10.3389/fphar.2018.00434] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO's anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO's anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment.
Collapse
Affiliation(s)
- Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Yang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Hua Deng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiu-Ju Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Su-Chao Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Min Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Ming Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
39
|
Gumus E, Sari I, Yilmaz M, Cetin A. Investigation of LAMTOR1 gene and protein expressions in germinal vesicle and metaphase II oocytes and embryos from 1-cell to blastocyst stage in a mouse model. Gene Expr Patterns 2018; 28:72-76. [PMID: 29510224 DOI: 10.1016/j.gep.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 11/15/2022]
Abstract
Improving the success of in vitro fertilization (IVF) and infertility treatment depend on understanding basic cellular and molecular mechanisms of human preimplantation development. Pre-implantation mouse embryo model is an ideal empiric system to understand these mechanisms. This study was aimed to investigate the gene and protein expressions of LAMTOR1 in mouse oocytes and pre-implantation embryos at different developmental stages. The findings demonstrate that LAMTOR1 was detected in the oocytes and in subsequent all stages of embryo development. The expression was increased progressively from MII-stage oocyte to morula stage embryo (p < 0.05), highest expression was identified in morula stage (p < 0.05), and decreased in blastocyst stage (p < 0.05). Immunofluorescence analysis showed outer and inner nuclear membranes and cytoplasmic subcellular localizations of LAMTOR1 in oocytes and pre-implantation embryos. The LAMTOR1 immunoexpression was gradually increased from MII oocyte and the highest level was detected at the morula stage of embryo development (p < 0.05). The lowest LAMTOR1 immunoexpression was detected at GV-stage oocyte (p < 0.05) and no clear difference in M2 oocyte, I-cell, 2-cell, and blastocyst stage embryos. In conclusion, both the mRNA and protein levels of LAMTOR1 increase progressively in cleavage-stage mouse embryos. LAMTOR1 has a significant higher embryonic expression at 2-cell to morula stage. LAMTOR1 may play a role in the oogenesis process and probably required for further developmental stages and it may play a possible role in the process of compaction and cavitation in mice. Therefore, further studies are needed to explore the LAMTOR1 expression especially in the different stages of embryonal development.
Collapse
Affiliation(s)
- Erkan Gumus
- Department of Histology and Embryology, Cumhuriyet University Faculty of Medicine, 58140, Sivas, Turkey.
| | - Ismail Sari
- Department of Biochemistry, Nigde Omer Halis Demir University Faculty of Medicine, 51240, Nigde, Turkey
| | | | - Ali Cetin
- Department of Obstetrics and Gynecology, Cumhuriyet University Faculty of Medicine, 58140, Sivas, Turkey
| |
Collapse
|