1
|
Abuelazm M, Ali S, AlBarakat MM, Mahmoud A, Tanashat M, Suilik HA, Abdelazeem B, Brašić JR. Istaroxime for Patients with Acute Heart Failure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diseases 2023; 11:183. [PMID: 38131989 PMCID: PMC10743119 DOI: 10.3390/diseases11040183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Istaroxime, an intravenous inotropic agent with a dual mechanism-increasing both cardiomyocyte contractility and relaxation-is a novel treatment for acute heart failure (AHF), the leading cause of morbidity and mortality in heart failure. We conducted a systematic review and meta-analysis that synthesized randomized controlled trials (RCTs), which were retrieved by systematically searching PubMed, Web of Science, SCOPUS, and Cochrane until 24 April 2023. We used a fixed-effect or random-effect model-according to heterogeneity-to pool dichotomous data using the risk ratio (RR) and continuous data using the mean difference (MD), with a 95% confidence interval (CI). We included three RCTs with a total of 300 patients. Istaroxime was significantly associated with an increased left ventricular ejection fraction (mL) (MD: 1.06, 95% CI: 0.29, 1.82; p = 0.007), stroke volume index (MD: 3.04, 95% CI: 2.41, 3.67; p = 0.00001), and cardiac index (L/min/m2) (MD: 0.18, 95% CI: 0.11, 025; p = 0.00001). Also, istaroxime was significantly associated with a decreased E/A ratio (MD: -0.39, 95% CI: -0.58, -0.19; p = 0.0001) and pulmonary artery systolic pressure (mmHg) (MD: 2.30, 95% CI: 3.20, 1.40; p = 0.00001). Istaroxime was significantly associated with increased systolic blood pressure (mmHg) (MD: 5.32, 95% CI: 2.28, 8.37; p = 0.0006) and decreased heart rate (bpm) (MD: -3.05, 95% CI: -5.27, -0.82; p = 0.007). Since istaroxime improved hemodynamic and echocardiographic parameters, it constitutes a promising strategy for AHF management. However, the current literature is limited to a small number of RCTs, warranting further large-scale phase III trials before clinical endorsement.
Collapse
Affiliation(s)
| | - Shafaqat Ali
- Department of Internal Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA;
| | - Majd M. AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | | | | | | | - Basel Abdelazeem
- Division of Cardiology, Department of Medicine, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - James Robert Brašić
- Section of High-Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry, New York City Health and Hospitals/Bellevue, New York, NY 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
2
|
Jaiswal V, Agrawal V, Khulbe Y, Hanif M, Huang H, Hameed M, Shrestha AB, Perone F, Parikh C, Gomez SI, Paudel K, Zacks J, Grubb KJ, De Rosa S, Gimelli A. Cardiac amyloidosis and aortic stenosis: a state-of-the-art review. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead106. [PMID: 37941729 PMCID: PMC10630099 DOI: 10.1093/ehjopen/oead106] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
Cardiac amyloidosis is caused by the extracellular deposition of amyloid fibrils in the heart, involving not only the myocardium but also any cardiovascular structure. Indeed, this progressive infiltrative disease also involves the cardiac valves and, specifically, shows a high prevalence with aortic stenosis. Misfolded protein infiltration in the aortic valve leads to tissue damage resulting in the onset or worsening of valve stenosis. Transthyretin cardiac amyloidosis and aortic stenosis coexist in patients > 65 years in about 4-16% of cases, especially in those undergoing transcatheter aortic valve replacement. Diagnostic workup for cardiac amyloidosis in patients with aortic stenosis is based on a multi-parametric approach considering clinical assessment, electrocardiogram, haematologic tests, basic and advanced echocardiography, cardiac magnetic resonance, and technetium labelled cardiac scintigraphy like technetium-99 m (99mTc)-pyrophosphate, 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid, and 99mTc-hydroxymethylene diphosphonate. However, a biopsy is the traditional gold standard for diagnosis. The prognosis of patients with coexisting cardiac amyloidosis and aortic stenosis is still under evaluation. The combination of these two pathologies worsens the prognosis. Regarding treatment, mortality is reduced in patients with cardiac amyloidosis and severe aortic stenosis after undergoing transcatheter aortic valve replacement. Further studies are needed to confirm these findings and to understand whether the diagnosis of cardiac amyloidosis could affect therapeutic strategies. The aim of this review is to critically expose the current state-of-art regarding the association of cardiac amyloidosis with aortic stenosis, from pathophysiology to treatment.
Collapse
Affiliation(s)
- Vikash Jaiswal
- Department of Cardiovascular Research, Larkin Community Hospital, South Miami, FL, USA
| | - Vibhor Agrawal
- Department of Medicine, King George’s Medical University, Lucknow, India
| | - Yashita Khulbe
- Department of Medicine, King George’s Medical University, Lucknow, India
| | - Muhammad Hanif
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Helen Huang
- University of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Maha Hameed
- Department of Internal Medicine, Florida State University, Sarasota Memorial Hospital, Sarasota, FL, USA
| | - Abhigan Babu Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh
| | - Francesco Perone
- Cardiac Rehabilitation Unit, Rehabilitation Clinic ‘Villa delle Magnolie’,81020 Castel Morrone, Caserta, Italy
| | | | - Sabas Ivan Gomez
- Department of Cardiovascular Research, Larkin Community Hospital, South Miami, FL, USA
| | - Kusum Paudel
- Department of Medicine, Kathmandu University School of Medical Science, Dhulikhel, Kathmandu 45209, Nepal
| | - Jerome Zacks
- Department of Cardiology, The Icahn Medical School at Mount Sinai, NewYork 10128, USA
| | - Kendra J Grubb
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Alessia Gimelli
- Department of Imaging, Fondazione Toscana/CNR Gabriele Monasterio, Pisa 56124, Italy
| |
Collapse
|
3
|
Newbury D, Frishman W. Istaroxime: A Novel Therapeutic Agent for Acute Heart Failure. Cardiol Rev 2023:00045415-990000000-00145. [PMID: 37811998 DOI: 10.1097/crd.0000000000000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Acute decompensated heart failure (ADHF) is a multifactorial process that is associated with high morbidity and mortality. Treatment with inotropes can rapidly improve hemodynamic status; however, their use has been associated with increased mortality and incidence of arrhythmias. Istaroxime is a first-in-class intravenous agent currently undergoing clinical trials for acute heart failure. It has the unique mechanism of action of both Na+/K+ ATPase inhibition and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a stimulation. Notably, its action on sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a improves calcium handling, which is known to be abnormal in heart failure. Clinical trials have shown that istaroxime has beneficial hemodynamic effects; in particular, its ability to increase systolic blood pressure without causing significant increases in heart rate or clinically significant arrhythmias differentiates it from inotropes currently utilized for ADHF treatment, such as milrinone. While initial studies are encouraging, additional trials are needed to assess outcomes and to compare their performance to standard inotropes in patients hospitalized with ADHF. This article will review the relevant preclinical and clinical trials for istaroxime, as well as the relevant pharmacology.
Collapse
Affiliation(s)
- Danielle Newbury
- From the Department of Medicine, New York-Presbyterian/Weill Cornell Medical Center, New York, NY
| | - William Frishman
- Departments of Medicine and Cardiology, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
4
|
Kooiker KB, Mohran S, Turner KL, Ma W, Martinson A, Flint G, Qi L, Gao C, Zheng Y, McMillen TS, Mandrycky C, Mahoney-Schaefer M, Freeman JC, Costales Arenas EG, Tu AY, Irving TC, Geeves MA, Tanner BC, Regnier M, Davis J, Moussavi-Harami F. Danicamtiv Increases Myosin Recruitment and Alters Cross-Bridge Cycling in Cardiac Muscle. Circ Res 2023; 133:430-443. [PMID: 37470183 PMCID: PMC10434831 DOI: 10.1161/circresaha.123.322629] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known that danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. METHODS Permeabilized porcine cardiac tissue and myofibrils were used for X-ray diffraction and mechanical measurements. A mouse model of genetic dilated cardiomyopathy was used to evaluate the ability of danicamtiv to correct the contractile deficit. RESULTS Danicamtiv increased force and calcium sensitivity via increasing the number of myosins in the ON state and slowing cross-bridge turnover. Our detailed analysis showed that inhibition of ADP release results in decreased cross-bridge turnover with cross bridges staying attached longer and prolonging myofibril relaxation. Danicamtiv corrected decreased calcium sensitivity in demembranated tissue, abnormal twitch magnitude and kinetics in intact cardiac tissue, and reduced ejection fraction in the whole organ. CONCLUSIONS As demonstrated by the detailed studies of Danicamtiv, increasing myosin recruitment and altering cross-bridge cycling are 2 mechanisms to increase force and calcium sensitivity in cardiac muscle. Myosin activators such as Danicamtiv can treat the causative hypocontractile phenotype in genetic dilated cardiomyopathy.
Collapse
Affiliation(s)
- Kristina B. Kooiker
- Division of Cardiology, Medicine (K.B.K., M.M.-S., J.C.F., E.G.C.A., F.M.-H.), University of Washington
- Center of Translational Muscle Research (K.B.K., S.M., G.F., T.S.M., C.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Center for Cardiovascular Biology (K.B.K., A.M., M.R., J.D., F.M.-H.), University of Washington
- Institute for Stem Cell & Regenerative Medicine (K.B.K., S.M., A.M., T.S.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
| | - Saffie Mohran
- Center of Translational Muscle Research (K.B.K., S.M., G.F., T.S.M., C.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Institute for Stem Cell & Regenerative Medicine (K.B.K., S.M., A.M., T.S.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Department of Bioengineering (S.M., A.M., G.F., C.M., A.-Y.T., M.R., J.D.), University of Washington
| | - Kyrah L. Turner
- School of Molecular Biosciences, Washington State University (K.L.T.)
| | - Weikang Ma
- Department of Biology, Illinois Institute of Technology, Chicago (W.M., L.Q., T.C.I.)
| | - Amy Martinson
- Center for Cardiovascular Biology (K.B.K., A.M., M.R., J.D., F.M.-H.), University of Washington
- Department of Laboratory Medicine and Pathology (A.M., J.D., F.M.-H.), University of Washington
- Institute for Stem Cell & Regenerative Medicine (K.B.K., S.M., A.M., T.S.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Department of Bioengineering (S.M., A.M., G.F., C.M., A.-Y.T., M.R., J.D.), University of Washington
| | - Galina Flint
- Center of Translational Muscle Research (K.B.K., S.M., G.F., T.S.M., C.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Department of Bioengineering (S.M., A.M., G.F., C.M., A.-Y.T., M.R., J.D.), University of Washington
| | - Lin Qi
- Department of Biology, Illinois Institute of Technology, Chicago (W.M., L.Q., T.C.I.)
| | - Chengqian Gao
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China (C.G., Y.Z.)
| | - Yahan Zheng
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China (C.G., Y.Z.)
| | - Timothy S. McMillen
- Center of Translational Muscle Research (K.B.K., S.M., G.F., T.S.M., C.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Institute for Stem Cell & Regenerative Medicine (K.B.K., S.M., A.M., T.S.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Department of Anesthesiology and Pain Medicine (T.S.M.), University of Washington
| | - Christian Mandrycky
- Center of Translational Muscle Research (K.B.K., S.M., G.F., T.S.M., C.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Department of Bioengineering (S.M., A.M., G.F., C.M., A.-Y.T., M.R., J.D.), University of Washington
| | - Max Mahoney-Schaefer
- Division of Cardiology, Medicine (K.B.K., M.M.-S., J.C.F., E.G.C.A., F.M.-H.), University of Washington
| | - Jeremy C. Freeman
- Division of Cardiology, Medicine (K.B.K., M.M.-S., J.C.F., E.G.C.A., F.M.-H.), University of Washington
| | | | - An-Yu Tu
- Center of Translational Muscle Research (K.B.K., S.M., G.F., T.S.M., C.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Institute for Stem Cell & Regenerative Medicine (K.B.K., S.M., A.M., T.S.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Department of Bioengineering (S.M., A.M., G.F., C.M., A.-Y.T., M.R., J.D.), University of Washington
| | - Thomas C. Irving
- Department of Biology, Illinois Institute of Technology, Chicago (W.M., L.Q., T.C.I.)
| | - Michael A. Geeves
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom (M.A.G.)
| | - Bertrand C.W. Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University (B.C.W.T.)
| | - Michael Regnier
- Center of Translational Muscle Research (K.B.K., S.M., G.F., T.S.M., C.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Center for Cardiovascular Biology (K.B.K., A.M., M.R., J.D., F.M.-H.), University of Washington
- Institute for Stem Cell & Regenerative Medicine (K.B.K., S.M., A.M., T.S.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Department of Bioengineering (S.M., A.M., G.F., C.M., A.-Y.T., M.R., J.D.), University of Washington
| | - Jennifer Davis
- Center of Translational Muscle Research (K.B.K., S.M., G.F., T.S.M., C.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Center for Cardiovascular Biology (K.B.K., A.M., M.R., J.D., F.M.-H.), University of Washington
- Department of Laboratory Medicine and Pathology (A.M., J.D., F.M.-H.), University of Washington
- Institute for Stem Cell & Regenerative Medicine (K.B.K., S.M., A.M., T.S.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Department of Bioengineering (S.M., A.M., G.F., C.M., A.-Y.T., M.R., J.D.), University of Washington
| | - Farid Moussavi-Harami
- Division of Cardiology, Medicine (K.B.K., M.M.-S., J.C.F., E.G.C.A., F.M.-H.), University of Washington
- Center of Translational Muscle Research (K.B.K., S.M., G.F., T.S.M., C.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
- Center for Cardiovascular Biology (K.B.K., A.M., M.R., J.D., F.M.-H.), University of Washington
- Department of Laboratory Medicine and Pathology (A.M., J.D., F.M.-H.), University of Washington
- Institute for Stem Cell & Regenerative Medicine (K.B.K., S.M., A.M., T.S.M., A.-Y.T., M.R., J.D., F.M.-H.), University of Washington
| |
Collapse
|
5
|
Khalid Khan S, Rawat A, Khan Z, Reyaz I, Kumar V, Batool S, Yadav R, Hirani S. Safety and Efficacy of Istaroxime in Patients With Acute Heart Failure: A Meta-Analysis of Randomized Controlled Trials. Cureus 2023; 15:e41084. [PMID: 37519574 PMCID: PMC10377750 DOI: 10.7759/cureus.41084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The aim of this study was to assess the efficacy and safety of istaroxime in patients with heart failure. Following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines, a search was conducted on the EMBASE and Medline databases to identify articles related to the safety and efficacy of istaroxime in patients with heart failure. The search covered the period from inception to May 31st, 2023, without any restrictions on the year of publication. The search strategy utilized relevant terms such as "istaroxime," "heart failure", "efficacy," and other related terms, along with their corresponding Medical Subject Headings (MeSH) terms. The outcomes assessed in this meta-analysis included the change in left ventricular ejection fraction (LVEF), E to A ratio (a marker of left ventricle function), cardiac index in L/min/m2, systolic blood pressure (SBP) in mmHg, left ventricular end-systolic volume (LVESV) in ml, and left ventricular end-diastolic volume (LVDSV) in ml. For safety analysis, gastrointestinal events and cardiovascular events were assessed. A total of three randomized controlled trials (RCTs) were included in this meta-analysis encompassing 211 patients with heart failure. Pooled analysis showed that istaroxime was effective in increasing LVEF (MD: 1.26, 95% CI: 0.91 to 1.62, p-value: 0.001), reducing E to A ratio (MD: -0.39, 95% CI: -0.60 to -0.19, p-value: 0.001), increasing cardiac index (MD: 0.22, 95% CI: 0.18 to 0.25, p-value: 0.001), reducing LVESV (MD: -11.84, 95% CI: -13.91 to -9.78, p-value: 0.001), reducing LVEDV (MD: -12.25, 95% CI: -14.63 to -9.87, p-value: 0.001) and increasing SBP (MD: 8.41, 95% CI: 5.23 to 11.60, p-value: 0.001) compared to the placebo group. However, risk of gastrointestinal events was significantly higher in patients receiving istaroxime compared to the placebo group (RR: 2.64, 95% CI: 1.53 to 4.57, p-value: 0.0005). These findings support the enhancement of heart function with istaroxime administration, aligning with previous clinical and experimental evidence.
Collapse
Affiliation(s)
| | - Anurag Rawat
- Interventional Cardiology, Himalayan Institute of Medical Sciences, Dehradun, IND
| | - Zarghuna Khan
- Internal Medicine, Rehman Medical Institute, Peshawar, PAK
| | - Ibrahim Reyaz
- Internal Medicine, Christian Medical College and Hospital Ludhiana, Punjab, Ludhiana, IND
| | - Vikash Kumar
- Medicine, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, PAK
| | - Saima Batool
- Internal Medicine, Hameed Latif Hospital, Lahore, PAK
| | | | | |
Collapse
|
6
|
Kooiker KB, Mohran S, Turner KL, Ma W, Flint G, Qi L, Gao C, Zheng Y, McMillen TS, Mandrycky C, Martinson A, Mahoney-Schaefer M, Freeman JC, Costales Arenas EG, Tu AY, Irving TC, Geeves MA, Tanner BCW, Regnier M, Davis J, Moussavi-Harami F. Danicamtiv increases myosin recruitment and alters the chemomechanical cross bridge cycle in cardiac muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526380. [PMID: 36778318 PMCID: PMC9915609 DOI: 10.1101/2023.01.31.526380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Detailed mechanism of action of these agents can help predict potential unwanted affects and identify patient populations that can benefit most from them. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. Using porcine cardiac tissue and myofibrils we demonstrate that Danicamtiv increases force and calcium sensitivity via increasing the number of myosin in the "on" state and slowing cross bridge turnover. Our detailed analysis shows that inhibition of ADP release results in decreased cross bridge turnover with cross bridges staying on longer and prolonging myofibril relaxation. Using a mouse model of genetic dilated cardiomyopathy, we demonstrated that Danicamtiv corrected calcium sensitivity in demembranated and abnormal twitch magnitude and kinetics in intact cardiac tissue. Significance Statement Directly augmenting sarcomere function has potential to overcome limitations of currently used inotropic agents to improve cardiac contractility. Myosin modulation is a novel mechanism for increased contraction in cardiomyopathies. Danicamtiv is a myosin activator that is currently under investigation for use in cardiomyopathy patients. Our study is the first detailed mechanism of how Danicamtiv increases force and alters kinetics of cardiac activation and relaxation. This new understanding of the mechanism of action of Danicamtiv can be used to help identify patients that could benefit most from this treatment.
Collapse
|
7
|
Nakanishi T, Oyama K, Tanaka H, Kobirumaki-Shimozawa F, Ishii S, Terui T, Ishiwata S, Fukuda N. Effects of omecamtiv mecarbil on the contractile properties of skinned porcine left atrial and ventricular muscles. Front Physiol 2022; 13:947206. [PMID: 36082222 PMCID: PMC9445838 DOI: 10.3389/fphys.2022.947206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Omecamtiv mecarbil (OM) is a novel inotropic agent for heart failure with systolic dysfunction. OM prolongs the actomyosin attachment duration, which enhances thin filament cooperative activation and accordingly promotes the binding of neighboring myosin to actin. In the present study, we investigated the effects of OM on the steady-state contractile properties in skinned porcine left ventricular (PLV) and atrial (PLA) muscles. OM increased Ca2+ sensitivity in a concentration-dependent manner in PLV, by left shifting the mid-point (pCa50) of the force-pCa curve (ΔpCa50) by ∼0.16 and ∼0.33 pCa units at 0.5 and 1.0 μM, respectively. The Ca2+-sensitizing effect was likewise observed in PLA, but less pronounced with ΔpCa50 values of ∼0.08 and ∼0.22 pCa units at 0.5 and 1.0 μM, respectively. The Ca2+-sensitizing effect of OM (1.0 μM) was attenuated under enhanced thin filament cooperative activation in both PLV and PLA; this attenuation occurred directly via treatment with fast skeletal troponin (ΔpCa50: ∼0.16 and ∼0.10 pCa units in PLV and PLA, respectively) and indirectly by increasing the number of strongly bound cross-bridges in the presence of 3 mM MgADP (ΔpCa50: ∼0.21 and ∼0.08 pCa units in PLV and PLA, respectively). It is likely that this attenuation of the Ca2+-sensitizing effect of OM is due to a decrease in the number of “recruitable” cross-bridges that can potentially produce active force. When cross-bridge detachment was accelerated in the presence of 20 mM inorganic phosphate, the Ca2+-sensitizing effect of OM (1.0 μM) was markedly decreased in both types of preparations (ΔpCa50: ∼0.09 and ∼0.03 pCa units in PLV and PLA, respectively). The present findings suggest that the positive inotropy of OM is more markedly exerted in the ventricle than in the atrium, which results from the strongly bound cross-bridge-dependent allosteric activation of thin filaments.
Collapse
Affiliation(s)
- Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
| | - Hiroyuki Tanaka
- Laboratory of Marine Biotechnology and Microbiology, Hokkaido University, Hakodate, Japan
| | | | - Shuya Ishii
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- *Correspondence: Norio Fukuda,
| |
Collapse
|
8
|
Wu SN, Tsai MS, Huang CH, Chen WJ. Omecamtiv mecarbil treatment improves post-resuscitation cardiac function and neurological outcome in a rat model. PLoS One 2022; 17:e0264165. [PMID: 35176110 PMCID: PMC8853579 DOI: 10.1371/journal.pone.0264165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Myocardial dysfunction is a major cause of poor outcomes in the post-cardiac arrest period. Omecamtiv mecarbil (OM) is a selective small molecule activator of cardiac myosin that prolongs myocardial systole and increases stroke volume without apparent effects on myocardial oxygen demand. OM administration is safe and improves cardiac function in patients with acute heart failure. Whether OM improves post-resuscitation myocardial dysfunction remains unclear. This study investigated the effect of OM treatment on post-resuscitation myocardial dysfunction and outcomes. Methods and results Adult male rats were resuscitated after 9.5 min of asphyxia-induced cardiac arrest. OM and normal saline was continuously intravenously infused after return of spontaneous circulation (ROSC) at 0.25 mg/kg/h for 4 h in the experimental group and control group, respectively (n = 20 in each group). Hemodynamic parameters were measured hourly and monitored for 4 h after cardiac arrest. Recovery of neurological function was evaluated by neurological functioning scores (0–12; favorable: 11–12) for rats 72 h after cardiac arrest. OM treatment prolonged left ventricular ejection time and improved post-resuscitation cardiac output. Post-resuscitation heart rate and left ventricular systolic function (dp/dt40) were not different between groups. Kaplan-Meier analysis showed non-statistically higher 72-h survival in the OM group (72.2% [13/18] and 58.8% [10/17], p = 0.386). The OM group had a higher chance of having favorable neurological outcomes in surviving rats 72 h after cardiac arrest (84.6% [11/13] vs. 40% [4/10], p = 0.026). The percentage of damaged neurons was lower in the OM group in a histology study at 72 h after cardiac arrest (55.5±2.3% vs. 76.2±10.2%, p = 0.004). Conclusions OM treatment improved post-resuscitation myocardial dysfunction and neurological outcome in an animal model. These findings support further pre-clinical studies to improve outcomes in post-cardiac arrest care.
Collapse
Affiliation(s)
- Shih-Ni Wu
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | - Min-Shan Tsai
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| | - Chien-Hua Huang
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
- * E-mail:
| | - Wen-Jone Chen
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Novel therapies in inherited cardiomyopathies. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Lookin O, Kuznetsov D, Protsenko Y. Omecamtiv mecarbil attenuates length-tension relationship in healthy rat myocardium and preserves it in monocrotaline-induced pulmonary heart failure. Clin Exp Pharmacol Physiol 2021; 49:84-93. [PMID: 34459025 DOI: 10.1111/1440-1681.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023]
Abstract
The cardiac-specific myosin activator, omecamtiv mecarbil (OM), is an effective inotrope for treating heart failure but its effects on active force and Ca2+ kinetics in healthy and diseased myocardium remain poorly studied. We tested the effect of two concentrations of OM (0.2 and 1 µmol/L in saline) on isometric contraction and Ca-transient (CaT) in right ventricular trabeculae of healthy rats (CONT, n = 8) and rats with monocrotaline-induced pulmonary heart failure (MCT, n = 8). The contractions were obtained under preload of 75%-100% of optimal length (tension-length relationship). The 0.2 µmol/L OM did not affect the diastolic level, amplitude, or kinetics of isometric contraction and CaT, irrespective of the group of rats or preload. The 1 µmol/L OM significantly suppressed active tension-length relationships in CONT but not in MCT, while leading in both groups to a significantly prolonged relaxation. CaT time-to-peak was unaffected in CONT and MCT, but CaT decay was slightly accelerated in its early phase and considerably prolonged in its late phase to a similar extent in both groups. We conclude that the substantial prolongation of CaT decay is due to enhanced Ca2+ utilisation by troponin C mediated by the direct effect of OM on the cooperative activation of myofilaments. The lack of beneficial effect of OM in the healthy rat myocardium may be due to a relatively high level of activating Ca2+ in cells with normal Ca2+ handling, whereas the preservation of the tension-length relationship in the failing heart may relate to the diminished Ca2+ levels of sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Daniil Kuznetsov
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Yuri Protsenko
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| |
Collapse
|
11
|
Tora G, Jiang J, Bostwick JS, Gargalovic PS, Onorato JM, Luk CE, Generaux C, Xu C, Galella MA, Wang T, He Y, Wexler RR, Finlay HJ. Identification of 6-hydroxy-5-phenyl sulfonylpyrimidin-4(1H)-one APJ receptor agonists. Bioorg Med Chem Lett 2021; 50:128325. [PMID: 34403724 DOI: 10.1016/j.bmcl.2021.128325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) treatment remains a critical unmet medical need. Studies in normal healthy volunteers and HF patients have shown that [Pyr1]apelin-13, the endogenous ligand for the APJ receptor, improves cardiac function. However, the short half-life of [Pyr1]apelin-13 and the need for intravenous administration have limited the therapeutic potential for chronic use. We sought to identify potent, small-molecule APJ agonists with improved pharmaceutical properties to enable oral dosing in clinical studies. In this manuscript, we describe the identification of a series of pyrimidinone sulfones as a structurally differentiated series to the clinical lead (compound 1). Optimization of the sulfone series for potency, metabolic stability and oral bioavailability led to the identification of compound 22, which showed comparable APJ potency to [Pyr1]apelin-13 and exhibited an acceptable pharmacokinetic profile to advance to the acute hemodynamic rat model.
Collapse
Affiliation(s)
- George Tora
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Ji Jiang
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States.
| | - Jeffrey S Bostwick
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Peter S Gargalovic
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Joelle M Onorato
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Chiuwa E Luk
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Claudia Generaux
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Carrie Xu
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Michael A Galella
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Tao Wang
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Yan He
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Ruth R Wexler
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| | - Heather J Finlay
- Department of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, PO Box 5400, Princeton, NJ 08543-5400, United States
| |
Collapse
|
12
|
El Oumeiri B, van de Borne P, Hubesch G, Herpain A, Annoni F, Jespers P, Stefanidis C, Mc Entee K, Vanden Eynden F. The myosin activator omecamtiv mecarbil improves wall stress in a rat model of chronic aortic regurgitation. Physiol Rep 2021; 9:e14988. [PMID: 34405966 PMCID: PMC8371349 DOI: 10.14814/phy2.14988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
In patients with chronic aortic regurgitation (AR), excessive preload and afterload increase left ventricle wall stress, leading to left ventricular systolic dysfunction. Thus, the objective of the present study was to evaluate the effects of the myosin activator omecamtiv mecarbil (OM) on left ventricle wall stress in an experimental rat model of severe chronic AR. Forty adult male Wistar rats were randomized into two experimental groups: induction of AR (acute phase) by retrograde puncture (n = 34) or a sham intervention (n = 6). Rats that survived the acute phase (n = 18) were randomized into an OM group (n = 8) or a placebo group (n = 10). Equal volumes of OM (1.2 mg/kg/h) or placebo (0.9% NaCl) were continuously infused into the femoral vein over 30 min. OM significantly decreased end-systolic and end-diastolic and maximum wall stress in this experimental rat model of chronic severe AR (p < 0.001) and increased systolic performance assessed by fractional shortening and left ventricle end-systolic diameter; both p < 0.05). These effects were correlated with decreased indices of global cardiac function (cardiac output and stroke volume; p < 0.05) but were not inferior to baseline pump indices. Infusion with placebo did not affect global cardiac function but decreased end-systolic wall stress (p < 0.05) and increased systolic performance (all p < 0.001). In the sham-operated (control) group, OM decreased diastolic wall stress (p < 0.05). Based on these results, OM had a favorable effect on left ventricle wall stress in an experimental rat model of severe chronic AR.
Collapse
Affiliation(s)
- Bachar El Oumeiri
- Department of Cardiac SurgeryULB Erasme University HospitalBrusselsBelgium
| | | | | | - Antoine Herpain
- Department of Intensive CareULB Erasme University HospitalBrusselsBelgium
| | - Filippo Annoni
- Department of Intensive CareULB Erasme University HospitalBrusselsBelgium
| | | | | | | | | |
Collapse
|
13
|
Elsherbini H, Soliman O, Zijderhand C, Lenzen M, Hoeks SE, Kaddoura R, Izham M, Alkhulaifi A, Omar AS, Caliskan K. Intermittent levosimendan infusion in ambulatory patients with end-stage heart failure: a systematic review and meta-analysis of 984 patients. Heart Fail Rev 2021; 27:493-505. [PMID: 33839989 PMCID: PMC8898255 DOI: 10.1007/s10741-021-10101-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
We sought to synthesize the available evidence regarding safety and efficacy of intermittent levosimendan (LEVO) infusions in ambulatory patients with end-stage heart failure (HF). Safety and efficacy of ambulatory intermittent LEVO infusion in patients with end-stage HF are yet not established. We systematically searched MEDLINE, EMBASE, SCOPUS, Web of Science, and Cochrane databases, from inception to January 30, 2021 for studies reporting outcome of adult ambulatory patients with end-stage HF treated with intermittent LEVO infusion. Fifteen studies (8 randomized and 7 observational) comprised 984 patients (LEVO [N = 727] and controls [N = 257]) met the inclusion criteria. LEVO was associated with improved New York Heart Association (NYHA) functional class (weighted mean difference [WMD] −1.04, 95%CI: −1.70 to −0.38, p < 0.001, 5 studies, I2 = 93%), improved left ventricular (LV) ejection fraction (WMD 4.0%, 95%CI: 2.8% to 5.3%, p < 0.001, 6 studies, I2 = 9%), and reduced BNP levels (WMD −549 pg/mL, 95%CI −866 to −233, p < 0001, 3 studies, I2 = 66%). All-cause death was not different (RR 0.65, 95%CI: 0.38 to 1.093, p = 0.10, 6 studies, I2 = 0), but cardiovascular death was lower on LEVO (RR 0.34, 95%CI: 0.13 to 0.87, p = 0.02, 3 studies, I2 = 0) compared to controls. Furthermore, health-related quality of life (HRQoL) was improved alongside with reduced LV size following LEVO infusions. Major adverse events were not different between LEVO and placebo. In conclusion, intermittent LEVO infusions in ambulatory patients with end-stage HF is associated with less frequent cardiovascular death alongside with improved NYHA class, quality of life, BNP levels, and LV function. However, the current evidence is limited by heterogeneous and relatively small studies.
Collapse
Affiliation(s)
- Hagar Elsherbini
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Netherlands.,Utrecht University of Applied Sciences, Utrecht, Netherlands
| | - Osama Soliman
- Department of Cardiology, National University of Ireland, Galway, Ireland.
| | - Casper Zijderhand
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Mattie Lenzen
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Sanne E Hoeks
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Rasha Kaddoura
- Department of Clinical Pharmacy, Hamad Medical Corporation, Doha, Qatar
| | - Mohamed Izham
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Abdulaziz Alkhulaifi
- Department of Cardiothoracic Surgery/Cardiac Anaesthesia & ICU, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Amr S Omar
- Department of Cardiothoracic Surgery/Cardiac Anaesthesia & ICU, Heart Hospital, Hamad Medical Corporation, Doha, Qatar.,Department of Critical Care Medicine, Beni Suef University, Beni Suef, Egypt.,Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Kadir Caliskan
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Netherlands.
| |
Collapse
|
14
|
Ali A, Abdelmaseih R, Thakker R, Faluk M, Hasan S. Cardiac myosin activation in the treatment of congestive heart failure: New therapeutic options and review of literature. Heart Views 2021; 22:275-279. [PMID: 35330650 PMCID: PMC8939388 DOI: 10.4103/heartviews.heartviews_39_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022] Open
Abstract
Congestive heart failure (HF) remains a major cause of cardiac-related morbidity and mortality, despite major therapeutic advancements. A newer class of medications has recently been developed which targets the root cause of HF, which is reduced myocardial contractility. This article aims to highlight the cardiac myosin activator class of drugs and the trials to date highlighting their effects on HF outcomes.
Collapse
|
15
|
Zaky AF, Berkowitz DE. Mythical metrics and methods: Needed paradigm shift in disease recognition and therapy. Med Hypotheses 2020; 141:109734. [PMID: 32298922 DOI: 10.1016/j.mehy.2020.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
Current medicine is practiced in an organ-based, function-appraised manner with less attention paid to the tissue characteristics of the appraised organs. The fundamentals of this paradigm have been the product of an oversimplified and often layman-based perceptions of the studied organ over the years. These perceptions drove the current definitions of normality and abnormality, parameters used in the diagnosis of the disease, goals of treatment and studied outcomes. Despite the explosive advancement in technology that could have potentially changed our 'upstream' thinking, practitioners remain captives of these old beliefs and have streamlined current technology in a 'downstream' fashion; in the form of goal-directed protocols, and engineering systems that would study their implementations. As a result, diseases continue to evolve, become more resistant to therapy, late to diagnose, and with a persistent worsening of outcomes. With a primarily focus on the heart and from an anesthesiologist prospective, we challenge the fundamentals of the current paradigm from an 'upstream' prospective. We challenge the current 'territorial' definitions of the organs studied, the current terminology of some diseases, the parameters used in their diagnosis, the diagnostic modalities used and their goals of treatment. We illustrate some examples when the current collective 'myth' meets the 'reality' in an acute care setting, further clarifying the limitations of the current paradigm. We also, provide a theoretical hypothesis of what we believe to be a potential substitute of the current paradigm. Our theory redefines disease from an organ-based functional phenomenon to a structural-based tissue phenomenon, calling for an integrative and holistic approach of tissue assessment rather than a discrete approach that may potentially obscure the interaction of non-appraised organs. We also believe in redirecting technology in an upstream direction to better redefine and early detect diseases rather than submitting to generationally inherited beliefs. Whereas we have started some of our research on our proposed paradigm, our theoretical framework remains to be thought-provoking, and hypothesis-generating at the present time.
Collapse
Affiliation(s)
- Ahmed F Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, United States.
| | - Dan E Berkowitz
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, United States
| |
Collapse
|
16
|
Carubelli V, Zhang Y, Metra M, Lombardi C, Felker GM, Filippatos G, O'Connor CM, Teerlink JR, Simmons P, Segal R, Malfatto G, La Rovere MT, Li D, Han X, Yuan Z, Yao Y, Li B, Lau LF, Bianchi G, Zhang J. Treatment with 24 hour istaroxime infusion in patients hospitalised for acute heart failure: a randomised, placebo-controlled trial. Eur J Heart Fail 2020; 22:1684-1693. [PMID: 31975496 DOI: 10.1002/ejhf.1743] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 12/28/2022] Open
Abstract
AIM Istaroxime is a first-in-class agent which acts through inhibition of the sarcolemmal Na+ /K+ pump and activation of the SERCA2a pump. This study assessed the effects of a 24 h infusion of istaroxime in patients hospitalised for acute heart failure (AHF). METHODS AND RESULTS We included patients hospitalised for AHF with left ventricular ejection fraction ≤40% and E/e' > 10. Patients were randomised to a 24 h intravenous infusion of placebo or istaroxime at doses of 0.5 μg/kg/min (cohort 1: placebo n = 19; istaroxime n = 41) or 1.0 μg/kg/min (cohort 2: placebo n = 20, istaroxime n = 40). The primary endpoint of change in E/e' ratio from baseline to 24 h decreased with istaroxime vs. placebo (cohort 1: -4.55 ± 4.75 istaroxime 0.5 μg/kg/min vs. -1.55 ± 4.11 placebo, P = 0.029; cohort 2: -3.16 ± 2.59 istaroxime 1.0 μg/kg/min vs. -1.08 ± 2.72 placebo, P = 0.009). Both istaroxime doses significantly increased stroke volume index and decreased heart rate. Systolic blood pressure increased with istaroxime, achieving significance with the high dose. Self-reported dyspnoea and N-terminal pro-brain natriuretic peptide improved in all groups without significant differences between istaroxime and placebo. No significant differences in cardiac troponin absolute values or clinically relevant arrhythmias were observed during or after istaroxime infusion. Serious cardiac adverse events (including arrhythmias and hypotension) did not differ between placebo and istaroxime groups. The most common adverse events were injection site reactions and gastrointestinal events, the latter primarily with istaroxime 1.0 μg/kg/min. CONCLUSIONS In patients hospitalised for AHF with reduced ejection fraction, a 24 h infusion of istaroxime improved parameters of diastolic and systolic cardiac function without major cardiac adverse effects.
Collapse
Affiliation(s)
- Valentina Carubelli
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University and Civil Hospital of Brescia, Brescia, Italy
| | - Yuhui Zhang
- Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University and Civil Hospital of Brescia, Brescia, Italy
| | - Carlo Lombardi
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University and Civil Hospital of Brescia, Brescia, Italy
| | - G Michael Felker
- Duke University School of Medicine and Duke Clinical Research Institute, Durham, NC, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, Athens, Greece.,Medical School, University of Cyprus, Nicosia, Cyprus
| | | | - John R Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.,School of Medicine, University of California, San Francisco, CA, USA
| | | | - Robert Segal
- Windtree Therapeutics, Inc., Warrington, PA, USA
| | - Gabriella Malfatto
- IRCCS Istituto Auxologico Italiano, Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital, Milan, Italy
| | - Maria Teresa La Rovere
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Cardiology, Institute of Montescano, Pavia, Italy
| | - Dianfu Li
- Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiumin Han
- The General Hospital of Shenyang Military Region of Chinese People's Liberation Arm, Shenyang, China
| | - Zuyi Yuan
- The First Affiliated Hospital of Xi'An Jiaotong University, Xi'an, China
| | - Yali Yao
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Benjamin Li
- Lee's Pharmaceutical Limited, Taipei, Taiwan
| | | | | | - Jian Zhang
- Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China
| | | |
Collapse
|
17
|
Lin X, Fang L. Pharmaceutical Treatment for Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1177:269-295. [PMID: 32246448 DOI: 10.1007/978-981-15-2517-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is defined as a clinical syndrome resulting from structural or functional impairment of ventricular fillings or ejections of blood. Currently, HF is divided into three groups which include HF with reduced ejection fraction (HFrEF), HF with preserved ejection fraction (HFpEF) and HF with midrange EF (HFmrEF). Even though major advances have been made in treating HFrEF during the past decades, heart failure is a fatal disease. In this review, we briefly summarize the current advances in pharmaceutical managements for heart failure, which includes drugs used in acute heart failure as well as those that prevent heart failure progression, in each category major clinical trials are also described. In addition, information about some of potential new drugs are also mentioned. Traditional Chinese medicine also shows its potential in treating HF, and we are still lack of medicine to treat HFpEF.
Collapse
Affiliation(s)
- Xue Lin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ligang Fang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Agostoni P, Farmakis DT, García-Pinilla JM, Harjola VP, Karason K, von Lewinski D, Parissis J, Pollesello P, Pölzl G, Recio-Mayoral A, Reinecke A, Yerly P, Zima E. Haemodynamic Balance in Acute and Advanced Heart Failure: An Expert Perspective on the Role of Levosimendan. Card Fail Rev 2019; 5:155-161. [PMID: 31768272 PMCID: PMC6848932 DOI: 10.15420/cfr.2019.01.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022] Open
Abstract
Acute and advanced heart failure are associated with substantial adverse short- and longer-term prognosis. Both conditions necessitate complex treatment choices to restore haemodynamic stability and organ perfusion, relieve congestion, improve symptoms and allow the patient to leave the hospital and achieve an adequate quality of life. Among the available intravenous vasoactive therapies, inotropes constitute an option when an increase in cardiac contractility is needed to reverse a low output state. Within the inotrope category, levosimendan is well suited to the needs of both sets of patients since, in contrast to conventional adrenergic inotropes, it has not been linked in clinical trials or wider clinical usage with increased mortality risk and retains its efficacy in the presence of beta-adrenergic receptor blockade; it is further believed to possess beneficial renal effects. The overall haemodynamic profile and clinical tolerability of levosimendan, combined with its extended duration of action, have encouraged its intermittent use in patients with advanced heart failure. This paper summarises the key messages derived from a series of 12 tutorials held at the Heart Failure 2019 congress organised in Athens, Greece, by the Heart Failure Association of the European Society of Cardiology.
Collapse
Affiliation(s)
- Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS Milan, Italy.,Department of Clinical Sciences and Community Health - Cardiovascular Section, University of Milan Milan, Italy
| | - Dimitrios T Farmakis
- University of Cyprus Medical School Nicosia, Cyprus.,Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - Jose M García-Pinilla
- Heart Failure and Familial Cardiopathies Unit, Cardiology Department, Hospital Universitario Virgen de la Victoria, IBIMA Málaga, Spain
| | - Veli-Pekka Harjola
- Emergency Medicine, University of Helsinki, Helsinki University Hospital Helsinki, Finland
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University Graz, Austria
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece.,Emergency Department, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | | | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology Medical University of Innsbruck Austria
| | | | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätskllinikum Schleswig-Holstein Kiel, Germany
| | - Patrik Yerly
- Service de Cardiologie, CHUV, Université de Lausanne Lausanne, Switzerland
| | - Endre Zima
- Heart and Vascular Center, Semmelweis University Budapest, Hungary
| |
Collapse
|
19
|
Matsui T, Miyamoto K, Yamanaka K, Okai Y, Kaushik EP, Harada K, Wagoner M, Shinozawa T. Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 2019; 383:114761. [DOI: 10.1016/j.taap.2019.114761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
|
20
|
Filardi T, Ghinassi B, Di Baldassarre A, Tanzilli G, Morano S, Lenzi A, Basili S, Crescioli C. Cardiomyopathy Associated with Diabetes: The Central Role of the Cardiomyocyte. Int J Mol Sci 2019; 20:ijms20133299. [PMID: 31284374 PMCID: PMC6651183 DOI: 10.3390/ijms20133299] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
The term diabetic cardiomyopathy (DCM) labels an abnormal cardiac structure and performance due to intrinsic heart muscle malfunction, independently of other vascular co-morbidity. DCM, accounting for 50%–80% of deaths in diabetic patients, represents a worldwide problem for human health and related economics. Optimal glycemic control is not sufficient to prevent DCM, which derives from heart remodeling and geometrical changes, with both consequences of critical events initially occurring at the cardiomyocyte level. Cardiac cells, under hyperglycemia, very early undergo metabolic abnormalities and contribute to T helper (Th)-driven inflammatory perturbation, behaving as immunoactive units capable of releasing critical biomediators, such as cytokines and chemokines. This paper aims to focus onto the role of cardiomyocytes, no longer considered as “passive” targets but as “active” units participating in the inflammatory dialogue between local and systemic counterparts underlying DCM development and maintenance. Some of the main biomolecular/metabolic/inflammatory processes triggered within cardiac cells by high glucose are overviewed; particular attention is addressed to early inflammatory cytokines and chemokines, representing potential therapeutic targets for a prompt early intervention when no signs or symptoms of DCM are manifesting yet. DCM clinical management still represents a challenge and further translational investigations, including studies at female/male cell level, are warranted.
Collapse
Affiliation(s)
- Tiziana Filardi
- Department of Experimental Medicine, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti and Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti and Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Gaetano Tanzilli
- Department of Cardiovascular Sciences, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Susanna Morano
- Department of Experimental Medicine, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Piazza L. de Bosis 6, 00135 Rome, Italy.
| |
Collapse
|
21
|
Kislitsina ON, Rich JD, Wilcox JE, Pham DT, Churyla A, Vorovich EB, Ghafourian K, Yancy CW. Shock - Classification and Pathophysiological Principles of Therapeutics. Curr Cardiol Rev 2019; 15:102-113. [PMID: 30543176 PMCID: PMC6520577 DOI: 10.2174/1573403x15666181212125024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023] Open
Abstract
The management of patients with shock is extremely challenging because of the myriad of possible clinical presentations in cardiogenic shock, septic shock and hypovolemic shock and the limitations of contemporary therapeutic options. The treatment of shock includes the administration of endogenous catecholamines (epinephrine, norepinephrine, and dopamine) as well as various vasopressor agents that have shown efficacy in the treatment of the various types of shock. In addition to the endogenous catecholamines, dobutamine, isoproterenol, phenylephrine, and milrinone have served as the mainstays of shock therapy for several decades. Recently, experimental studies have suggested that newer agents such as vasopressin, selepressin, calcium-sensitizing agents like levosimendan, cardiac-specific myosin activators like omecamtiv mecarbil (OM), istaroxime, and natriuretic peptides like nesiritide can enhance shock therapy, especially when shock presents a more complex clinical picture than normal. However, their ability to improve clinical outcomes remains to be proven. It is the purpose of this review to describe the mechanism of action, dosage requirements, advantages and disadvantages, and specific indications and contraindications for the use of each of these catecholamines and vasopressors, as well as to elucidate the most important clinical trials that serve as the basis of contemporary shock therapy.
Collapse
Affiliation(s)
- Olga N Kislitsina
- Department of Cardiac Surgery Bluhm Cardiovascular Institute Feinberg School of Medicine Northwestern University Medical Center, Chicago, Illinois, IL, United States.,Department of Cardiology Bluhm Cardiovascular Institute Feinberg School of Medicine Northwestern University Medical Center, Chicago, Illinois, IL, United States
| | - Jonathan D Rich
- Department of Cardiology Bluhm Cardiovascular Institute Feinberg School of Medicine Northwestern University Medical Center, Chicago, Illinois, IL, United States
| | - Jane E Wilcox
- Department of Cardiology Bluhm Cardiovascular Institute Feinberg School of Medicine Northwestern University Medical Center, Chicago, Illinois, IL, United States
| | - Duc T Pham
- Department of Cardiac Surgery Bluhm Cardiovascular Institute Feinberg School of Medicine Northwestern University Medical Center, Chicago, Illinois, IL, United States
| | - Andrei Churyla
- Department of Cardiac Surgery Bluhm Cardiovascular Institute Feinberg School of Medicine Northwestern University Medical Center, Chicago, Illinois, IL, United States
| | - Esther B Vorovich
- Department of Cardiology Bluhm Cardiovascular Institute Feinberg School of Medicine Northwestern University Medical Center, Chicago, Illinois, IL, United States
| | - Kambiz Ghafourian
- Department of Cardiology Bluhm Cardiovascular Institute Feinberg School of Medicine Northwestern University Medical Center, Chicago, Illinois, IL, United States
| | - Clyde W Yancy
- Department of Cardiology Bluhm Cardiovascular Institute Feinberg School of Medicine Northwestern University Medical Center, Chicago, Illinois, IL, United States
| |
Collapse
|
22
|
Hui R, Gao Y, Liu J, Liu H, Tang C, Feng B. Determination of an isonicotinylhydrazide derivative, a novel positive inotropic compound, in mouse plasma by LC-MS/MS and its application to a pharmacokinetics study. J Pharm Biomed Anal 2019; 165:12-17. [PMID: 30496986 DOI: 10.1016/j.jpba.2018.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/20/2018] [Accepted: 10/21/2018] [Indexed: 11/27/2022]
Abstract
Heart failure (HF) is one of the most serious health problems worldwide. A new positive inotropic compound, an isonicotinylhydrazide derivative (AF-HF001) was designed recently. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of the target analyte in mouse plasma. Samples were prepared by one step precipitation with ethyl acetate and stored in acetonitrile. Chromatographic analysis was carried out on a Hypersil Gold C18 column (2.1 mm × 50 mm, 3 μm) with a gradient mobile phase consisting of acetonitrile and 0.1% aqueous formic acid. The analyte was detected by selective reaction monitoring (SRM) mode with target quantitative ion pair of m/z 292.1 → 148.2, using praziquantel as the internal standard (IS) m/z 313.1 → 203.2. Good linearity (r = 0.995) was observed over a wide concentration range. The validation of method showed acceptable recovery and precision. The method has been then applied to a very first pharmacokinetic assay of AF-HF001 in mice.
Collapse
Affiliation(s)
- Renjie Hui
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Yueying Gao
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Jingyi Liu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Haili Liu
- School of Biological, Jiangnan University, Wuxi 214122, China
| | - Chunlei Tang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China; Alfa Biopharmaceuticals, Inc., Wuxi 214122, China.
| |
Collapse
|
23
|
Modification of levosimendan-induced suppression of atrial natriuretic peptide secretion in hypertrophied rat atria. Eur J Pharmacol 2018; 829:54-62. [PMID: 29653089 DOI: 10.1016/j.ejphar.2018.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
This study aimed to determine the effects of levosimendan, a calcium sensitizer, on atrial contractility and atrial natriuretic peptide (ANP) secretion and its modification in hypertrophied atria. Isolated perfused beating rat atria were used from control and isoproterenol-treated rats. Levosimendan and its metabolite OR-1896 caused a positive inotropic effect and suppressed ANP secretion in rat atria. Similar to levosimendan, the selective phosphodiesterase 3 (PDE3) or PDE4 inhibitor also suppressed ANP secretion. Suppression of ANP secretion by 1 µM levosimendan was abolished by PDE3 inhibitor, but reversed by PDE4 inhibitor. Levosimendan-induced suppression of ANP secretion was potentiated by KATP channel blocker, but blocked by KATP channel opener. Levosimendan alone did not significantly change cyclic adenosine monophosphate (cAMP) efflux in the perfusate; however, levosimendan combined with PDE4 inhibitor markedly increased this efflux. The stimulation of ANP secretion induced by levosimendan combined with PDE4 inhibitor was blocked by the protein kinase A (PKA) inhibitor. In isoproterenol-treated atria, levosimendan augmented the positive inotropic effect and ANP secretion in response to an increased extracellular calcium concentration ([Ca+]o). These results suggests that levosimendan suppresses ANP secretion by both inhibiting PDE3 and opening KATP channels and that levosimendan combined with PDE4 inhibitor stimulates ANP secretion by activating the cAMP-PKA pathway. Modification of the effects of levosimendan on [Ca+]o-induced positive inotropic effects and ANP secretion in isoproterenol-treated rat atria might be related to a disturbance in calcium metabolism.
Collapse
|
24
|
Bossu A, Kostense A, Beekman HDM, Houtman MJC, van der Heyden MAG, Vos MA. Istaroxime, a positive inotropic agent devoid of proarrhythmic properties in sensitive chronic atrioventricular block dogs. Pharmacol Res 2018; 133:132-140. [PMID: 29753687 DOI: 10.1016/j.phrs.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
Current inotropic agents in heart failure therapy associate with low benefit and significant adverse effects, including ventricular arrhythmias. Istaroxime, a novel Na+/K+-transporting ATPase inhibitor, also stimulates SERCA2a activity, which would confer improved inotropic and lusitropic properties with less proarrhythmic effects. We investigated hemodynamic, electrophysiological and potential proarrhythmic and antiarrhythmic effects of istaroxime in control and chronic atrioventricular block (CAVB) dogs sensitive to drug-induced Torsades de Pointes arrhythmias (TdP). In isolated normal canine ventricular cardiomyocytes, istaroxime (0.3-10 μM) evoked no afterdepolarizations and significantly shortened action potential duration (APD) at 3 and 10 μM. Istaroxime at 3 μg/kg/min significantly increased left ventricular (LV) contractility (dP/dt+) and relaxation (dP/dt-) respectively by 81 and 94% in anesthetized control dogs (n = 6) and by 61 and 49% in anesthetized CAVB dogs (n = 7) sensitive to dofetilide-induced TdP. While istaroxime induced no ventricular arrhythmias in control conditions, only single ectopic beats occurred in 2/7 CAVB dogs, which were preceded by increase of short-term variability of repolarization (STV) and T wave alternans in LV unipolar electrograms. Istaroxime pre-treatment (3 μg/kg/min for 60 min) did not alleviate dofetilide-induced increase in repolarization and STV, and mildly reduced incidence of TdP from 6/6 to 4/6 CAVB dogs. In six CAVB dogs with dofetilide-induced TdP, administration of istaroxime (90 μg/kg/5 min) suppressed arrhythmic episodes in two animals. Taken together, inotropic and lusitropic properties of istaroxime in CAVB dogs were devoid of significant proarrhythmic effects in sensitive CAVB dogs, and istaroxime provides a moderate antiarrhythmic efficacy in prevention and suppression of dofetilide-induced TdP.
Collapse
Affiliation(s)
- Alexandre Bossu
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Amée Kostense
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henriette D M Beekman
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marien J C Houtman
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Kaplinsky E, Mallarkey G. Cardiac myosin activators for heart failure therapy: focus on omecamtiv mecarbil. Drugs Context 2018; 7:212518. [PMID: 29707029 PMCID: PMC5916097 DOI: 10.7573/dic.212518] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Heart failure continues to be a major global health problem with a pronounced impact on morbidity and mortality and very limited drug treatment options especially with regard to inotropic therapy. Omecamtiv mecarbil is a first-in-class cardiac myosin activator, which increases the proportion of myosin heads that are tightly bound to actin and creates a force-producing state that is not associated with cytosolic calcium accumulation. Phase I and phase II studies have shown that it is safe and well tolerated. It produces dose-dependent increases in systolic ejection time (SET), stroke volume (SV), left ventricular ejection fraction (LVEF), and fractional shortening. In the ATOMIC-AHF trial, intravenous (IV) omecamtiv mecarbil did not improve dyspnoea overall but may have improved it in a high-dose group of acute heart failure patients. It did, however, increase SET, decrease left ventricular end-systolic diameter, and was well tolerated. The COSMIC-HF trial showed that a pharmacokinetic-based dose-titration strategy of oral omecamtiv mecarbil improved cardiac function and reduced ventricular diameters compared to placebo and had a similar safety profile. It also significantly reduced plasma N-terminal-pro B-type natriuretic peptide compared with placebo. The GALACTIC-HF trial is now underway and will compare omecamtiv mecarbil with placebo when added to current heart failure standard treatment in patients with chronic heart failure and reduced LVEF. It is expected to be completed in January 2021. The ongoing range of preclinical and clinical research on omecamtiv mecarbil will further elucidate its full range of pharmacological effects and its clinical usefulness in heart failure.
Collapse
Affiliation(s)
- Edgardo Kaplinsky
- Cardiology Unit, Medicine Department, Hospital Municipal de Badalona, Badalona, Spain
| | | |
Collapse
|
26
|
Abstract
Heart failure is common in adults, accounting for substantial morbidity and mortality worldwide. Its prevalence is increasing because of ageing of the population and improved treatment of acute cardiovascular events, despite the efficacy of many therapies for patients with heart failure with reduced ejection fraction, such as angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), β blockers, and mineralocorticoid receptor antagonists, and advanced device therapies. Combined angiotensin receptor blocker neprilysin inhibitors (ARNIs) have been associated with improvements in hospital admissions and mortality from heart failure compared with enalapril, and guidelines now recommend substitution of ACE inhibitors or ARBs with ARNIs in appropriate patients. Improved safety of left ventricular assist devices means that these are becoming more commonly used in patients with severe symptoms. Antidiabetic therapies might further improve outcomes in patients with heart failure. New drugs with novel mechanisms of action, such as cardiac myosin activators, are under investigation for patients with heart failure with reduced left ventricular ejection fraction. Heart failure with preserved ejection fraction is a heterogeneous disorder that remains incompletely understood and will continue to increase in prevalence with the ageing population. Although some data suggest that spironolactone might improve outcomes in these patients, no therapy has conclusively shown a significant effect. Hopefully, future studies will address these unmet needs for patients with heart failure. Admissions for acute heart failure continue to increase but, to date, no new therapies have improved clinical outcomes.
Collapse
Affiliation(s)
- Marco Metra
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - John R Teerlink
- School of Medicine, University of California, San Francisco, CA, USA; Section of Cardiology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
27
|
Horváth B, Szentandrássy N, Veress R, Almássy J, Magyar J, Bányász T, Tóth A, Papp Z, Nánási PP. Frequency-dependent effects of omecamtiv mecarbil on cell shortening of isolated canine ventricular cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1239-1246. [PMID: 28940010 DOI: 10.1007/s00210-017-1422-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/31/2017] [Indexed: 01/10/2023]
Abstract
Omecamtiv mecarbil (OM) is a myosin activator agent developed for the treatment of heart failure. OM was reported to increase left ventricular ejection fraction and systolic ejection time, but little is known about the effect of heart rate on the action of OM. The present study, therefore, was designed to investigate the effects of OM on unloaded cell shortening and intracellular Ca2+ ([Ca2+]i) transients as a function of the pacing frequency. Isolated cardiomyocytes were stimulated at various frequencies under steady-state conditions. Cell length was monitored by an optical edge detector and changes in [Ca2+]i were followed using the Ca2+-sensitive dye Fura-2. At the pacing frequency of 1 Hz, OM (1-10 μM) significantly decreased both diastolic and systolic cell length, however, fractional shortening was augmented only by 1 μM OM. Time to peak tension and time of 90% relaxation were progressively increased by OM. At the frequency of 2 Hz, diastolic cell length was reduced by 10 μM OM to a larger extent than systolic cell length, resulting in a significantly decreased fractional shortening under these conditions. OM had no effect on the parameters of the [Ca2+]i transient at any pacing frequency. The results suggest that supratherapeutic concentrations of OM may decrease rather than increase the force of cardiac contraction especially in tachycardic patients.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.,Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.,Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.,Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary. .,Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
28
|
Nánási P, Gaburjakova M, Gaburjakova J, Almássy J. Omecamtiv mecarbil activates ryanodine receptors from canine cardiac but not skeletal muscle. Eur J Pharmacol 2017; 809:73-79. [PMID: 28506910 DOI: 10.1016/j.ejphar.2017.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 01/10/2023]
Abstract
Due to the limited results achieved in the clinical treatment of heart failure, a new inotropic strategy of myosin motor activation has been developed. The lead molecule of myosin activator agents is omecamtiv mecarbil, which binds directly to the heavy chain of the cardiac β-myosin and enhances cardiac contractility by lengthening the lifetime of the acto-myosin complex and increasing the number of the active force-generating cross-bridges. In the absence of relevant data, the effect of omecamtiv mecarbil on canine cardiac ryanodine receptors (RyR 2) has been investigated in the present study by measuring the electrical activity of single RyR 2 channels incorporated into planar lipid bilayer. When applying 100nM Ca2+ concentration on the cis side ([Ca2+]cis) omecamtiv mecarbil (1-10µM) significantly increased the open probability and opening frequency of RyR 2, while the mean closed time was reduced. Mean open time was increased moderately by 10µM omecamtiv mecarbil. When [Ca2+]cis was elevated to 322 and 735nM, the effect of omecamtiv mecarbil on open probability was evident only at higher (3-10µM) concentrations. All effects of omecamtiv mecarbil were fully reversible upon washout. Omecamtiv mecarbil (up to 10µM) had no effect on the open probability of RyR 1, isolated from either canine or rabbit skeletal muscles. It is concluded that the direct stimulatory action of omecamtiv mecarbil on RyR 2 has to be taken into account when discussing the mechanism of action or the potential side effects of the compound.
Collapse
Affiliation(s)
- Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
29
|
Swenson AM, Tang W, Blair CA, Fetrow CM, Unrath WC, Previs MJ, Campbell KS, Yengo CM. Omecamtiv Mecarbil Enhances the Duty Ratio of Human β-Cardiac Myosin Resulting in Increased Calcium Sensitivity and Slowed Force Development in Cardiac Muscle. J Biol Chem 2017; 292:3768-3778. [PMID: 28082673 DOI: 10.1074/jbc.m116.748780] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/05/2017] [Indexed: 01/10/2023] Open
Abstract
The small molecule drug omecamtiv mecarbil (OM) specifically targets cardiac muscle myosin and is known to enhance cardiac muscle performance, yet its impact on human cardiac myosin motor function is unclear. We expressed and purified human β-cardiac myosin subfragment 1 (M2β-S1) containing a C-terminal Avi tag. We demonstrate that the maximum actin-activated ATPase activity of M2β-S1 is slowed more than 4-fold in the presence of OM, whereas the actin concentration required for half-maximal ATPase was reduced dramatically (30-fold). We find OM does not change the overall actin affinity. Transient kinetic experiments suggest that there are two kinetic pathways in the presence of OM. The dominant pathway results in a slow transition between actomyosin·ADP states and increases the time myosin is strongly bound to actin. However, OM also traps a population of myosin heads in a weak actin affinity state with slow product release. We demonstrate that OM can reduce the actin sliding velocity more than 100-fold in the in vitro motility assay. The ionic strength dependence of in vitro motility suggests the inhibition may be at least partially due to drag forces from weakly attached myosin heads. OM causes an increase in duty ratio examined in the motility assay. Experiments with permeabilized human myocardium demonstrate that OM increases calcium sensitivity and slows force development (ktr) in a concentration-dependent manner, whereas the maximally activated force is unchanged. We propose that OM increases the myosin duty ratio, which results in enhanced calcium sensitivity but slower force development in human myocardium.
Collapse
Affiliation(s)
- Anja M Swenson
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Wanjian Tang
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Cheavar A Blair
- the Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40536-0298, and
| | - Christopher M Fetrow
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - William C Unrath
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Michael J Previs
- the Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont 05405
| | - Kenneth S Campbell
- the Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40536-0298, and
| | - Christopher M Yengo
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
30
|
Translation of Cardiac Myosin Activation with 2-deoxy-ATP to Treat Heart Failure via an Experimental Ribonucleotide Reductase-Based Gene Therapy. JACC Basic Transl Sci 2016; 1:666-679. [PMID: 28553667 PMCID: PMC5444879 DOI: 10.1016/j.jacbts.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite recent advances, chronic heart failure remains a significant and growing unmet medical need, reaching epidemic proportions carrying substantial morbidity, mortality, and costs. A safe and convenient therapeutic agent that produces sustained inotropic effects could ameliorate symptoms and improve functional capacity and quality of life. The authors discovered that small amounts of 2-deoxy-ATP (dATP) activate cardiac myosin leading to enhanced contractility in normal and failing heart muscle. Cardiac myosin activation triggers faster myosin cross-bridge cycling with greater force generation during each contraction. They describe the rationale and results of a translational medicine effort to increase dATP levels using a gene therapy strategy that up-regulates ribonucleotide reductase, the rate-limiting enzyme for dATP synthesis, selectively in cardiomyocytes. In small and large animal models of heart failure, a single dose of this gene therapy has led to sustained inotropic effects with no toxicity or safety concerns identified to date. Further animal studies are being conducted with the goal of testing this agent in patients with heart failure.
Collapse
|
31
|
García-González MJ, Jorge-Pérez P, Jiménez-Sosa A, Acea AB, Lacalzada Almeida JB, Ferrer Hita JJ. Levosimendan improves hemodynamic status in critically ill patients with severe aortic stenosis and left ventricular dysfunction: an interventional study. Cardiovasc Ther 2016; 33:193-9. [PMID: 25959786 DOI: 10.1111/1755-5922.12132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIMS To study the hemodynamic effect of levosimendan administration in acute heart failure patients with severe aortic stenosis (AS) and reduced left ventricular ejection fraction (LVEF). METHODS Hemodynamic response to 24 h intravenous levosimendan infusion (0.1 μg/kg/min without a loading dose) in patients with severe AS (aortic valve area ≤1 cm(2) , time-velocity integral between left ventricular out-flow tract and aortic valve <0.25), reduced LVEF (≤40%), and a depressed cardiac index (CI) <2.2 L/min/m(2) was determined in a sequential group of nine patients aged 76 ± 10 years (5 men). RESULTS Baseline mean ejection fraction was 33 ± 0.7%; mean aortic valve area was 0.37 ±0.11 cm(2) /m(2) ; peak and mean gradients of 63.6 ± 20.53 and 36.7 ± 12.62 mmHg, respectively; and mean CI was 1.65 ± 0.20 L/min/m(2) . At 6 and 12 h of levosimendan therapy, mean CI had increased to 2.00 ± 0.41 L/min/m(2) (P = 0.02) and 2.17 ± 0.40 L/min/m(2) (P = 0.01), respectively. At 24 h, mean CI had increased further to 2.37 ± 0.49 L/min/m(2) (P = 0.01). A significant beneficial effect was also observed in pulmonary capillary wedge pressure, pulmonary artery mean pressure, central venous pressure, systemic vascular resistances, pulmonary vascular resistances, stroke volume index, left ventricular stroke work index. NTproBNP levels decreased at 24 h of levosimendan treatment. Levosimendan infusion was also well tolerated. Five patients subsequently underwent aortic valve surgery replacement. One died (of postoperative multiorgan failure). At 30 days, overall survival was 75%. CONCLUSIONS Levosimendan administration improves hemodynamic parameters in critically ill patients with severe AS and reduced LVEF. In our study, it provides a safe and effective bridge to aortic-valve replacement or oral vasodilator therapy in surgical contraindicated patients. A controlled study is needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Martín J García-González
- Acute Cardiac Care Unit, Department of Cardiology, Hospital Universitario de Canarias - Servicio Canario de la Salud, Tenerife, Spain
| | - Pablo Jorge-Pérez
- Acute Cardiac Care Unit, Department of Cardiology, Hospital Universitario de Canarias - Servicio Canario de la Salud, Tenerife, Spain
| | - Alejandro Jiménez-Sosa
- Research Unit, Hospital Universitario de Canarias, Ctra. La Cuesta - Taco, San Cristobal de La Laguna, Sta. Cruz de Tenerife, Spain
| | - Antonio Barragán Acea
- Acute Cardiac Care Unit, Department of Cardiology, Hospital Universitario de Canarias - Servicio Canario de la Salud, Tenerife, Spain
| | - Juan B Lacalzada Almeida
- Acute Cardiac Care Unit, Department of Cardiology, Hospital Universitario de Canarias - Servicio Canario de la Salud, Tenerife, Spain
| | - Julio J Ferrer Hita
- Acute Cardiac Care Unit, Department of Cardiology, Hospital Universitario de Canarias - Servicio Canario de la Salud, Tenerife, Spain
| |
Collapse
|
32
|
Nánási P, Váczi K, Papp Z. The myosin activator omecamtiv mecarbil: a promising new inotropic agent. Can J Physiol Pharmacol 2016; 94:1033-1039. [PMID: 27322915 DOI: 10.1139/cjpp-2015-0573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heart failure became a leading cause of mortality in the past few decades with a progressively increasing prevalence. Its current therapy is restricted largely to the suppression of the sympathetic activity and the renin-angiotensin system in combination with diuretics. This restrictive strategy is due to the potential long-term adverse effects of inotropic agents despite their effective influence on cardiac function when employed for short durations. Positive inotropes include inhibitors of the Na+/K+ pump, β-receptor agonists, and phosphodiesterase inhibitors. Theoretically, Ca2+ sensitizers may also increase cardiac contractility without resulting in Ca2+ overload; nevertheless, their mechanism of action is frequently complicated by other pleiotropic effects. Recently, a new positive inotropic agent, the myosin activator omecamtiv mecarbil, has been developed. Omecamtiv mecarbil binds directly to β-myosin heavy chain and enhances cardiac contractility by increasing the number of the active force-generating cross-bridges, presumably without major off-target effects. This review focuses on recent in vivo and in vitro results obtained with omecamtiv mecarbil, and discusses its mechanism of action at a molecular level. Based on clinical data, omecamtiv mecarbil is a promising new tool in the treatment of systolic heart failure.
Collapse
Affiliation(s)
- Péter Nánási
- a Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Váczi
- b Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- c Division of Clinical Physiology, Department of Cardiology, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
33
|
Corinaldesi C, Di Luigi L, Lenzi A, Crescioli C. Phosphodiesterase type 5 inhibitors: back and forward from cardiac indications. J Endocrinol Invest 2016; 39:143-51. [PMID: 26122487 PMCID: PMC4712255 DOI: 10.1007/s40618-015-0340-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/11/2015] [Indexed: 12/24/2022]
Abstract
PDE5 inhibitors (PDE5i) are widely known as treatment for erectile dysfunction (ED). This favorable action has emerged as a "side effect" from pioneering studies when PDE5i have been originally proposed as treatment for coronary artery disease (CAD). PDE5i showed marginal benefits for CAD treatment; although disappointing for that indication, they improved systemic and pulmonary vasodilation and ameliorated general endothelial function. Therefore, PDE5i have been approved and licensed also for pulmonary artery hypertension (PAH), besides ED. Nowadays, fine-tuned biomolecular mechanisms of PDE5i are well recognized to be beneficial onto myocardial contractility and geometry, to reduce tissue fibrosis, hypertrophy and apoptosis. PDE5i consistently exert benefits on heart failure, infarct, cardiomyopathy. The concept that PDE5i likely blunt Th1-driven inflammatory processes, which shift the homeostatic balance from health to disease, has emerged; PDE5i seem to decrease the release of active biomolecules from cells to tissues interested by inflammation. In this view, following clinical and basic research progresses, PDE5i can be undoubtedly "re-allocated" for cardiac indications and, hopefully, they could be approved as therapeutic tools to treat and prevent heart disease. This review aims to summarize PDE5i different clinical applications, from past to present and future, focusing on their potential power as treatment for cardiac diseases.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Cardiovascular Agents/pharmacokinetics
- Cardiovascular Agents/pharmacology
- Cardiovascular Agents/therapeutic use
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/immunology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/physiopathology
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/immunology
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/physiopathology
- Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry
- Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Evidence-Based Medicine
- Heart/drug effects
- Heart/physiopathology
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Myocardium/enzymology
- Myocardium/immunology
- Myocardium/metabolism
- Phosphodiesterase 5 Inhibitors/pharmacokinetics
- Phosphodiesterase 5 Inhibitors/pharmacology
- Phosphodiesterase 5 Inhibitors/therapeutic use
- Vasodilator Agents/pharmacokinetics
- Vasodilator Agents/pharmacology
- Vasodilator Agents/therapeutic use
Collapse
Affiliation(s)
- C Corinaldesi
- Department of Movement, Human and Health Sciences, Section of Health Science, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy
| | - L Di Luigi
- Department of Movement, Human and Health Sciences, Section of Health Science, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - C Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Science, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
34
|
Mardiguian S, Kivikko M, Heringlake M, Smare C, Bertranou E, Apajasalo M, Pollesello P. Cost-benefits of incorporating levosimendan into cardiac surgery practice: German base case. J Med Econ 2016; 19:506-14. [PMID: 26707159 DOI: 10.3111/13696998.2015.1136312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To evaluate the cost-benefit of using levosimendan compared with dobutamine, in the perioperative treatment of patients undergoing cardiac surgery who require inotropic support. METHODS A two-part Markov model was designed to simulate health-state transitions of patients undergoing cardiac surgery, and estimate the short- and long-term health benefits of treatment. Hospital length of stay (LOS), mortality, medication, and adverse events were key clinical- and cost-inputs. Cost-benefits were evaluated in terms of costs and bed stays within the German healthcare system. Drug prices were calculated from the German Drug Directory (€/2014) and published literature, with a 3% annual discount rate applied. The base case analysis was for a 1-year time horizon. RESULTS The use of levosimendan vs dobutamine was associated with cost savings of €4787 per patient from the German hospital perspective due to reduced adverse events and shorter hospital LOS, leading to increased bed capacity and hospital revenue. LIMITATIONS A pharmacoeconomic calculation for the specific situation of the German healthcare system that is based on international clinical trial carries a substantial risk of disregarding potentially relevant but unknown confounding factors (i.e., ICU-staffing, co-medications, standard-ICU care vs fast-tracking, etc.) that may either attenuate or increase the outcome pharmacoeconomic effects of a drug; however, since these conditions would also apply for patients treated with comparators, their net effects may not necessarily influence the conclusions. CONCLUSIONS The use of levosimendan in patients undergoing cardiac surgery who require inotropic support appears to be cost-saving. The results of the analysis provide a strong rationale to run local clinical studies with pharmacoeconomic end-points which would allow a much more precise computation of the benefits of levosimendan.
Collapse
Affiliation(s)
| | | | - Matthias Heringlake
- c c Clinic for Anesthesiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein , Lübeck , Germany
| | | | | | | | | |
Collapse
|
35
|
In-hospital management of acute heart failure: Practical recommendations and future perspectives. Int J Cardiol 2015; 201:231-6. [DOI: 10.1016/j.ijcard.2015.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/26/2015] [Accepted: 08/01/2015] [Indexed: 01/15/2023]
|
36
|
Kolwicz SC, Odom GL, Nowakowski SG, Moussavi-Harami F, Chen X, Reinecke H, Hauschka SD, Murry CE, Mahairas GG, Regnier M. AAV6-mediated Cardiac-specific Overexpression of Ribonucleotide Reductase Enhances Myocardial Contractility. Mol Ther 2015; 24:240-250. [PMID: 26388461 DOI: 10.1038/mt.2015.176] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022] Open
Abstract
Impaired systolic function, resulting from acute injury or congenital defects, leads to cardiac complications and heart failure. Current therapies slow disease progression but do not rescue cardiac function. We previously reported that elevating the cellular 2 deoxy-ATP (dATP) pool in transgenic mice via increased expression of ribonucleotide reductase (RNR), the enzyme that catalyzes deoxy-nucleotide production, increases myosin-actin interaction and enhances cardiac muscle contractility. For the current studies, we initially injected wild-type mice retro-orbitally with a mixture of adeno-associated virus serotype-6 (rAAV6) containing a miniaturized cardiac-specific regulatory cassette (cTnT(455)) composed of enhancer and promotor portions of the human cardiac troponin T gene (TNNT2) ligated to rat cDNAs encoding either the Rrm1 or Rrm2 subunit. Subsequent studies optimized the system by creating a tandem human RRM1-RRM2 cDNA with a P2A self-cleaving peptide site between the subunits. Both rat and human Rrm1/Rrm2 cDNAs resulted in RNR enzyme overexpression exclusively in the heart and led to a significant elevation of left ventricular (LV) function in normal mice and infarcted rats, measured by echocardiography or isolated heart perfusions, without adverse cardiac remodeling. Our study suggests that increasing RNR levels via rAAV-mediated cardiac-specific expression provide a novel gene therapy approach to potentially enhance cardiac systolic function in animal models and patients with heart failure.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Guy L Odom
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Sarah G Nowakowski
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xiaolan Chen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
37
|
Weis M, Steinbeck G, Reichart B, Hübner T, Nickel T, Massberg S, Schramm R, Hagl C, Kiwi A. Authors' reply concerning the letter by Ensminger et al. Clin Res Cardiol 2015; 104:1000-2. [PMID: 26349784 DOI: 10.1007/s00392-015-0908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Weis
- Ludwig-Maximilians University and Krankenhaus Neuwittelsbach, Munich, Germany.
| | - Gerhard Steinbeck
- Ludwig-Maximilians University and Krankenhaus Neuwittelsbach, Munich, Germany
| | - Bruno Reichart
- Ludwig-Maximilians University and Krankenhaus Neuwittelsbach, Munich, Germany
| | - Tassilo Hübner
- Ludwig-Maximilians University and Krankenhaus Neuwittelsbach, Munich, Germany
| | - Thomas Nickel
- Ludwig-Maximilians University and Krankenhaus Neuwittelsbach, Munich, Germany
| | - Steffen Massberg
- Ludwig-Maximilians University and Krankenhaus Neuwittelsbach, Munich, Germany
| | - Rene Schramm
- Ludwig-Maximilians University and Krankenhaus Neuwittelsbach, Munich, Germany
| | - Christian Hagl
- Ludwig-Maximilians University and Krankenhaus Neuwittelsbach, Munich, Germany
| | - Axel Kiwi
- Ludwig-Maximilians University and Krankenhaus Neuwittelsbach, Munich, Germany
| |
Collapse
|
38
|
Orstavik O, Ata SH, Riise J, Dahl CP, Andersen GØ, Levy FO, Skomedal T, Osnes JB, Qvigstad E. Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account for its inotropic effect in failing human heart. Br J Pharmacol 2015; 171:5169-81. [PMID: 24547784 DOI: 10.1111/bph.12647] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 10/28/2013] [Accepted: 11/10/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Levosimendan is known as a calcium sensitizer, although it is also known to inhibit PDE3. We aimed to isolate each component and estimate their contribution to the increased cardiac contractility induced by levosimendan. EXPERIMENTAL APPROACH Contractile force was measured in electrically stimulated ventricular strips from explanted failing human hearts and left ventricular strips from normal male Wistar rats. PDE activity was measured in a two-step PDE activity assay on failing human ventricle. KEY RESULTS Levosimendan exerted a positive inotropic effect (PIE) reaching maximum at 10(-5) M in ventricular strips from failing human hearts. In the presence of the selective PDE3 inhibitor cilostamide, the PIE of levosimendan was abolished. During treatment with a PDE4 inhibitor and a supra-threshold concentration of isoprenaline, levosimendan generated an amplified inotropic response. This effect was reversed by β-adrenoceptor blockade and undetectable in strips pretreated with cilostamide. Levosimendan (10(-6) M) increased the potency of β-adrenoceptor agonists by 0.5 log units in failing human myocardium, but not in the presence of cilostamide. Every inotropic response to levosimendan was associated with a lusitropic response. Levosimendan did not affect the concentration-response curve to calcium in rat ventricular strips, in contrast to the effects of a known calcium sensitizer, EMD57033 [5-(1-(3,4-dimethoxybenzoyl)-1,2,3,4-tetrahydroquinolin-6-yl)-6-methyl-3,6-dihydro-2H-1,3,4-thiadiazin-2-one]. PDE activity assays confirmed that levosimendan inhibited PDE3 as effectively as cilostamide. CONCLUSIONS AND IMPLICATIONS Our results indicate that the PDE3-inhibitory property of levosimendan was enough to account for its inotropic effect, leaving a minor, if any, effect to a calcium-sensitizing component.
Collapse
Affiliation(s)
- O Orstavik
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; K.G. Jebsen Cardiac Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway; Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jondeau G, Milleron O. Beta-Blockers in Acute Heart Failure. JACC-HEART FAILURE 2015; 3:654-6. [DOI: 10.1016/j.jchf.2015.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
40
|
Vu T, Ma P, Xiao JJ, Wang YMC, Malik FI, Chow AT. Population pharmacokinetic-pharmacodynamic modeling of omecamtiv mecarbil, a cardiac myosin activator, in healthy volunteers and patients with stable heart failure. J Clin Pharmacol 2015; 55:1236-47. [PMID: 25951506 DOI: 10.1002/jcph.538] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 04/29/2015] [Indexed: 01/10/2023]
Abstract
Data from 3 clinical trials of omecamtiv mecarbil in healthy volunteers and patients with stable heart failure (HF) were analyzed using a nonlinear mixed-effects model to investigate omecamtiv mecarbil's pharmacokinetics and relationship between plasma concentration and systolic ejection time (SET) and Doppler-derived left ventricular outflow tract stroke volume (LVOTSV). Omecamtiv mecarbil pharmacokinetics were described by a linear 2-compartment model with a zero-order input rate for intravenous administration and first-order absorption for oral administration. Oral absorption half-life was 0.62 hours, and absolute bioavailability was estimated as 90%; elimination half-life was approximately 18.5 hours. Variability in pharmacokinetic parameters was not explained by patient baseline characteristics. Omecamtiv mecarbil plasma concentration was directly correlated with increases in SET and LVOTSV between healthy volunteers and patients with HF. The maximum increase from baseline in SET (delta SET) estimated by an Emax model was 137 milliseconds. LVOTSV increased linearly from baseline by 1.6 mL per 100 ng/mL of omecamtiv mecarbil. Model-based simulations for several immediate-release oral dose regimens (37.5, 50, and 62.5 mg dosed every 8, 12, and 24 hours) showed that a pharmacodynamic effect (delta SET ≥20 milliseconds) could be maintained in the absence of excessive omecamtiv mecarbil plasma concentrations.
Collapse
Affiliation(s)
- Thuy Vu
- Clinical Pharmacology, M&S, Medical Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Peiming Ma
- Clinical Pharmacology, M&S, Medical Sciences, Amgen Inc., Thousand Oaks, CA, USA.,Current address: GlaxoSmith Kline, Shanghai, China
| | - Jim J Xiao
- Clinical Pharmacology, M&S, Medical Sciences, Amgen Inc., Thousand Oaks, CA, USA.,Current address: Clovis Oncology, San Francisco, CA, USA
| | - Yow-Ming C Wang
- Clinical Pharmacology, M&S, Medical Sciences, Amgen Inc., Thousand Oaks, CA, USA.,Current address: Office of Clinical Pharmacology, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Andrew T Chow
- Clinical Pharmacology, M&S, Medical Sciences, Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|
41
|
A single German center experience with intermittent inotropes for patients on the high-urgent heart transplant waiting list. Clin Res Cardiol 2015; 104:929-34. [PMID: 25841881 DOI: 10.1007/s00392-015-0852-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/31/2015] [Indexed: 01/06/2023]
Abstract
AIM Currently, more than 900 patients with end-stage heart failure are listed for heart transplantation in Germany. All patients on the Eurotransplant high-urgent status (HU) have to be treated in intensive care units and have to be relisted every 8 weeks. Long-term continuous inotropes are associated with tachyphylaxia, arrhythmias and even increased mortality. In this retrospective analysis, we report our single center experience with HU patients treated with intermittent inotropes as a bridging therapy. METHODS AND RESULTS 117 consecutive adult HU candidates were treated at our intensive care heart failure unit between 2008 and 2013, of whom 14 patients (12 %) were stabilized and delisted during follow-up. In the remaining 103 patients (age 42 ± 15 years), different inotropes (dobutamine, milrinone, adrenaline, noradrenaline, levosimendan) were administered based on the patient's specific characteristics. After initial recompensation, patients were weaned from inotropes as soon as possible. Thereafter, intermittent inotropes (over 3-4 days) were given as a predefined weekly (until 2011) or 8 weekly regimen (from 2011 to 2013). In 57 % of these patients, additional regimen-independent inotropic support was necessary due to hemodynamic instabilities. Fourteen patients (14 %) needed a left- or biventricular assist device; 14 patients (14 %) died while waiting and 87 (84 %) received heart transplants after 87 ± 91 days. Cumulative 3 and 12 months survival of all 103 patients was 75 and 67 %, respectively. CONCLUSION Intermittent inotropes in HU patients are an adequate strategy as a bridge to transplant; the necessity for assist devices was low. These data provide the basis for a prospective multicenter trial of intermittent inotropes in patients on the HU waiting list.
Collapse
|
42
|
Liu Y, White HD, Belknap B, Winkelmann DA, Forgacs E. Omecamtiv Mecarbil modulates the kinetic and motile properties of porcine β-cardiac myosin. Biochemistry 2015; 54:1963-75. [PMID: 25680381 DOI: 10.1021/bi5015166] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We determined the effect of Omecamtiv Mecarbil, a novel allosteric effector of cardiac muscle myosin, on the kinetic and "in vitro" motility properties of the porcine ventricular heavy meromyosin (PV-HMM). Omecamtiv Mecarbil increases the equilibrium constant of the hydrolysis step (M-ATP ⇄ M-ADP-Pi) from 2.4 to 6 as determined by quench flow, but the maximal rates of both the hydrolysis step and tryptophan fluorescence increase are unchanged by the drug. OM also increases the amplitude of the fast phase of phosphate dissociation (AM-ADP-Pi → AM-ADP + Pi) that is associated with force production in muscle by 4-fold. These results suggest a mechanism in which hydrolysis of M-ATP to M-ADP-Pi occurs both before and after the recovery stroke, but rapid acceleration of phosphate dissociation by actin occurs only on post-recovery stroke A-M-ADP-Pi. One of the more dramatic effects of OM on PV-HMM is a 14-fold decrease in the unloaded shortening velocity measured by the in vitro motility assay. The increase in flux through phosphate dissociation and the unchanged rate of ADP dissociation (AM-ADP → AM + ADP) by the drug produce a higher duty ratio motor in which a larger fraction of myosin heads are strongly bound to actin filaments. The increased internal load produced by a larger fraction of strongly attached crossbridges explains the reduced rate of in vitro motility velocity in the presence of OM and predicts that the drug will produce slower and stronger contraction of cardiac muscle.
Collapse
Affiliation(s)
- Yingying Liu
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Howard D White
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Betty Belknap
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Donald A Winkelmann
- ‡Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Eva Forgacs
- †Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| |
Collapse
|
43
|
Ørstavik Ø, Manfra O, Andressen KW, Andersen GØ, Skomedal T, Osnes JB, Levy FO, Krobert KA. The inotropic effect of the active metabolite of levosimendan, OR-1896, is mediated through inhibition of PDE3 in rat ventricular myocardium. PLoS One 2015; 10:e0115547. [PMID: 25738589 PMCID: PMC4349697 DOI: 10.1371/journal.pone.0115547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022] Open
Abstract
Aims We recently published that the positive inotropic response (PIR) to levosimendan can be fully accounted for by phosphodiesterase (PDE) inhibition in both failing human heart and normal rat heart. To determine if the PIR of the active metabolite OR-1896, an important mediator of the long-term clinical effects of levosimendan, also results from PDE3 inhibition, we compared the effects of OR-1896, a representative Ca2+ sensitizer EMD57033 (EMD), levosimendan and other PDE inhibitors. Methods Contractile force was measured in rat ventricular strips. PDE assay was conducted on rat ventricular homogenate. cAMP was measured using RII_epac FRET-based sensors. Results OR-1896 evoked a maximum PIR of 33±10% above basal at 1 μM. This response was amplified in the presence of the PDE4 inhibitor rolipram (89±14%) and absent in the presence of the PDE3 inhibitors cilostamide (0.5±5.3%) or milrinone (3.2±4.4%). The PIR was accompanied by a lusitropic response, and both were reversed by muscarinic receptor stimulation with carbachol and absent in the presence of β-AR blockade with timolol. OR-1896 inhibited PDE activity and increased cAMP levels at concentrations giving PIRs. OR-1896 did not sensitize the concentration-response relationship to extracellular Ca2+. Levosimendan, OR-1896 and EMD all increased the sensitivity to β-AR stimulation. The combination of either EMD and levosimendan or EMD and OR-1896 further sensitized the response, indicating at least two different mechanisms responsible for the sensitization. Only EMD sensitized the α1-AR response. Conclusion The observed PIR to OR-1896 in rat ventricular strips is mediated through PDE3 inhibition, enhancing cAMP-mediated effects. These results further reinforce our previous finding that Ca2+ sensitization does not play a significant role in the inotropic (and lusitropic) effect of levosimendan, nor of its main metabolite OR-1896.
Collapse
Affiliation(s)
- Øivind Ørstavik
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ornella Manfra
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Wessel Andressen
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Geir Øystein Andersen
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Tor Skomedal
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan-Bjørn Osnes
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Finn Olav Levy
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Kurt Allen Krobert
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Cardiac Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Teichman SL, Maisel AS, Storrow AB. Challenges in acute heart failure clinical management: optimizing care despite incomplete evidence and imperfect drugs. Crit Pathw Cardiol 2015; 14:12-24. [PMID: 25679083 PMCID: PMC4342318 DOI: 10.1097/hpc.0000000000000031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acute heart failure is a common condition associated with considerable morbidity, mortality, and cost. However, evidence-based data on treating heart failure in the acute setting are limited, and current individual treatment options have variable efficacy. The healthcare team must often individualize patient care in ways that may extend beyond available clinical guidelines. In this review, we address the question, "How do you do the best you can clinically with incomplete evidence and imperfect drugs?" Expert opinion is provided to supplement guideline-based recommendations and help address the typical challenges that are involved in the management of patients with acute heart failure. Specifically, we discuss 4 key areas that are important in the continuum of patient care: differential diagnosis and risk stratification; choice and implementation of initial therapy; assessment of the adequacy of therapy during hospitalization or observation; and considerations for discharge/transition of care. A case study is presented to highlight the decision-making process throughout each of these areas. Evidence is accumulating that should help guide patients and healthcare providers on a path to better quality of care.
Collapse
Affiliation(s)
- Sam L. Teichman
- From Teichman Cardiology Research, Oakland, CA; Veterans Affairs San Diego Healthcare System, San Diego, and University of California, San Diego, La Jolla, CA; and Department of Emergency Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan S. Maisel
- From Teichman Cardiology Research, Oakland, CA; Veterans Affairs San Diego Healthcare System, San Diego, and University of California, San Diego, La Jolla, CA; and Department of Emergency Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan B. Storrow
- From Teichman Cardiology Research, Oakland, CA; Veterans Affairs San Diego Healthcare System, San Diego, and University of California, San Diego, La Jolla, CA; and Department of Emergency Medicine, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
45
|
Moussavi-Harami F, Razumova MV, Racca AW, Cheng Y, Stempien-Otero A, Regnier M. 2-Deoxy adenosine triphosphate improves contraction in human end-stage heart failure. J Mol Cell Cardiol 2015; 79:256-63. [PMID: 25498214 PMCID: PMC4301986 DOI: 10.1016/j.yjmcc.2014.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/16/2014] [Accepted: 12/02/2014] [Indexed: 01/10/2023]
Abstract
We are developing a novel treatment for heart failure by increasing myocardial 2 deoxy-ATP (dATP). Our studies in rodent models have shown that substitution of dATP for adenosine triphosphate (ATP) as the energy substrate in vitro or elevation of dATP in vivo increases myocardial contraction and that small increases in the native dATP pool of heart muscle are sufficient to improve cardiac function. Here we report, for the first time, the effect of dATP on human adult cardiac muscle contraction. We measured the contractile properties of chemically-demembranated multicellular ventricular wall preparations and isolated myofibrils from human subjects with end-stage heart failure. Isometric force was increased at both saturating and physiologic Ca(2+) concentrations with dATP compared to ATP. This resulted in an increase in the Ca(2+) sensitivity of force (pCa50) by 0.06 pCa units. The rate of force redevelopment (ktr) in demembranated wall muscle was also increased, as was the rate of contractile activation (kACT) in isolated myofibrils, indicating increased cross-bridge binding and cycling compared with ATP in failing human myocardium. These data suggest that dATP could increase dP/dT and end systolic pressure in failing human myocardium. Importantly, even though the magnitude and rate of force development were increased, there was no increase in the time to 50% and 90% myofibril relaxation. These data, along with our previous studies in rodent models, show the promise of elevating myocardial dATP to enhance contraction and restore cardiac pump function. These data also support further pre-clinical evaluation of this new approach for treating heart failure.
Collapse
Affiliation(s)
- Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Maria V Razumova
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Alice W Racca
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - April Stempien-Otero
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
46
|
Greenberg BH, Chou W, Saikali KG, Escandón R, Lee JH, Chen MM, Treshkur T, Megreladze I, Wasserman SM, Eisenberg P, Malik FI, Wolff AA, Shaburishvili T. Safety and tolerability of omecamtiv mecarbil during exercise in patients with ischemic cardiomyopathy and angina. JACC-HEART FAILURE 2014; 3:22-29. [PMID: 25453536 DOI: 10.1016/j.jchf.2014.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The goal of this study was to assess the safety and tolerability of omecamtiv mecarbil treatment during symptom-limited exercise in patients with ischemic cardiomyopathy and angina. These patients may have increased vulnerability to prolongation of the systolic ejection time. BACKGROUND Omecamtiv mecarbil is a selective cardiac myosin activator that augments cardiac contractility in patients with systolic heart failure through a dose-dependent increase in systolic ejection time. METHODS In this double-blind, placebo-controlled study, patients with chronic heart failure were randomized 2:1 to receive omecamtiv mecarbil or placebo in 2 sequential cohorts of escalating doses designed to achieve plasma concentrations previously shown to increase systolic function. Patients underwent 2 symptom-limited exercise treadmill tests (ETTs) at baseline (ETT1 and ETT2) and again before the end of a 20-h infusion of omecamtiv mecarbil (ETT3). RESULTS The primary pre-defined safety endpoint (i.e., the proportion of patients who stopped ETT3 because of angina at a stage earlier than baseline) was observed in 1 patient receiving placebo and none receiving omecamtiv mecarbil. No dose-dependent differences emerged in the proportion of patients stopping ETT3 for any reason or in the pattern of adverse events. CONCLUSIONS Doses of omecamtiv mecarbil producing plasma concentrations previously shown to increase systolic function were well tolerated during exercise in these study patients with ischemic cardiomyopathy and angina. There was no indication that treatment increased the likelihood of myocardial ischemia in this high-risk population. (Pharmacokinetics [PK] and Tolerability of Intravenous [IV] and Oral CK-1827452 in Patients With Ischemic Cardiomyopathy and Angina; NCT00682565).
Collapse
Affiliation(s)
| | - Willis Chou
- Cytokinetics, Inc., South San Francisco, California
| | | | | | | | | | - Tatyana Treshkur
- Almazov Federal Heart Blood and Endocrinology Centre, St. Petersburg, Russia
| | | | | | | | - Fady I Malik
- Cytokinetics, Inc., South San Francisco, California
| | | | | |
Collapse
|
47
|
Lymperopoulos A, Garcia D, Walklett K. Pharmacogenetics of cardiac inotropy. Pharmacogenomics 2014; 15:1807-1821. [PMID: 25493572 DOI: 10.2217/pgs.14.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ability to stimulate cardiac contractility is known as positive inotropy. Endogenous hormones, such as adrenaline and several natural or synthetic compounds possess this biological property, which is invaluable in the modern cardiovascular therapy setting, especially in acute heart failure or in cardiogenic shock. A number of proteins inside the cardiac myocyte participate in the molecular pathways that translate the initial stimulus, that is, the hormone or drug, into the effect of increased contractility (positive inotropy). Genetic variations (polymorphisms) in several genes encoding these proteins have been identified and characterized in humans with potentially significant consequences on cardiac inotropic function. The present review discusses these polymorphisms and their effects on cardiac inotropy, along with the individual pharmacogenomics of the most important positive inotropic agents in clinical use today. Important areas for future investigations in the field are also highlighted.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, 3200 S. University Drive, HPD (Terry) Bldg/Room 1338, Ft. Lauderdale, FL 33328-2018, USA
| | | | | |
Collapse
|
48
|
The effect of 17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and the inflammatory response during myocardial ischemia reperfusion injury in rats. J Cardiovasc Pharmacol 2014; 63:68-75. [PMID: 24126566 DOI: 10.1097/fjc.0000000000000027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of this study was to investigate the effect of 17-methoxyl-7-hydroxy-benzene-furanchalcone (MHBFC) on nuclear factor-kappa-binding (NF-κB) and the inflammatory response in rats with myocardial ischemia reperfusion injury (MI/RI). Sprague-Dawley rats were randomly divided into 7 groups, and the rat MI/RI model was established by the ligation of the left anterior descending for 30 minutes followed by ligation release for 1 hour. Areas of myocardial infarction were measured using Evans blue-2,3,5-Triphenyltetrazolium chloride (TTC) staining. Levels of malondialdehyde, glutathione peroxidase, and total superoxide dismutase were assessed. Release of interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-10 (IL-10) was measured by means of an enzyme-linked immunosorbent assay. NF-κBp65 and intercellular adhesion molecule-1 protein expression and caspase-3 and adenine nucleotide translocator-1 messenger RNA expression were evaluated by immunohistochemistry and reverse transcription polymerase chain reaction, respectively. Pretreatment with MHBFC decreased the infarction areas, the malondialdehyde, IL-1β and IL-6 levels, the expression of caspase-3, NF-κBp65, and intercellular adhesion molecule-1. Further, MHBFC increased total superoxide dismutase and glutathione peroxidase activities, the release of IL-10, and the expression of adenine nucleotide translocator-1 messenger RNA compared with the results of the model group. The experiment showed that MHBFC protected the heart against MI/RI possibly by reducing lipid peroxidation damage while inhibiting the activity of NF-κBp65 and the inflammatory response.
Collapse
|
49
|
Lindert S, Li MX, Sykes BD, McCammon JA. Computer-aided drug discovery approach finds calcium sensitizer of cardiac troponin. Chem Biol Drug Des 2014; 85:99-106. [PMID: 24954187 DOI: 10.1111/cbdd.12381] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 11/28/2022]
Abstract
In the fight against heart failure, therapeutics that have the ability to increase the contractile power of the heart are urgently needed. One possible route of action to improve heart contractile power is increasing the calcium sensitivity of the thin filament. From a pharmaceutical standpoint, calcium sensitizers have the distinct advantage of not altering cardiomyocyte calcium levels and thus have lower potential for side-effects. Small chemical molecules have been shown to bind to the interface between cTnC and the cTnI switch peptide and exhibit calcium-sensitizing properties, possibly by stabilizing cTnC in an open conformation. Building on existing structural data of a known calcium sensitizer bound to cardiac troponin, we combined computational structure-based virtual screening drug discovery methods and solution NMR titration assays to identify a novel calcium sensitizer 4-(4-(2,5-dimethylphenyl)-1-piperazinyl)-3-pyridinamine (NSC147866) which binds to cTnC and the cTnC-cTnI147-163 complex. Its presence increases the affinity of switch peptide to cTnC by approximately a factor of two. This action is comparable to that of known levosimendan analogues.
Collapse
Affiliation(s)
- Steffen Lindert
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA; NSF Center for Theoretical Biological Physics, La Jolla, CA, 92093, USA
| | | | | | | |
Collapse
|
50
|
García-González MJ, de Mora-Martín M, López-Fernández S, López-Díaz J, Martínez-Sellés M, Romero-García J, Cordero M, Lara-Padrón A, Marrero-Rodríguez F, del Mar García-Saiz M, Aldea-Perona A. Rationale and design of a randomized, double-blind, placebo controlled multicenter trial to study efficacy, security, and long term effects of intermittent repeated levosimendan administration in patients with advanced heart failure: LAICA study. Cardiovasc Drugs Ther 2014; 27:573-9. [PMID: 23887741 PMCID: PMC3830203 DOI: 10.1007/s10557-013-6476-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Advanced heart failure (HF) is associated with high morbidity and mortality; it represents a major burden for the health system. Episodes of acute decompensation requiring frequent and prolonged hospitalizations account for most HF-related expenditure. Inotropic drugs are frequently used during hospitalization, but rarely in out-patients. The LAICA clinical trial aims to evaluate the effectiveness and safety of monthly levosimendan infusion in patients with advanced HF to reduce the incidence of hospital admissions for acute HF decompensation. METHODS The LAICA study is a multicenter, prospective, randomized, double-blind, placebo-controlled, parallel group trial. It aims to recruit 213 out-patients, randomized to receive either a 24-h infusion of levosimendan at 0.1 μg/kg/min dose, without a loading dose, every 30 days, or placebo. RESULTS The main objective is to assess the incidence of admission for acute HF worsening during 12 months. Secondarily, the trial will assess the effect of intermittent levosimendan on other variables, including the time in days from randomization to first admission for acute HF worsening, mortality and serious adverse events. CONCLUSIONS The LAICA trial results could allow confirmation of the usefulness of intermittent levosimendan infusion in reducing the rate of hospitalization for HF worsening in advanced HF outpatients.
Collapse
Affiliation(s)
- Martín J García-González
- Department of Cardiology, Hospital Universitario de Canarias, Ctra. La Cuesta - Taco, Ofra s/n, 38320, San Cristóbal de La Laguna, Sta. Cruz de Tenerife, Spain,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|