1
|
Liu T, Yan T, Jia X, Liu J, Ma R, Wang Y, Wang X, Liang Y, Xiao Y, Dong Y. Systematic exploration of the potential material basis and molecular mechanism of the Mongolian medicine Nutmeg-5 in improving cardiac remodeling after myocardial infarction. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114847. [PMID: 34800647 DOI: 10.1016/j.jep.2021.114847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nutmeg-5, which consists of Myristica fragrans Houtt., Aucklandia lappa Decne., Inula helenium L., Fructus Choerospondiatis and Piper longum L., is an ancient and classic formula in traditional Mongolian medicine that is widely used in the treatment of ischemic heart disease. However, its material basis and pharmacological mechanisms remain to be fully elucidated. AIM OF THE STUDY The aim of this study was to explore the potential material basis and molecular mechanism of Nutmeg-5 in improving cardiac remodeling after myocardial infarction (MI). MATERIALS AND METHODS The constituents of Nutmeg-5 absorbed into the blood were identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). A mouse MI model was induced in male Kunming mice by permanent ligation of the left anterior descending coronary artery (LDA) ligation. Echocardiography was performed to assess cardiac function. The protective effect of Nutmeg-5 and compound Danshen dripping pills as positive control medicine on post-MI cardiac remodeling was evaluated by tissue histology and determination of the serum protein levels of biomarkers of myocardial injury. RNA sequencing analysis of mouse left ventricle tissue was performed to explore the molecular mechanism of Nutmeg-5 in cardiac remodeling after MI. RESULTS A total of 27 constituents absorbed into blood were identified in rat plasma following gavage administration of Nutmeg-5 (0.54 g/kg) for 1 h. We found that ventricular remodeling after MI was significantly improved after Nutmeg-5 treatment in mice, which was demonstrated by decreased mortality, better cardiac function, decreased heart weight to body weight and heart weight to tibia length ratios, and attenuated cardiac fibrosis and myocardial injury. RNA sequencing revealed that the protective effect of Nutmeg-5 on cardiac remodeling after MI was associated with improved heart metabolism. Further study found that Nutmeg-5 treatment could preserve the ultrastructure of mitochondria and upregulate gene expression related to mitochondrial function and structure. HIF-1α (hypoxia inducible factor 1, alpha subunit) expression was significantly upregulated in the hearts of MI mice and significantly suppressed in the hearts of Nutmeg-5-treated mice. In addition, Nutmeg-5 treatment significantly activated the peroxisome proliferator-activated receptor alpha signaling pathway, which was inhibited in the hearts of MI mice. CONCLUSIONS Nutmeg-5 attenuates cardiac remodeling after MI by improving heart metabolism and preserving mitochondrial dysfunction by inhibiting HIF-1α expression in the mouse heart after MI.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, PR China
| | - Tingting Yan
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xin Jia
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, PR China; Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Jing Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, PR China
| | - Ruilian Ma
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, PR China
| | - Yi Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, PR China
| | - Xianjue Wang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, 010050, Inner Mongolia, PR China
| | - Yabin Liang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, 010050, Inner Mongolia, PR China
| | - Yunfeng Xiao
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Inner Mongolia Medical University, Hohhot, 010110, PR China; Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China
| | - Yu Dong
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, PR China; Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| |
Collapse
|
2
|
Liu T, Wen H, Li H, Xu H, Xiao N, Liu R, Chen L, Sun Y, Song L, Bai C, Ge J, Zhang Y, Chen J. Oleic Acid Attenuates Ang II (Angiotensin II)-Induced Cardiac Remodeling by Inhibiting FGF23 (Fibroblast Growth Factor 23) Expression in Mice. Hypertension 2020; 75:680-692. [DOI: 10.1161/hypertensionaha.119.14167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plasma metabolic profiles were compared between patients with hypertension with and without left ventricular hypertrophy and significantly decreased oleic acid (OA) levels were observed in the peripheral blood of patients with hypertension with left ventricular hypertrophy. We sought to determine the effect and underlying mechanisms of OA on cardiac remodeling. In vitro studies with isolated neonatal mouse cardiomyocytes and cardiac fibroblasts revealed that OA significantly attenuated Ang II (angiotensin II)-induced cardiomyocyte growth and cardiac fibroblast collagen expression. In vivo, cardiac function, hypertrophic growth of cardiomyocytes, and fibrosis were analyzed after an Ang II (1000 ng/kg/minute) pump was implanted for 14 days. We found that OA could significantly prevent Ang II-induced cardiac remodeling in mice. RNA sequencing served as a gene expression roadmap highlighting gene expression changes in the hearts of Ang II-induced mice and OA-treated mice. The results revealed that FGF23 (fibroblast growth factor 23) expression was significantly upregulated in mouse hearts in response to Ang II infusion, which was significantly suppressed in the hearts of OA-treated mice. Furthermore, overexpression of FGF23 in the heart by injection of an AAV-9 vector aggravated Ang II-induced cardiac remodeling and impaired the protective effect of OA on cardiac remodeling. Further study found that OA could suppress Ang II-induced FGF23 expression by inhibiting the translocation of Nurr1 (nuclear receptor–related 1 protein) from the cytoplasm to the nucleus. Our findings suggest a novel role of OA in preventing Ang II-induced cardiac remodeling via suppression of FGF23 expression.
Collapse
Affiliation(s)
- Tianlong Liu
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (T.L., H.W., H.L., N.X., Y.S., L.S., C.B., J.G., Y.Z.)
| | - Hongyan Wen
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (T.L., H.W., H.L., N.X., Y.S., L.S., C.B., J.G., Y.Z.)
| | - Hao Li
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (T.L., H.W., H.L., N.X., Y.S., L.S., C.B., J.G., Y.Z.)
| | | | - Ning Xiao
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (T.L., H.W., H.L., N.X., Y.S., L.S., C.B., J.G., Y.Z.)
| | | | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China (L.C.)
| | - Yingying Sun
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (T.L., H.W., H.L., N.X., Y.S., L.S., C.B., J.G., Y.Z.)
| | - Li Song
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (T.L., H.W., H.L., N.X., Y.S., L.S., C.B., J.G., Y.Z.)
| | - Congxia Bai
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (T.L., H.W., H.L., N.X., Y.S., L.S., C.B., J.G., Y.Z.)
| | - Jing Ge
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (T.L., H.W., H.L., N.X., Y.S., L.S., C.B., J.G., Y.Z.)
| | - Yinhui Zhang
- From the State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (T.L., H.W., H.L., N.X., Y.S., L.S., C.B., J.G., Y.Z.)
| | | |
Collapse
|
3
|
Li J, Guan XK, Liu RX. Role of Chinese Herbal Medicines in Regulation of Energy Metabolism in Treating Cardiovascular Diseases. Chin J Integr Med 2019; 25:307-315. [PMID: 31236891 DOI: 10.1007/s11655-018-2943-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
Recently, studying myocardial energy metabolism pathways or improving myocardial metabolism through drugs is another effective strategy for treating ischemic heart disease. Many active components of Chinese herbal medicines (CHMs) have been found to modulate energy metabolism in myocardial cells, cerebral vascular cells, endothelial cells and tumour cells. This paper reviews the advances in studies on the active components of CHMs that modulating energy metabolism in treating cardiovascular diseases over the past five years.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuan-Ke Guan
- Department of Cardiology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ru-Xiu Liu
- Department of Cardiology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
4
|
McKirnan MD, Ichikawa Y, Zhang Z, Zemljic-Harpf AE, Fan S, Barupal DK, Patel HH, Hammond HK, Roth DM. Metabolomic analysis of serum and myocardium in compensated heart failure after myocardial infarction. Life Sci 2019; 221:212-223. [PMID: 30731143 DOI: 10.1016/j.lfs.2019.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 01/06/2023]
Abstract
AIMS To determine the metabolic adaptations to compensated heart failure using a reproducible model of myocardial infarction and an unbiased metabolic screen. To address the limitations in sample availability and model variability observed in preclinical and clinical metabolic investigations of heart failure. MAIN METHODS Metabolomic analysis was performed on serum and myocardial tissue from rabbits after myocardial infarction (MI) was induced by cryo-injury of the left ventricular free wall. Rabbits followed for 12 weeks after MI exhibited left ventricular dilation and depressed systolic function as determined by echocardiography. Serum and tissue from the viable left ventricular free wall, interventricular septum and right ventricle were analyzed using a gas chromatography time of flight mass spectrometry-based untargeted metabolomics assay for primary metabolites. KEY FINDINGS Unique results included: a two- three-fold increase in taurine levels in all three ventricular regions of MI rabbits and similarly, the three regions had increased inosine levels compared to sham controls. Reduced myocardial levels of myo-inositol in the myocardium of MI animals point to altered phospholipid metabolism and membrane receptor function in heart failure. Metabolite profiles also provide evidence for responses to oxidative stress and an impairment in TCA cycle energy production in the failing heart. SIGNIFICANCE Our results revealed metabolic changes during compensated cardiac dysfunction and suggest potential targets for altering the progression of heart failure.
Collapse
Affiliation(s)
- M Dan McKirnan
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America; Department of Medicine, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - Yasuhiro Ichikawa
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - Zheng Zhang
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - Alice E Zemljic-Harpf
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - Sili Fan
- UC Davis Genome Center, University of California, Davis, CA, United States of America
| | - Dinesh Kumar Barupal
- UC Davis Genome Center, University of California, Davis, CA, United States of America
| | - Hemal H Patel
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - H Kirk Hammond
- Department of Medicine, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America
| | - David M Roth
- Department of Anesthesiology, University of California, the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, CA, United States of America.
| |
Collapse
|
5
|
Deussen A. Klinische Relevanz des Energiestoffwechsels im Herzen. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2017. [DOI: 10.1007/s00398-017-0178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Noordali H, Loudon BL, Frenneaux MP, Madhani M. Cardiac metabolism - A promising therapeutic target for heart failure. Pharmacol Ther 2017; 182:95-114. [PMID: 28821397 DOI: 10.1016/j.pharmthera.2017.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Both heart failure with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF) are associated with high morbidity and mortality. Although many established pharmacological interventions exist for HFrEF, hospitalization and death rates remain high, and for those with HFpEF (approximately half of all heart failure patients), there are no effective therapies. Recently, the role of impaired cardiac energetic status in heart failure has gained increasing recognition with the identification of reduced capacity for both fatty acid and carbohydrate oxidation, impaired function of the electron transport chain, reduced capacity to transfer ATP to the cytosol, and inefficient utilization of the energy produced. These nodes in the genesis of cardiac energetic impairment provide potential therapeutic targets, and there is promising data from recent experimental and early-phase clinical studies evaluating modulators such as carnitine palmitoyltransferase 1 inhibitors, partial fatty acid oxidation inhibitors and mitochondrial-targeted antioxidants. Metabolic modulation may provide significant symptomatic and prognostic benefit for patients suffering from heart failure above and beyond guideline-directed therapy, but further clinical trials are needed.
Collapse
Affiliation(s)
- Hannah Noordali
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Brodie L Loudon
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Melanie Madhani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Chen Y, Yu S, Zhang N, Li Y, Chen S, Chang Y, Sun G, Sun Y. Atorvastatin prevents Angiotensin II induced myocardial hypertrophy in vitro via CCAAT/enhancer-binding protein β. Biochem Biophys Res Commun 2017; 486:423-430. [DOI: 10.1016/j.bbrc.2017.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 01/20/2023]
|
8
|
Zhang Y, Liao P, Zhu M, Li W, Hu D, Guan S, Chen L. Baicalin Attenuates Cardiac Dysfunction and Myocardial Remodeling in a Chronic Pressure-Overload Mice Model. Cell Physiol Biochem 2017; 41:849-864. [DOI: 10.1159/000459708] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Baicalin has been shown to be effective for various animal models of cardiovascular diseases, such as pulmonary hypertension, atherosclerosis and myocardial ischaemic injury. However, whether baicalin plays a role in cardiac hypertrophy remains unknown. Here we investigated the protective effects of baicalin on cardiac hypertrophy induced by pressure overload and explored the potential mechanisms involved. Methods: C57BL/6J-mice were treated with baicalin or vehicle following transverse aortic constriction or Sham surgery for up to 8 weeks, and at different time points, cardiac function and heart size measurement and histological and biochemical examination were performed. Results: Mice under pressure overload exhibited cardiac dysfunction, high mortality, myocardial hypertrophy, increased apoptosis and fibrosis markers, and suppressed cardiac expression of PPARα and PPARβ/δ. However, oral administration of baicalin improved cardiac dysfunction, decreased mortality, and attenuated histological and biochemical changes described above. These protective effects of baicalin were associated with reduced heart and cardiomyocyte size, lower fetal genes expression, attenuated cardiac fibrosis, lower expression of profibrotic markers, and decreased apoptosis signals in heart tissue. Moreover, we found that baicalin induced PPARα and PPARβ/δ expression in vivo and in vitro. Subsequent experiments demonstrated that long-term baicalin treatment presented no obvious cardiac lipotoxicity. Conclusions: The present results demonstrated that baicalin attenuates pressure overload induced cardiac dysfunction and ventricular remodeling, which would be due to suppressed cardiac hypertrophy, fibrosis, apoptosis and metabolic abnormality.
Collapse
|
9
|
Verma SK, Garikipati VNS, Kishore R. Mitochondrial dysfunction and its impact on diabetic heart. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1098-1105. [PMID: 27593695 DOI: 10.1016/j.bbadis.2016.08.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction and associated oxidative stress are strongly linked to cardiovascular, neurodegenerative, and age associated disorders. More specifically cardiovascular diseases are common in patients with diabetes and significant contributor to the high mortality rates associated with diabetes. Studies have shown that the heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Although the actual basis of the increased heart failure risk is multifactorial, increasing evidences suggest that imbalances in mitochondrial function and associated oxidative stress play an important role in this process. This review summarizes these abnormalities in mitochondrial function and discusses potential underlying mechanisms. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Suresh Kumar Verma
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | | | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
10
|
Loudon BL, Noordali H, Gollop ND, Frenneaux MP, Madhani M. Present and future pharmacotherapeutic agents in heart failure: an evolving paradigm. Br J Pharmacol 2016; 173:1911-24. [PMID: 26993743 PMCID: PMC4882493 DOI: 10.1111/bph.13480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/28/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Many conditions culminate in heart failure (HF), a multi‐organ systemic syndrome with an intrinsically poor prognosis. Pharmacotherapeutic agents that correct neurohormonal dysregulation and haemodynamic instability have occupied the forefront of developments within the treatment of HF in the past. Indeed, multiple trials aimed to validate these agents in the 1980s and early 1990s, resulting in a large and robust evidence‐base supporting their use clinically. An established treatment paradigm now exists for the treatment of HF with reduced ejection fraction (HFrEF), but there have been very few notable developments in recent years. HF remains a significant health concern with an increasing incidence as the population ages. We may indeed be entering the surgical era for HF treatment, but these therapies remain expensive and inaccessible to many. Newer pharmacotherapeutic agents are slowly emerging, many targeting alternative therapeutic pathways, but with mixed results. Metabolic modulation and manipulation of the nitrate/nitrite/nitric oxide pathway have shown promise and could provide the answers to fill the therapeutic gap between medical interventions and surgery, but further definitive trials are warranted. We review the significant evidence base behind the current medical treatments for HFrEF, the physiology of metabolic impairment in HF, and discuss two promising novel agents, perhexiline and nitrite.
Collapse
Affiliation(s)
- Brodie L Loudon
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Hannah Noordali
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nicholas D Gollop
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Michael P Frenneaux
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Zeng Z, Huang Q, Shu Z, Liu P, Chen S, Pan X, Zang L, Zhou S. Effects of short-chain acyl-CoA dehydrogenase on cardiomyocyte apoptosis. J Cell Mol Med 2016; 20:1381-91. [PMID: 26989860 PMCID: PMC4929297 DOI: 10.1111/jcmm.12828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/04/2016] [Indexed: 11/27/2022] Open
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, plays an important role in cardiac hypertrophy. However, its effect on the cardiomyocyte apoptosis remains unknown. We aimed to determine the role of SCAD in tert-butyl hydroperoxide (tBHP)-induced cardiomyocyte apoptosis. The mRNA and protein expression of SCAD were significantly down-regulated in the cardiomyocyte apoptosis model. Inhibition of SCAD with siRNA-1186 significantly decreased SCAD expression, enzyme activity and ATP content, but obviously increased the content of free fatty acids. Meanwhile, SCAD siRNA treatment triggered the same apoptosis as cardiomyocytes treated with tBHP, such as the increase in cell apoptotic rate, the activation of caspase3 and the decrease in the Bcl-2/Bax ratio, which showed that SCAD may play an important role in primary cardiomyocyte apoptosis. The changes of phosphonate AMP-activated protein kinase α (p-AMPKα) and Peroxisome proliferator-activated receptor α (PPARα) in cardiomyocyte apoptosis were consistent with that of SCAD. Furthermore, PPARα activator fenofibrate and AMPKα activator AICAR treatment significantly increased the expression of SCAD and inhibited cardiomyocyte apoptosis. In conclusion, for the first time our findings directly demonstrated that SCAD may be as a new target to prevent cardiomyocyte apoptosis through the AMPK/PPARα/SCAD signal pathways.
Collapse
Affiliation(s)
- Zhenhua Zeng
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Qiuju Huang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Zhaohui Shu
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaorui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuediao Pan
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Linquan Zang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Sigui Zhou
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
12
|
Zhu W, Cui Y, Feng X, Li Y, Zhang W, Xu J, Wang H, Lv S. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells. Can J Physiol Pharmacol 2016; 94:849-57. [PMID: 27203380 DOI: 10.1139/cjpp-2015-0537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm(2) for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I-IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.
Collapse
Affiliation(s)
- Wenhe Zhu
- a Department of Biochemistry, Ji Lin Medical University, Ji Lin 132013, China
| | - Yan Cui
- b First Hospital of Jilin University, Changchun, Jilin, China
| | - Xianmin Feng
- a Department of Biochemistry, Ji Lin Medical University, Ji Lin 132013, China
| | - Yan Li
- a Department of Biochemistry, Ji Lin Medical University, Ji Lin 132013, China
| | - Wei Zhang
- a Department of Biochemistry, Ji Lin Medical University, Ji Lin 132013, China
| | - Junjie Xu
- a Department of Biochemistry, Ji Lin Medical University, Ji Lin 132013, China
| | - Huiyan Wang
- a Department of Biochemistry, Ji Lin Medical University, Ji Lin 132013, China
| | - Shijie Lv
- a Department of Biochemistry, Ji Lin Medical University, Ji Lin 132013, China
| |
Collapse
|
13
|
Chen YY, Li Q, Pan CS, Yan L, Fan JY, He K, Sun K, Liu YY, Chen QF, Bai Y, Wang CS, He B, Lv AP, Han JY. QiShenYiQi Pills, a compound in Chinese medicine, protects against pressure overload-induced cardiac hypertrophy through a multi-component and multi-target mode. Sci Rep 2015; 5:11802. [PMID: 26136154 PMCID: PMC4488877 DOI: 10.1038/srep11802] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022] Open
Abstract
The present study aimed to explore the holistic mechanism for the antihypertrophic effect of a compound in Chinese medicine, QiShenYiQi Pills (QSYQ) and the contributions of its components to the effect in rats with cardiac hypertrophy (CH). After induction of CH by ascending aortic stenosis, rats were treated with QSYQ, each identified active ingredient (astragaloside IV, 3, 4-dihydroxy-phenyl lactic acid or notoginsenoside R1) from its 3 major herb components or dalbergia odorifera, either alone or combinations, for 1 month. QSYQ markedly attenuated CH, as evidenced by echocardiography, morphology and biochemistry. Proteomic analysis and western blot showed that the majority of differentially expressed proteins in the heart of QSYQ-treated rats were associated with energy metabolism or oxidative stress. Each ingredient alone or their combinations exhibited similar effects as QSYQ but to a lesser extent and differently with astragaloside IV and notoginsenoside R1 being more effective for enhancing energy metabolism, 3, 4-dihydroxy-phenyl lactic acid more effective for counteracting oxidative stress while dalbergia odorifera having little effect on the variables evaluated. In conclusion, QSYQ exerts a more potent antihypertrophic effect than any of its ingredients or their combinations, due to the interaction of its active components through a multi-component and multi-target mode.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- 1] Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China [2] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [3] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [4] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Quan Li
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Chun-Shui Pan
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Li Yan
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Jing-Yu Fan
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Ke He
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Kai Sun
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Yu-Ying Liu
- 1] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [2] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [3] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Qing-Fang Chen
- 1] Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China [2] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [3] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [4] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Yan Bai
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, Beijing, China
| | - Chuan-She Wang
- 1] Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China [2] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [3] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [4] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| | - Bing He
- The School of Chinese Medicine of Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ai-Ping Lv
- The School of Chinese Medicine of Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jing-Yan Han
- 1] Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China [2] Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China [3] Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China [4] Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of China, Beijing, China
| |
Collapse
|
14
|
Luan A, Tang F, Yang Y, Lu M, Wang H, Zhang Y. Astragalus polysaccharide attenuates isoproterenol-induced cardiac hypertrophy by regulating TNF-α/PGC-1α signaling mediated energy biosynthesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1081-90. [PMID: 25880160 DOI: 10.1016/j.etap.2015.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 05/21/2023]
Abstract
We previously reported that Astragalus polysaccharide (APS) extracted from Chinese medicine Astragalus membranaceus (Fisch.) Bge, attenuates hypertrophy of neonatal rat ventricular myocytes (NRVMs) induced by isoproterenol (Iso). The present study was designed to investigate the effects and the possible mechanism of APS on Iso-induced hypertrophy in rats and NRVMs with focus on tumor necrosis factor α (TNF-α)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) signaling mediated energy biosynthesis. 36-Week old rats were randomly divided into 3 groups: (1) Control, rats received vehicle; (2) Iso, rats received isoproterenol injections; (3) Iso+APS, rats received isoproterenol injections and APS. NRVMs were divided into similar groups as rats. The results showed that combination of APS with Iso significantly attenuated the pathological changes, reduced the ratios of heart weight/body weight (HW/BW) and left ventricular weight/BW (LVW/BW), improved the cardiac hemodynamics, down-regulated mRNA and protein expression of atrial natriuretic peptide (ANP), increased the ratios of ATP/ADP and ATP/AMP, and decreased the content of free fatty acid (FFA) in heart tissue of rats compared with Iso alone. In addition, pretreatment with APS significantly decreased the surface area and protein content, down-regulated mRNA and protein expression of ANP, increased the ratios of ATP/ADP and ATP/AMP, and decreased the content of FFA in NRVMs compared with Iso alone. Furthermore, APS increased the protein expressions of ATP5D, the σ subunit of ATP synthase, PGC-1α and pyruvate dehydrogenase kinase 4 (PDK4) in tissue and NRVMs respectively and inhibited the production of TNF-α in serum and culture medium compared with Iso alone. The results suggested that APS attenuates Iso-induced cardiac hypertrophy through regulating TNF-α/PGC-1α signaling mediated energy biosynthesis.
Collapse
Affiliation(s)
- Aina Luan
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, No. 40, Section 3, Songpo Road, Jinzhou 121001, PR China; Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renming Jie, Jinzhou 121001, PR China
| | - Futian Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, No. 40, Section 3, Songpo Road, Jinzhou 121001, PR China
| | - Yuhong Yang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, No. 40, Section 3, Songpo Road, Jinzhou 121001, PR China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, No. 40, Section 3, Songpo Road, Jinzhou 121001, PR China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Liaoning Medical University, No. 40, Section 3, Songpo Road, Jinzhou 121001, PR China.
| | - Yingjie Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renming Jie, Jinzhou 121001, PR China.
| |
Collapse
|
15
|
Ormerod JOM, Arif S, Mukadam M, Evans JDW, Beadle R, Fernandez BO, Bonser RS, Feelisch M, Madhani M, Frenneaux MP. Short-term intravenous sodium nitrite infusion improves cardiac and pulmonary hemodynamics in heart failure patients. Circ Heart Fail 2015; 8:565-71. [PMID: 25838311 PMCID: PMC4435579 DOI: 10.1161/circheartfailure.114.001716] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/25/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nitrite exhibits hypoxia-dependent vasodilator properties, selectively dilating capacitance vessels in healthy subjects. Unlike organic nitrates, it seems not to be subject to the development of tolerance. Currently, therapeutic options for decompensated heart failure (HF) are limited. We hypothesized that by preferentially dilating systemic capacitance and pulmonary resistance vessels although only marginally dilating resistance vessels, sodium nitrite (NaNO2) infusion would increase cardiac output but reduce systemic arterial blood pressure only modestly. We therefore undertook a first-in-human HF proof of concept/safety study, evaluating the hemodynamic effects of short-term NaNO2 infusion. METHODS AND RESULTS Twenty-five patients with severe chronic HF were recruited. Eight received short-term (5 minutes) intravenous NaNO2 at 10 μg/kg/min and 17 received 50 μg/kg/min with measurement of cardiac hemodynamics. During infusion of 50 μg/kg/min, left ventricular stroke volume increased (from 43.22±21.5 to 51.84±23.6 mL; P=0.003), with marked falls in pulmonary vascular resistance (by 29%; P=0.03) and right atrial pressure (by 40%; P=0.007), but with only modest falls in mean arterial blood pressure (by 4 mm Hg; P=0.004). The increase in stroke volume correlated with the increase in estimated trans-septal gradient (=pulmonary capillary wedge pressure-right atrial pressure; r=0.67; P=0.003), suggesting relief of diastolic ventricular interaction as a contributory mechanism. Directionally similar effects were observed for the above hemodynamic parameters with 10 μg/kg/min; this was significant only for stroke volume, not for other parameters. CONCLUSIONS This first-in-human HF efficacy/safety study demonstrates an attractive profile during short-term systemic NaNO2 infusion that may be beneficial in decompensated HF and warrants further evaluation with longer infusion regimens.
Collapse
Affiliation(s)
- Julian O M Ormerod
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Sayqa Arif
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Majid Mukadam
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Jonathan D W Evans
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Roger Beadle
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Bernadette O Fernandez
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Robert S Bonser
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Martin Feelisch
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Melanie Madhani
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.)
| | - Michael P Frenneaux
- From the Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (J.O.M.O., S.A., J.D.W.E., R.B., M.M.); Department of Cardiothoracic Surgery, Queen Elizabeth Hospital Birmingham NHS Trust, Birmingham, United Kingdom (M.M., R.S.B.); Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom (B.O.F., M.F.); and Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (M.P.F.).
| |
Collapse
|
16
|
Huang J, Xu L, Huang Q, Luo J, Liu P, Chen S, Yuan X, Lu Y, Wang P, Zhou S. Changes in short-chain acyl-coA dehydrogenase during rat cardiac development and stress. J Cell Mol Med 2015; 19:1672-88. [PMID: 25753319 PMCID: PMC4511364 DOI: 10.1111/jcmm.12541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022] Open
Abstract
This study was designed to investigate the expression of short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, during rat heart development and the difference of SCAD between pathological and physiological cardiac hypertrophy. The expression of SCAD was lowest in the foetal and neonatal heart, which had time-dependent increase during normal heart development. In contrast, a significant decrease in SCAD expression was observed in different ages of spontaneously hypertensive rats (SHR). On the other hand, swim-trained rats developed physiological cardiac hypertrophy, whereas SHR developed pathological cardiac hypertrophy. The two kinds of cardiac hypertrophy exhibited divergent SCAD changes in myocardial fatty acids utilization. In addition, the expression of SCAD was significantly decreased in pathological cardiomyocyte hypertrophy, however, increased in physiological cardiomyocyte hypertrophy. SCAD siRNA treatment triggered the pathological cardiomyocyte hypertrophy, which showed that the down-regulation of SCAD expression may play an important role in pathological cardiac hypertrophy. The changes in peroxisome proliferator-activated receptor α (PPARα) was accordant with that of SCAD. Moreover, the specific PPARα ligand fenofibrate treatment increased the expression of SCAD and inhibited pathological cardiac hypertrophy. Therefore, we speculate that the down-regulated expression of SCAD in pathological cardiac hypertrophy may be responsible for 'the recapitulation of foetal energy metabolism'. The deactivation of PPARα may result in the decrease in SCAD expression in pathological cardiac hypertrophy. Changes in SCAD are different in pathological and physiological cardiac hypertrophy, which may be used as the molecular markers of pathological and physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jinxian Huang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Lipeng Xu
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, China
| | - Qiuju Huang
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| | - Jiani Luo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaorui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xi Yuan
- Clinical Medicine Eight Years 1st Class 2007 Grade, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yao Lu
- Clinical Medicine Eight Years 1st Class 2007 Grade, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Sigui Zhou
- Department of Clinical Pharmacy, GuangDong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Altered myocardial calcium cycling and energetics in heart failure--a rational approach for disease treatment. Cell Metab 2015; 21:183-194. [PMID: 25651173 PMCID: PMC4338997 DOI: 10.1016/j.cmet.2015.01.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiomyocyte function depends on coordinated movements of calcium into and out of the cell and the proper delivery of ATP to energy-utilizing enzymes. Defects in calcium-handling proteins and abnormal energy metabolism are features of heart failure. Recent discoveries have led to gene-based therapies targeting calcium-transporting or -binding proteins, such as the cardiac sarco(endo)plasmic reticulum calcium ATPase (SERCA2a), leading to improvements in calcium homeostasis and excitation-contraction coupling. Here we review impaired calcium cycling and energetics in heart failure, assessing their roles from both a mutually exclusive and interdependent viewpoint, and discuss therapies that may improve the failing myocardium.
Collapse
|
18
|
Ozdemir S, Kırılmaz B, Barutçu A, Tan YZ, Çelik F, Akgoz S. The evaluation of left ventricular dyssynchronization in patients with hypertension by phase analysis of myocardial perfusion-gated SPECT. Ann Nucl Med 2014; 29:240-7. [DOI: 10.1007/s12149-014-0933-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/19/2014] [Indexed: 12/01/2022]
|