1
|
Banikarimi SP, Mellati A, Abasi M, Soleimani M, Ghiass MA, Ahmadi Tafti SH, Boroumand S, Hasanzadeh E. Cardiac tissue regeneration by microfluidic generated cardiac cell-laden calcium alginate microgels and mesenchymal stem cell extracted exosomes on myocardial infarction model. Int J Biol Macromol 2024; 292:139247. [PMID: 39733869 DOI: 10.1016/j.ijbiomac.2024.139247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Regenerative medicine is one of the effective approaches for myocardial infarcted (MI) tissue due to the low capacity of heart for regeneration. However, cell therapy with local administration has shown poor cell retention in the targeted area and limited engraftment capacity at the intended location, resulting in inadequate tissue regeneration. The present study involves mesenchymal stem cell-derived exosomes and encapsulated cells in small and injectable calcium alginate microgels by a specialized microfluidic device to decrease inflammation and increase cell retention in the infarcted tissue. The results have shown that our microfluidic system can produce monodisperse cardiac cell-laden alginate microgels within the size range of <100 μm that are easily injectable. Our in vivo findings on the MI rat model demonstrated that the combination of cardiac cell-laden calcium alginate microgels with mesenchymal stem cells derived exosomes resulted in a higher increase in echocardiography, heart-specific gene expressions, and cardiac markers results compared to the other groups. However, the administration of exosomes or cardiac cells separately has shown a small amount of regeneration. Encapsulating cardiac cells of specific sizes along with exosomes produced from mesenchymal stem cells can be potentially applied as an effective method for regenerating the myocardium following infarction.
Collapse
Affiliation(s)
- Seyedeh Parnian Banikarimi
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Adel Ghiass
- Tissue Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Tsai IT, Sun CK. Stem Cell Therapy against Ischemic Heart Disease. Int J Mol Sci 2024; 25:3778. [PMID: 38612587 PMCID: PMC11011361 DOI: 10.3390/ijms25073778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Ischemic heart disease, which is one of the top killers worldwide, encompasses a series of heart problems stemming from a compromised coronary blood supply to the myocardium. The severity of the disease ranges from an unstable manifestation of ischemic symptoms, such as unstable angina, to myocardial death, that is, the immediate life-threatening condition of myocardial infarction. Even though patients may survive myocardial infarction, the resulting ischemia-reperfusion injury triggers a cascade of inflammatory reactions and oxidative stress that poses a significant threat to myocardial function following successful revascularization. Moreover, despite evidence suggesting the presence of cardiac stem cells, the fact that cardiomyocytes are terminally differentiated and cannot significantly regenerate after injury accounts for the subsequent progression to ischemic cardiomyopathy and ischemic heart failure, despite the current advancements in cardiac medicine. In the last two decades, researchers have realized the possibility of utilizing stem cell plasticity for therapeutic purposes. Indeed, stem cells of different origin, such as bone-marrow- and adipose-derived mesenchymal stem cells, circulation-derived progenitor cells, and induced pluripotent stem cells, have all been shown to play therapeutic roles in ischemic heart disease. In addition, the discovery of stem-cell-associated paracrine effects has triggered intense investigations into the actions of exosomes. Notwithstanding the seemingly promising outcomes from both experimental and clinical studies regarding the therapeutic use of stem cells against ischemic heart disease, positive results from fraud or false data interpretation need to be taken into consideration. The current review is aimed at overviewing the therapeutic application of stem cells in different categories of ischemic heart disease, including relevant experimental and clinical outcomes, as well as the proposed mechanisms underpinning such observations.
Collapse
Affiliation(s)
- I-Ting Tsai
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Cheuk-Kwan Sun
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City 80794, Taiwan
| |
Collapse
|
3
|
Deszcz I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int 2023; 2023:2729377. [PMID: 37954462 PMCID: PMC10635745 DOI: 10.1155/2023/2729377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
The World Health Organization reports that cardiovascular diseases (CVDs) represent 32% of all global deaths. The ineffectiveness of conventional therapies in CVDs encourages the development of novel, minimally invasive therapeutic strategies for the healing and regeneration of damaged tissue. The self-renewal capacity, multilineage differentiation, lack of immunogenicity, and immunosuppressive properties of mesenchymal stem cells (MSCs) make them a promising option for CVDs. However, growing evidence suggests that myocardial regeneration occurs through paracrine factors and extracellular vesicle (EV) secretion, rather than through differentiation into cardiomyocytes. Research shows that stem cells secrete or surface-shed into their culture media various cytokines, chemokines, growth factors, anti-inflammatory factors, and EVs, which constitute an MSC-conditioned medium (MSC-CM) or the secretome. The use of MSC-CM enhances cardiac repair through resident heart cell differentiation, proliferation, scar mass reduction, a decrease in infarct wall thickness, and cardiac function improvement comparable to MSCs without their side effects. This review highlights the limitations and benefits of therapies based on stem cells and their secretome as an innovative treatment of CVDs.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
4
|
Wang Y, Wu J, Chen J, Lu C, Liang J, Shan Y, Liu J, Li Q, Miao L, He M, Wang X, Zhang J, Wu Z. Mesenchymal stem cells paracrine proteins from three-dimensional dynamic culture system promoted wound healing in third-degree burn models. Bioeng Transl Med 2023; 8:e10569. [PMID: 38023693 PMCID: PMC10658564 DOI: 10.1002/btm2.10569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 12/01/2023] Open
Abstract
Recovery of skin function remains a significant clinical challenge for deep burns owing to the severe scar formation and poor appendage regeneration, and stem cell therapy has shown great potential for injured tissue regeneration. Here, a cell-free therapy system for deep burn skin was explored using mesenchymal stem cell paracrine proteins (MSC-PP) and polyethylene glycol (PEG) temperature-sensitive hydrogels. A three-dimensional (3D) dynamic culture system for MSCs' large-scale expansion was established using a porous gelatin microcarrier crosslinked with hyaluronic acid (PGM-HA), and the purified MSC-PP from culture supernatant was characterized by mass spectrometric analysis. The results showed the 3D dynamic culture system regulated MSCs cell cycle, reduced apoptosis, and decreased lactic acid content, and the MSC-PP produced in 3D group can promote cell proliferation, migration, and adhesion. The MSC-PP + PEG system maintained stable release in 28 days of observation in vitro. The in vivo therapeutic efficacy was investigated in the rabbit's third-degree burn model, and saline, PEG, MSC-PP, and MSC-PP + PEG treatments groups were set. The in vivo results showed that the MSC-PP + PEG group significantly improved wound healing, inhibited scar formation, and facilitated skin appendage regeneration. In conclusion, the MSC-PP + PEG sustained-release system provides a potentially effective treatment for deep burn skin healing.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of OphthalmologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Cheng Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jinchao Liang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Yingyi Shan
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Liang Miao
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Mu He
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Xiaoying Wang
- Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Jianhua Zhang
- Special WardsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| |
Collapse
|
5
|
Shao L, Chen Y, Li J, Chao J, Yang Z, Ding Y, Shen H, Chen Y, Shen Z. Hypoxia-Elicited Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Alleviate Myocardial Infarction by Promoting Angiogenesis through the miR-214/Sufu Pathway. Stem Cells Int 2023; 2023:1662182. [PMID: 39280589 PMCID: PMC11401710 DOI: 10.1155/2023/1662182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 09/18/2024] Open
Abstract
Objective Myocardial infarction is a leading cause of mortality worldwide. Angiogenesis in the infarct border zone is vital for heart function restoration after myocardial infarction. Hypoxia-induced MSC modification is a safe and effective approach for angiogenesis in clinical therapy; however, the mechanism still requires further investigation. In our study, we preconditioned human umbilical cord mesenchymal stem cells (huMSCs) with hypoxia and isolated the small extracellular vesicles (sEVs) to promote cardiac repair. We also investigated the potential mechanisms. Method huMSCs were preconditioned with hypoxia (1% O2 and 5% CO2 at 37°C for 48 hours), and their sEVs were isolated using the Total Exosome Isolation reagent kit. To explore the role of miR-214 in MSC-derived sEVs, sEVs with low miR-214 expression were prepared by transfecting miR-214 inhibitor into huMSCs before hypoxia pretreatment. Scratch assays and tube formation assays were performed in sEVs cocultured with HUVECs to assess the proangiogenic capability of MSC-sEVs and MSChyp-sEVs. Rat myocardial infarction models were used to investigate the ability of miR-214-differentially expressed sEVs in cardiac repair. Echocardiography, Masson's staining, and immunohistochemical staining for CD31 were performed to assess cardiac function, the ratio of myocardial fibrosis, and the capillary density after sEV implantation. The potential mechanism by which MSChyp-sEVs enhance angiogenesis was explored in vitro by RT-qPCR and western blotting. Results Tube formation and scratch assays demonstrated that the proangiogenic capability of huMSC-derived sEVs was enhanced by hypoxia pretreatment. Echocardiography and Masson's staining showed greater improvements in heart function and less ventricular remodeling after MSChyp-sEV transplantation. The angiogenic capability was reduced following miR-214 knockdown in MSChyp-sEVs. Furthermore, Sufu, a target of miR-214, was decreased, and hedgehog signaling was activated in HUVECs. Conclusion We found that hypoxia induced miR-214 expression both in huMSCs and their sEVs. Transplantation of MSChyp-sEVs into a myocardial infarction model improved cardiac repair by increasing angiogenesis. Mechanistically, MSChyp-sEVs promote HUVEC tube formation and migration by transferring miR-214 into recipient cells, inhibiting Sufu expression, and activating the hedgehog pathway. Hypoxia-induced vesicle modification is a feasible way to restore heart function after myocardial infarction.
Collapse
Affiliation(s)
- Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Jingfan Chao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Yinglong Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Zhu Y, Wang S, Chen X. Extracellular Vesicles and Ischemic Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:57-68. [PMID: 37603272 DOI: 10.1007/978-981-99-1443-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Characterized by coronary artery obstruction or stenosis, ischemic cardiovascular diseases as advanced stages of coronary heart diseases commonly lead to left ventricular aneurysm, ventricular septal defect, and mitral insufficiency. Extracellular vesicles (EVs) secreted by diverse cells in the body exert roles in cell-cell interactions and intrinsic cellular regulations. With a lipid double-layer membrane and biological components such as DNA, protein, mRNA, microRNAs (miRNA), and siRNA inside, the EVs function as paracrine signaling for the pathophysiology of ischemic cardiovascular diseases and maintenance of the cardiac homeostasis. Unlike stem cell transplantation with the potential tumorigenicity and immunogenicity, the EV-based therapeutic strategy is proposed to satisfy the demand for cardiac repair and regeneration while the circulating EVs detected by a noninvasive approach can act as precious biomarkers. In this chapter, we extensively summarize the cardioprotective functions of native EVs and bioengineered EVs released from stem cells, cardiomyocytes, cardiac progenitor cells (CPCs), endothelial cells, fibroblast, smooth muscle cells, and immune cells. In addition, the potential of EVs as robust molecule biomarkers is discussed for clinical diagnosis of ischemic cardiovascular disease, attributed to the same pathology of EVs as that of their origin. Finally, we highlight EV-based therapy as a biocompatible alternative to direct cell-based therapy for ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xuerui Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
7
|
Chen X, Luo Q. Potential clinical applications of exosomes in the diagnosis, treatment, and prognosis of cardiovascular diseases: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:372. [PMID: 35433929 PMCID: PMC9011294 DOI: 10.21037/atm-22-619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Background and Objective Cardiovascular diseases (CVDs) have been one of the most common threats to human health in recent decades. At present, despite many diagnostic, prognostic and therapeutic methods being applied in the clinic, the prevalence of CVDs continues to rise. Therefore, new discovery is needed and exosomes have received extensive attention. Exosomes are extracellular vesicles that enable communication between cells. They are widely distributed in biofluids, suggesting that they may be useful in CVD diagnosis and prognosis. Furthermore, exosomes are ideal drug transporters with relatively high transport efficiency and the capability to target different kinds of tissues. However, the present research concentrates, for the most part, on mechanistic studies with less attention to clinical applications. Methods More than 150 relevant scientific articles from databases like PubMed, Web of Science were screened and analysed for this narrative review. Data of clinical trials are collected from clinicaltrials.gov. Key Content and Findings In this review, we concentrate on different exosomes and CVDs, and we summarize the physiological and pathological roles of CVD-related exosomes. We focused on the role exosomes may have as biomarkers of CVDs, therapeutic opportunities, and possible hurdles to the clinical application of exosomes, aiming to provide a useful reference for its translational use in the CVD field. Conclusions Specific changes in exosome cargos (mainly miRNAs and proteins) are in accordance with the occurrence and development of CVDs including acute myocardial infarction (AMI), arrhythmia, coronary artery disease (CAD), heart failure (HF) and cardiomyopathy, therefore meaningful for diagnosis and prognosis of CVDs. For exosome related therapeutic methods, potential ways consist of direct administration of exosomes, targeting on exosome synthesis, processing and release, and working as adjuvants. All in all, exosomes are expected to serve as meaningful tools in the diagnosis, treatment and prognosis of CVDs.
Collapse
Affiliation(s)
- Xuyang Chen
- Joint Program of Nanchang University and Queen Mary University of London, Queen Mary School, Medical Department, Nanchang University, Nanchang, China.,Department of Histology and Embryology, Nanchang University School of Basic Medical Sciences, Nanchang, China
| | - Qi Luo
- Department of Histology and Embryology, Nanchang University School of Basic Medical Sciences, Nanchang, China
| |
Collapse
|
8
|
Pan Q, Xu J, Wen CJ, Xiong YY, Gong ZT, Yang YJ. Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. Int J Nanomedicine 2021; 16:6719-6747. [PMID: 34621124 PMCID: PMC8491866 DOI: 10.2147/ijn.s328723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite several recent advances, current therapy and prevention strategies for myocardial infarction are far from satisfactory, owing to limitations in their applicability and treatment effects. Nanoparticles (NPs) enable the targeted and stable delivery of therapeutic compounds, enhance tissue engineering processes, and regulate the behaviour of transplants such as stem cells. Thus, NPs may be more effective than other mechanisms, and may minimize potential adverse effects. This review provides evidence for the view that function-oriented systems are more practical than traditional material-based systems; it also summarizes the latest advances in NP-based strategies for the treatment and prevention of myocardial infarction.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Cen-Jin Wen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
9
|
Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, Tayanloo-Beik A, Kordi R, Roudsari PP, Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol 2021; 9:704903. [PMID: 34568321 PMCID: PMC8461329 DOI: 10.3389/fcell.2021.704903] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is now the leading cause of adult death in the world. According to new estimates from the World Health Organization, myocardial infarction (MI) is responsible for four out of every five deaths due to cardiovascular disease. Conventional treatments of MI are taking aspirin and nitroglycerin as intermediate treatments and injecting antithrombotic agents within the first 3 h after MI. Coronary artery bypass grafting and percutaneous coronary intervention are the most common long term treatments. Since none of these interventions will fully regenerate the infarcted myocardium, there is value in pursuing more innovative therapeutic approaches. Regenerative medicine is an innovative interdisciplinary method for rebuilding, replacing, or repairing the missed part of different organs in the body, as similar as possible to the primary structure. In recent years, regenerative medicine has been widely utilized as a treatment for ischemic heart disease (one of the most fatal factors around the world) to repair the lost part of the heart by using stem cells. Here, the development of mesenchymal stem cells causes a breakthrough in the treatment of different cardiovascular diseases. They are easily obtainable from different sources, and expanded and enriched easily, with no need for immunosuppressing agents before transplantation, and fewer possibilities of genetic abnormality accompany them through multiple passages. The production of new cardiomyocytes can result from the transplantation of different types of stem cells. Accordingly, due to its remarkable benefits, stem cell therapy has received attention in recent years as it provides a drug-free and surgical treatment for patients and encourages a more safe and feasible cardiac repair. Although different clinical trials have reported on the promising benefits of stem cell therapy, there is still uncertainty about its mechanism of action. It is important to conduct different preclinical and clinical studies to explore the exact mechanism of action of the cells. After reviewing the pathophysiology of MI, this study addresses the role of tissue regeneration using various materials, including different types of stem cells. It proves some appropriate data about the importance of ethical problems, which leads to future perspectives on this scientific method.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Gao L, Wang L, Wei Y, Krishnamurthy P, Walcott GP, Menasché P, Zhang J. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. Sci Transl Med 2021; 12:12/561/eaay1318. [PMID: 32938792 DOI: 10.1126/scitranslmed.aay1318] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 04/13/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
Cell therapy treatment of myocardial infarction (MI) is mediated, in part, by exosomes secreted from transplanted cells. Thus, we compared the efficacy of treatment with a mixture of cardiomyocytes (CMs; 10 million), endothelial cells (ECs; 5 million), and smooth muscle cells (SMCs; 5 million) derived from human induced pluripotent stem cells (hiPSCs), or with exosomes extracted from the three cell types, in pigs after MI. Female pigs received sham surgery; infarction without treatment (MI group); or infarction and treatment with hiPSC-CMs, hiPSC-ECs, and hiPSC-SMCs (MI + Cell group); with homogenized fragments from the same dose of cells administered to the MI + Cell group (MI + Fra group); or with exosomes (7.5 mg) extracted from a 2:1:1 mixture of hiPSC-CMs:hiPSC-ECs:hiPSC-SMCs (MI + Exo group). Cells and exosomes were injected into the injured myocardium. In vitro, exosomes promoted EC tube formation and microvessel sprouting from mouse aortic rings and protected hiPSC-CMs by reducing apoptosis, maintaining intracellular calcium homeostasis, and increasing adenosine 5'-triphosphate. In vivo, measurements of left ventricular ejection fraction, wall stress, myocardial bioenergetics, cardiac hypertrophy, scar size, cell apoptosis, and angiogenesis in the infarcted region were better in the MI + Cell, MI + Fra, and MI + Exo groups than in the MI group 4 weeks after infarction. The frequencies of arrhythmic events in animals from the MI, MI + Cell, and MI + Exo groups were similar. Thus, exosomes secreted by hiPSC-derived cardiac cells improved myocardial recovery without increasing the frequency of arrhythmogenic complications and may provide an acellular therapeutic option for myocardial injury.
Collapse
Affiliation(s)
- Ling Gao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, P.R. China
| | - Lu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Gregory P Walcott
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Philippe Menasché
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.,Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université de Paris, PARCC, INSERM, F-75015 Paris, France
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
11
|
Hashemzadeh MR, Taghavizadeh Yazdi ME, Amiri MS, Mousavi SH. Stem cell therapy in the heart: Biomaterials as a key route. Tissue Cell 2021; 71:101504. [PMID: 33607524 DOI: 10.1016/j.tice.2021.101504] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are one of the main concerns, nowadays causing a high rate of mortality in the world. The majority of conventional treatment protects the heart from failure progression. As a novel therapeutic way, Regenerative medicine in the heart includes cellular and noncellular approaches. Despite the irrefutable privileges of noncellular aspects such as administration of exosomes, utilizing of miRNAs, and growth factors, they cannot reverse necrotic or ischemic myocardium, hence recruiting of stem cells to help regenerative therapy in the heart seems indispensable. Stem cell lineages are varied and divided into two main groups namely pluripotent and adult stem cells. Not only has each of which own regenerative capacity, benefits, and drawbacks, but their turnover also close correlates with the target organ and/or tissue as well as the stage and level of failure. In addition to inefficient tissue integration due to the defects in delivering methods and poor retention of transplanted cells, the complexity of the heart and its movement also make more rigorous the repair process. Hence, utilizing biomaterials can make a key route to tackle such obstacles. In this review, we evaluate some natural products which can help stem cells in regenerative medicine of the cardiovascular system.
Collapse
Affiliation(s)
- Mohammad Reza Hashemzadeh
- Department of Stem Cells and Regenerative Medicine, Royesh Stem Cell Biotechnology Institute, Mashhad, Iran; Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Zhao G, Ge Y, Zhang C, Zhang L, Xu J, Qi L, Li W. Progress of Mesenchymal Stem Cell-Derived Exosomes in Tissue Repair. Curr Pharm Des 2020; 26:2022-2037. [PMID: 32310043 DOI: 10.2174/1381612826666200420144805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are a kind of adult stem cells with self-replication and multidirectional differentiation, which can differentiate into tissue-specific cells under physiological conditions, maintaining tissue self-renewal and physiological functions. They play a role in the pathological condition by lateral differentiation into tissue-specific cells, replacing damaged tissue cells by playing the role of a regenerative medicine , or repairing damaged tissues through angiogenesis, thereby, regulating immune responses, inflammatory responses, and inhibiting apoptosis. It has become an important seed cell for tissue repair and organ reconstruction, and cell therapy based on MSCs has been widely used clinically. The study found that the probability of stem cells migrating to the damaged area after transplantation or differentiating into damaged cells is very low, so the researchers believe the leading role of stem cell transplantation for tissue repair is paracrine secretion, secreting growth factors, cytokines or other components. Exosomes are biologically active small vesicles secreted by MSCs. Recent studies have shown that they can transfer functional proteins, RNA, microRNAs, and lncRNAs between cells, and greatly reduce the immune response. Under the premise of promoting proliferation and inhibition of apoptosis, they play a repair role in tissue damage, which is caused by a variety of diseases. In this paper, the biological characteristics of exosomes (MSCs-exosomes) derived from mesenchymal stem cells, intercellular transport mechanisms, and their research progress in the field of stem cell therapy are reviewed.
Collapse
Affiliation(s)
- Guifang Zhao
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China
| | - Yiwen Ge
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Chenyingnan Zhang
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Leyi Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Junjie Xu
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Ling Qi
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China.,School of Basic Medical Sciences, Department of Pathophysiology, Jilin Medical University, Jilin 132013, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
13
|
McQuaig R, Dixit P, Yamauchi A, Van Hout I, Papannarao JB, Bunton R, Parry D, Davis P, Katare R. Combination of Cardiac Progenitor Cells From the Right Atrium and Left Ventricle Exhibits Synergistic Paracrine Effects In Vitro. Cell Transplant 2020; 29:963689720972328. [PMID: 33153286 PMCID: PMC7784587 DOI: 10.1177/0963689720972328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases, such as ischemic heart disease, remain the most common cause of death worldwide. Regenerative medicine with stem cell therapy is a promising tool for cardiac repair. Combination of different cell types has been shown to improve the therapeutic potential, which is thought to be due to synergistic or complimentary reparative effects. We investigated if the combination of cardiac progenitor cells (CPCs) of right atrial appendage (RAA) and left ventricle (LV) that are isolated from the same patient exert synergistic or complimentary paracrine effects for apoptotic cell death and angiogenesis in an in vitro model. Flow cytometry analysis showed that both RAA and LV CPCs expressed the mesenchymal cell markers CD90 and CD105, and were predominantly negative for the hematopoietic cell marker, CD34. Analysis of conditioned media (CM) collected from the CPCs cultured either alone or in combination in serum-deprived hypoxic conditions to simulate ischemia showed marked increase in the level of pro-survival hepatocyte growth factor and pro-angiogenic vascular endothelial growth factor-A in the combined RAA and LV CPC group. Next, to determine the therapeutic potential of CM, AC16 human ventricular cardiomyocytes and human umbilical vein endothelial cells (HUVECs) were treated with CM. Results showed a significant reduction in hypoxia-induced apoptosis of human cardiomyocytes treated with CM collected from combined RAA and LV CPC group. Similarly, matrigel assay showed a significantly increased tube length formed by HUVECs when treated with CM from combined RAA and LV CPC group. Our study provided evidence that the combination of RAA CPCs and LV CPCs may have superior therapeutic effects due to synergistic paracrine effects for cardiac repair. Therefore, in vivo studies are warranted to determine if a combination of different stem cell types have greater therapeutic potential than single-cell therapies.
Collapse
Affiliation(s)
- Ryan McQuaig
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Parul Dixit
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Atsushi Yamauchi
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jayanthi Bellae Papannarao
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dominic Parry
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Huang P, Wang L, Li Q, Tian X, Xu J, Xu J, Xiong Y, Chen G, Qian H, Jin C, Yu Y, Cheng K, Qian L, Yang Y. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 2020; 116:353-367. [PMID: 31119268 DOI: 10.1093/cvr/cvz139] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS Naturally secreted nanovesicles, known as exosomes, play important roles in stem cell-mediated cardioprotection. We have previously demonstrated that atorvastatin (ATV) pretreatment improved the cardioprotective effects of mesenchymal stem cells (MSCs) in a rat model of acute myocardial infarction (AMI). The aim of this study was to investigate if exosomes derived from ATV-pretreated MSCs exhibit more potent cardioprotective function in a rat model of AMI and if so to explore the underlying mechanisms. METHODS AND RESULTS Exosomes were isolated from control MSCs (MSC-Exo) and ATV-pretreated MSCs (MSCATV-Exo) and were then delivered to endothelial cells and cardiomyocytes in vitro under hypoxia and serum deprivation (H/SD) condition or in vivo in an acutely infarcted Sprague-Dawley rat heart. Regulatory genes and pathways activated by ATV pretreatment were explored using genomics approaches and functional studies. In vitro, MSCATV-Exo accelerated migration, tube-like structure formation, and increased survival of endothelial cells but not cardiomyocytes, whereas the exosomes derived from MSCATV-Exo-treated endothelial cells prevented cardiomyocytes from H/SD-induced apoptosis. In a rat AMI model, MSCATV-Exo resulted in improved recovery in cardiac function, further reduction in infarct size and reduced cardiomyocyte apoptosis compared to MSC-Exo. In addition, MSCATV-Exo promoted angiogenesis and inhibited the elevation of IL-6 and TNF-α in the peri-infarct region. Mechanistically, we identified lncRNA H19 as a mediator of the role of MSCATV-Exo in regulating expression of miR-675 and activation of proangiogenic factor VEGF and intercellular adhesion molecule-1. Consistently, the cardioprotective effects of MSCATV-Exo was abrogated when lncRNA H19 was depleted in the ATV-pretreated MSCs and was mimicked by overexpression of lncRNA H19. CONCLUSION Exosomes obtained from ATV-pretreated MSCs have significantly enhanced therapeutic efficacy for treatment of AMI possibly through promoting endothelial cell function. LncRNA H19 mediates, at least partially, the cardioprotective roles of MSCATV-Exo in promoting angiogenesis.
Collapse
Affiliation(s)
- Peisen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qing Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Xiaqiu Tian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Junyan Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Haiyan Qian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Yuan Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| | - Ke Cheng
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill and Raleigh, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing 100037, People's Republic of China
| |
Collapse
|
15
|
Lou X, Zhao M, Fan C, Fast VG, Valarmathi MT, Zhu W, Zhang J. N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts. Cardiovasc Res 2020; 116:671-685. [PMID: 31350544 DOI: 10.1093/cvr/cvz179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/29/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022] Open
Abstract
AIMS In regenerative medicine, cellular cardiomyoplasty is one of the promising options for treating myocardial infarction (MI); however, the efficacy of such treatment has shown to be limited due to poor survival and/or functional integration of implanted cells. Within the heart, the adhesion between cardiac myocytes (CMs) is mediated by N-cadherin (CDH2) and is critical for the heart to function as an electromechanical syncytium. In this study, we have investigated whether the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) can be enhanced through CDH2 overexpression. METHODS AND RESULTS CDH2-hiPSC-CMs and control wild-type (WT)-hiPSC-CMs were cultured in myogenic differentiation medium for 28 days. Using a mouse MI model, the cell survival/engraftment rate, infarct size, and cardiac functions were evaluated post-MI, at Day 7 or Day 28. In vitro, conduction velocities were significantly greater in CDH2-hiPSC-CMs than in WT-hiPSC-CMs. While, in vivo, measurements of cardiac functions: left ventricular (LV) ejection fraction, reduction in infarct size, and the cell engraftment rate were significantly higher in CDH2-hiPSC-CMs treated MI group than in WT-hiPSC-CMs treated MI group. Mechanistically, paracrine activation of ERK signal transduction pathway by CDH2-hiPSC-CMs, significantly induced neo-vasculogenesis, resulting in a higher survival of implanted cells. CONCLUSION Collectively, these data suggest that CDH2 overexpression enhances not only the survival/engraftment of cultured CDH2-hiPSC-CMs, but also the functional integration of these cells, consequently, the augmentation of the reparative properties of implanted CDH2-hiPSC-CMs in the failing hearts.
Collapse
Affiliation(s)
- Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Meng Zhao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Chengming Fan
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Vladimir G Fast
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Mani T Valarmathi
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Wuqiang Zhu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Esmaeili S, Bandarian F, Esmaeili B, Nasli-Esfahani E. Apelin and stem cells: the role played in the cardiovascular system and energy metabolism. Cell Biol Int 2019; 43:1332-1345. [PMID: 31166051 DOI: 10.1002/cbin.11191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/02/2019] [Indexed: 01/24/2023]
Abstract
Apelin, a member of the adipokine family, is widely distributed in the body and exerts cytoprotective effects on many organs. Apelin isoforms are involved in different physiological processes, including regulation of the cardiovascular system, cardiac contractility, angiogenesis, and energy metabolism. Several investigations have been performed to study the effect of apelin on stem cell therapy. This review aims to summarize the literature representing the effects of apelin on stem cell properties. Furthermore, this review discusses the therapeutic potential of apelin-treated stem cells for cardiovascular diseases and demonstrates the effect of stem cells overexpressing apelin on energy metabolism. Stem cells with their unique characteristics play a crucial role in the maintenance of tissue integrity. These cells participate in tissue regeneration via multiple mechanisms. Although preclinical and clinical studies have demonstrated the therapeutic potential of stem cells in various diseases, their application in regenerative medicine has not been efficient. A number of strategies such as genetic modification or treatment of stem cells with different factors have been used to improve the efficacy of cell therapy and to increase their survival after transplantation. This article reviews the effect of apelin treatment on the efficacy of cell therapy.
Collapse
Affiliation(s)
- Shahnaz Esmaeili
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Fatemeh Bandarian
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Behnaz Esmaeili
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Ensieh Nasli-Esfahani
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| |
Collapse
|
17
|
Huang P, Wang L, Li Q, Xu J, Xu J, Xiong Y, Chen G, Qian H, Jin C, Yu Y, Liu J, Qian L, Yang Y. Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Res Ther 2019; 10:300. [PMID: 31601262 PMCID: PMC6785902 DOI: 10.1186/s13287-019-1353-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Bone marrow mesenchymal stem cells (MSCs) are among the most common cell types to be used and studied for cardiac regeneration. Low survival rate and difficult retention of delivered MSCs in infarcted heart remain as major challenges in the field. Co-delivery of stem cell-derived exosomes (Exo) is expected to improve the recruitment and survival of transplanted MSCs. Methods Exo was isolated from MSCs and delivered to an acute myocardial infarction (AMI) rat heart through intramyocardial injection with or without intravenous infusion of atrovastatin-pretreated MSCs on day 1, day 3, or day 7 after infarction. Echocardiography was performed to evaluate cardiac function. Histological analysis and ELISA test were performed to assess angiogenesis, SDF-1, and inflammatory factor expression in the infarct border zone. The anti-apoptosis effect of Exo on MSCs was evaluated using flow cytometry and Hoechst 33342 staining assay. Results We found that intramyocardial delivery of Exo followed by MSC transplantation (in brief, Exo+MSC treatment) into MI hearts further improved cardiac function, reduced infarct size, and increased neovascularization when compared to controls treated with Exo or MSCs alone. Of note, comparing the three co-transplanting groups, intramyocardially injecting Exo 30 min after AMI combined with MSCs transplantation at day 3 after AMI achieved the highest improvement in heart function. The observed enhanced heart function is likely due to an improved microenvironment via Exo injection, which is exemplified as reduced inflammatory responses and better MSC recruitment and retention. Furthermore, we demonstrated that pre-transplantation injection of Exo enhanced survival of MSCs and reduced their apoptosis both in vitro and in vivo. Conclusions Combinatorial delivery of exosomes and stem cells in a sequential manner effectively reduces scar size and restores heart function after AMI. This approach may represent as an alternative promising strategy for stem cell-based heart repair and therapy.
Collapse
Affiliation(s)
- Peisen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Li Wang
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Qing Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Junyan Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Haiyan Qian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yuan Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,, Chapel Hill, USA.
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China.
| |
Collapse
|
18
|
Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells 2019; 8:cells8050467. [PMID: 31100966 PMCID: PMC6562906 DOI: 10.3390/cells8050467] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC)-sourced secretome, defined as the set of MSC-derived bioactive factors (soluble proteins, nucleic acids, lipids and extracellular vesicles), showed therapeutic effects similar to those observed after transplantation of MSCs. MSC-derived secretome may bypass many side effects of MSC-based therapy, including unwanted differentiation of engrafted MSCs. In contrast to MSCs which had to be expanded in culture to reach optimal cell number for transplantation, MSC-sourced secretome is immediately available for treatment of acute conditions, including fulminant hepatitis, cerebral ischemia and myocardial infarction. Additionally, MSC-derived secretome could be massively produced from commercially available cell lines avoiding invasive cell collection procedure. In this review article we emphasized molecular and cellular mechanisms that were responsible for beneficial effects of MSC-derived secretomes in the treatment of degenerative and inflammatory diseases of hepatobiliary, respiratory, musculoskeletal, gastrointestinal, cardiovascular and nervous system. Results obtained in a large number of studies suggested that administration of MSC-derived secretomes represents a new, cell-free therapeutic approach for attenuation of inflammatory and degenerative diseases. Therapeutic effects of MSC-sourced secretomes relied on their capacity to deliver genetic material, growth and immunomodulatory factors to the target cells enabling activation of anti-apoptotic and pro-survival pathways that resulted in tissue repair and regeneration.
Collapse
Affiliation(s)
| | | | - Nemanja Jovicic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland.
| | - Nebojsa Arsenijevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| | - Vladislav Volarevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| |
Collapse
|
19
|
Liu Y, Niu R, Li W, Lin J, Stamm C, Steinhoff G, Ma N. Therapeutic potential of menstrual blood-derived endometrial stem cells in cardiac diseases. Cell Mol Life Sci 2019; 76:1681-1695. [PMID: 30721319 PMCID: PMC11105669 DOI: 10.1007/s00018-019-03019-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Despite significant developments in medical and surgical strategies, cardiac diseases remain the leading causes of morbidity and mortality worldwide. Numerous studies involving preclinical and clinical trials have confirmed that stem cell transplantation can help improve cardiac function and regenerate damaged cardiac tissue, and stem cells isolated from bone marrow, heart tissue, adipose tissue and umbilical cord are the primary candidates for transplantation. During the past decade, menstrual blood-derived endometrial stem cells (MenSCs) have gradually become a promising alternative for stem cell-based therapy due to their comprehensive advantages, which include their ability to be periodically and non-invasively collected, their abundant source material, their ability to be regularly donated, their superior proliferative capacity and their ability to be used for autologous transplantation. MenSCs have shown positive therapeutic potential for the treatment of various diseases. Therefore, aside from a brief introduction of the biological characteristics of MenSCs, this review focuses on the progress being made in evaluating the functional improvement of damaged cardiac tissue after MenSC transplantation through preclinical and clinical studies. Based on published reports, we conclude that the paracrine effect, transdifferentiation and immunomodulation by MenSC promote both regeneration of damaged myocardium and improvement of cardiac function.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
| | - Rongcheng Niu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Wenzhong Li
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Christof Stamm
- Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Rostock, 18055, Rostock, Germany
| | - Nan Ma
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Rostock, 18055, Rostock, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513, Teltow, Germany
| |
Collapse
|
20
|
Wang Y, Xu F, Ma J, Shi J, Chen S, Liu Z, Liu J. Effect of stem cell transplantation on patients with ischemic heart failure: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2019; 10:125. [PMID: 30999928 PMCID: PMC6472092 DOI: 10.1186/s13287-019-1214-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem cell transplantation (SCT) has become a promising way to treat ischemic heart failure (IHF). We performed a large-scale meta-analysis of randomized clinical trials to investigate the efficacy and safety of SCT in IHF patients. Randomized controlled trials (RCTs) involving stem cell transplantation for the treatment of IHF were identified by searching the PubMed, EMBASE, SpringerLink, Web of Science, and Cochrane Systematic Review databases as well as from reviews and the reference lists of relevant articles. Fourteen eligible randomized controlled trials were included in this study, for a total of 669 IHF patients, of which 380 patients were treated with SCT. The weighted mean difference (WMD) was calculated for changes in the New York Heart Association (NYHA) class, left ventricular ejection fraction (LVEF), left ventricular end-diastolic and end-systolic volumes (LVEDV and LVESV), and Canadian Cardiovascular Society (CCS) angina grade using a fixed effects model, while relative risk (RR) was used for mortality. Compared with the control group, SCT significantly lowered the NYHA class (MD = − 0.73, 95% CI − 1.32 to − 0.14, P < 0.05), LVESV (MD = − 14.80, 95% CI − 20.88 to − 8.73, P < 0.05), and CCS grade (MD = − 0.81, 95% CI − 1.45 to − 0.17, P < 0.05). Additionally, SCT increased LVEF (MD = 6.55, 95% CI 5.93 to 7.16, P < 0.05). However, LVEDV (MD = − 0.33, 95% CI − 1.09 to 0.44, P > 0.05) and mortality (RR = 0.86, 95% CI 0.45 to 1.66, P > 0.05) did not differ between the two groups. This meta-analysis suggests that SCT may contribute to the improvement of LVEF, as well as the reduction of the NYHA class, CCS grade, and LVESV. In addition, SCT does not affect mortality.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fen Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jingwei Ma
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junwei Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
21
|
Zhu Y, Wang Y, Jia Y, Xu J, Chai Y. Catalpol promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the Wnt/β-catenin pathway. Stem Cell Res Ther 2019; 10:37. [PMID: 30670092 PMCID: PMC6341609 DOI: 10.1186/s13287-019-1143-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/22/2022] Open
Abstract
Background Rehmanniae Radix is a traditional herbal medicine in East Asia that has been widely used to treat patients with osteoporosis. However, the effect of catalpol, the primary active principle component of Rehmanniae Radix, on the function of bone marrow mesenchymal stem cells (BMSCs) and the underlying molecular mechanisms associated with its activity remain poorly understood. Methods The effect of catalpol on the proliferation of BMSCs was evaluated using a Cell Counting Kit-8 assay. Alkaline phosphatase (ALP) staining, ALP activity and Alizarin Red staining were performed to elucidate the effect of catalpol on the osteogenesis of BMSCs. qRT-PCR, Western blotting and immunofluorescence were performed to evaluate the expression of osteo-specific markers and the Wnt/β-catenin signalling-related genes and proteins. Moreover, a rat critical-sized calvarial defect model and a rat ovariectomy model were used to assess the effect of catalpol on bone regeneration in vivo. Results Catalpol significantly enhanced osteoblast-specific gene expression, alkaline phosphatase activity and calcium deposition in BMSCs in vitro. This phenomenon was accompanied by an upregulation of Wnt/β-catenin signalling. In addition, the enhanced osteogenesis due to catalpol treatment was partially reversed by a Wnt/β-catenin antagonist. Furthermore, catalpol increased the bone healing capacity of BMSCs in a rat critical-sized calvarial defect model and attenuated bone loss in a rat ovariectomy model. Conclusions These data suggest that catalpol enhances the osteogenic differentiation of BMSCs, partly via activation of the Wnt/β-catenin pathway. Catalpol may provide a new strategy for bone tissue engineering and can be a potential agent for the treatment of postmenopausal osteoporosis. Electronic supplementary material The online version of this article (10.1186/s13287-019-1143-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Yanmao Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Yachao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
22
|
Lazar E, Benedek T, Korodi S, Rat N, Lo J, Benedek I. Stem cell-derived exosomes - an emerging tool for myocardial regeneration. World J Stem Cells 2018; 10:106-115. [PMID: 30190780 PMCID: PMC6121000 DOI: 10.4252/wjsc.v10.i8.106] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to represent the number one cause of death and disability in industrialized countries. The most severe form of CVD is acute myocardial infarction (AMI), a devastating disease associated with high mortality and disability. In a substantial proportion of patients who survive AMI, loss of functional cardiomyocytes as a result of ischaemic injury leads to ventricular failure, resulting in significant alteration to quality of life and increased mortality. Therefore, many attempts have been made in recent years to identify new tools for the regeneration of functional cardiomyocytes. Regenerative therapy currently represents the ultimate goal for restoring the function of damaged myocardium by stimulating the regeneration of the infarcted tissue or by providing cells that can generate new myocardial tissue to replace the damaged tissue. Stem cells (SCs) have been proposed as a viable therapy option in these cases. However, despite the great enthusiasm at the beginning of the SC era, justified by promising initial results, this therapy has failed to demonstrate a significant benefit in large clinical trials. One interesting finding of SC studies is that exosomes released by mesenchymal SCs (MSCs) are able to enhance the viability of cardiomyocytes after ischaemia/reperfusion injury, suggesting that the beneficial effects of MSCs in the recovery of functional myocardium could be related to their capacity to secrete exosomes. Ten years ago, it was discovered that exosomes have the unique property of transferring miRNA between cells, acting as miRNA nanocarriers. Therefore, exosome-based therapy has recently been proposed as an emerging tool for cardiac regeneration as an alternative to SC therapy in the post-infarction period. This review aims to discuss the emerging role of exosomes in developing innovative therapies for cardiac regeneration as well as their potential role as candidate biomarkers or for developing new diagnostic tools.
Collapse
Affiliation(s)
- Erzsebet Lazar
- Department of Internal Medicine, Clinic of Haematology and Bone Marrow Transplantation, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540042, Romania
| | - Theodora Benedek
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| | - Szilamer Korodi
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| | - Nora Rat
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| | - Jocelyn Lo
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Imre Benedek
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| |
Collapse
|
23
|
Chen J, Wei J, Huang Y, Ma Y, Ni J, Li M, Zhu Y, Gao X, Fan G. Danhong Injection Enhances the Therapeutic Efficacy of Mesenchymal Stem Cells in Myocardial Infarction by Promoting Angiogenesis. Front Physiol 2018; 9:991. [PMID: 30093864 PMCID: PMC6070728 DOI: 10.3389/fphys.2018.00991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/06/2018] [Indexed: 01/07/2023] Open
Abstract
Stem cell-based therapies have the potential to dramatically transform the treatment and prognosis of myocardial infarction (MI), and mesenchymal stem cells (MSCs) have been suggested as a promising cell population to ameliorate the heart remodeling in post-MI. However, poor implantation and survival in ischemic myocardium restrict its efficacy and application. In this study, we sought to use the unique mode of action of Chinese medicine to improve this situation. Surrounding the myocardial infarct area, we performed a multi-point MSC transplantation and administered in conjunction with Danhong injection, which is mainly used for the treatment of MI. Our results showed that the MSC survival rate and cardiac function were improved significantly through the small animal imaging system and echocardiography, respectively. Moreover, histological analysis showed that MSC combined with DHI intervention significantly reduced myocardial infarct size in myocardial infarcted mice and significantly increased MSC resident. To investigate the mechanism of DHI promoting MSC survival and cell migration, PCR and WB experiments were performed. Our results showed that DHI could promote the expression of CXC chemokine receptor 4 in MSC and enhance the expression of stromal cell–derived factor-1 in myocardium, and this effect can be inhibited by AMD3100 (an SDF1/CXCR4 antagonist). Additionally, MSC in combination with DHI interfered with MI in mice and this signifies that when combined, the duo could the expression of vascular endothelial growth factor (VEGF) in the marginal zone of infarction compared with when either MSC or DHI are used individually. Based on these results, we conclude that DHI enhances the residence of MSCs in cardiac tissue by modulating the SDF1/CXCR4 signaling pathway. These findings have important therapeutic implications for Chinese medicine-assisted cell-based therapy strategies.
Collapse
Affiliation(s)
- Jingrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Wei
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Ma
- Oxford Chinese Medicine Research Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Akhyari P, Oberle F, Hülsmann J, Heid H, Lehr S, Barbian A, Nakanishi S, Aubin H, Jenke A, Lichtenberg A. Characterization of the Epicardial Adipose Tissue in Decellularized Human-Scaled Whole Hearts: Implications for the Whole-Heart Tissue Engineering. Tissue Eng Part A 2018; 24:682-693. [DOI: 10.1089/ten.tea.2017.0107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Payam Akhyari
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Fabian Oberle
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Jörn Hülsmann
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Hans Heid
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Lehr
- Proteomics Group, German Diabetes Center, Duesseldorf, Germany
| | - Andreas Barbian
- Core Facility for Electron Microscopy, Division of Clinical Anatomy, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Sentaro Nakanishi
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- Department of Cardiac Surgery, Asahikawa Medical University, Hokkaido, Japan
| | - Hug Aubin
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alexander Jenke
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Artur Lichtenberg
- Research Group for Experimental Surgery, Department of Cardiovascular Surgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
25
|
Wierzbinski KR, Szymanski T, Rozwadowska N, Rybka JD, Zimna A, Zalewski T, Nowicka-Bauer K, Malcher A, Nowaczyk M, Krupinski M, Fiedorowicz M, Bogorodzki P, Grieb P, Giersig M, Kurpisz MK. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Sci Rep 2018; 8:3682. [PMID: 29487326 PMCID: PMC5829264 DOI: 10.1038/s41598-018-22018-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction (MI) is one of the most frequent causes of death in industrialized countries. Stem cells therapy seems to be very promising for regenerative medicine. Skeletal myoblasts transplantation into postinfarction scar has been shown to be effective in the failing heart but shows limitations such, e.g. cell retention and survival. We synthesized and investigated superparamagnetic iron oxide nanoparticles (SPIONs) as an agent for direct cell labeling, which can be used for stem cells imaging. High quality, monodisperse and biocompatible DMSA-coated SPIONs were obtained with thermal decomposition and subsequent ligand exchange reaction. SPIONs' presence within myoblasts was confirmed by Prussian Blue staining and inductively coupled plasma mass spectrometry (ICP-MS). SPIONs' influence on tested cells was studied by their proliferation, ageing, differentiation potential and ROS production. Cytotoxicity of obtained nanoparticles and myoblast associated apoptosis were also tested, as well as iron-related and coating-related genes expression. We examined SPIONs' impact on overexpression of two pro-angiogenic factors introduced via myoblast electroporation method. Proposed SPION-labeling was sufficient to visualize firefly luciferase-modified and SPION-labeled cells with magnetic resonance imaging (MRI) combined with bioluminescence imaging (BLI) in vivo. The obtained results demonstrated a limited SPIONs' influence on treated skeletal myoblasts, not interfering with basic cell functions.
Collapse
Affiliation(s)
| | - Tomasz Szymanski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | | | - Jakub D Rybka
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Agnieszka Zimna
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland
| | | | - Agnieszka Malcher
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Michal Krupinski
- The Henryk Niewodniczanski Institute, Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland
| | - Michal Fiedorowicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bogorodzki
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Grieb
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Giersig
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland.,Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Maciej K Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
26
|
Abstract
During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity.
Collapse
|
27
|
Kwon H, Kim M, Seo Y, Moon YS, Lee HJ, Lee K, Lee H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2017; 156:172-193. [PMID: 29197748 DOI: 10.1016/j.biomaterials.2017.11.034] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
The field of gene therapy has evolved over the past two decades after the first introduction of nucleic acid drugs, such as plasmid DNA (pDNA). With the development of in vitro transcription (IVT) methods, synthetic mRNA has become an emerging class of gene therapy. IVT mRNA has several advantages over conventional pDNA for the expression of target proteins. mRNA does not require nuclear localization to mediate protein translation. The intracellular process for protein expression is much simpler and there is no potential risk of insertion mutagenesis. Having these advantages, the level of protein expression is far enhanced as comparable to that of viral expression systems. This makes IVT mRNA a powerful alternative gene expression system for various applications in regenerative medicine. In this review, we highlight the synthesis and preparation of IVT mRNA and its therapeutic applications. The article includes the design and preparation of IVT mRNA, chemical modification of IVT mRNA, and therapeutic applications of IVT mRNA in cellular reprogramming, stem cell engineering, and protein replacement therapy. Finally, future perspectives and challenges of IVT mRNA are discussed.
Collapse
Affiliation(s)
- Hyokyoung Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yae Seul Moon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
28
|
Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy. Stem Cells Int 2017; 2017:6823917. [PMID: 29109742 PMCID: PMC5646323 DOI: 10.1155/2017/6823917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.
Collapse
|
29
|
Zhao Y, Ponnusamy M, Zhang L, Zhang Y, Liu C, Yu W, Wang K, Li P. The role of miR-214 in cardiovascular diseases. Eur J Pharmacol 2017; 816:138-145. [PMID: 28842125 DOI: 10.1016/j.ejphar.2017.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/02/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death throughout the world. The increase in new patients every year leads to a demand for the identification of valid and novel prognostic and diagnostic biomarkers for the prevention and treatment of cardiovascular diseases. MicroRNAs (miRNAs) are critical endogenous small noncoding RNAs that negatively modulate gene expression by regulating its translation. miRNAs are implicated in most physiological processes of the heart and in the pathological progression of cardiovascular diseases. miR-214 is a deregulated miRNA in many pathological conditions, and it contributes to the pathogenesis of multiple human disorders, including cancer and cardiovascular diseases. miR-214 has dual functions in different cardiac pathological circumstances. However, it is considered as a promising marker in the prognosis, diagnosis and treatment of cardiovascular diseases. In this review, we discuss the role of miR-214 in various cardiac disease conditions, including ischaemic heart diseases, cardiac hypertrophy, pulmonary arterial hypertension (PAH), angiogenesis following vascular injury and heart failure.
Collapse
Affiliation(s)
- Yanfang Zhao
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Lei Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Peifeng Li
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
30
|
Ong CS, Fukunishi T, Zhang H, Huang CY, Nashed A, Blazeski A, DiSilvestre D, Vricella L, Conte J, Tung L, Tomaselli GF, Hibino N. Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Sci Rep 2017; 7:4566. [PMID: 28676704 PMCID: PMC5496874 DOI: 10.1038/s41598-017-05018-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
We have developed a novel method to deliver stem cells using 3D bioprinted cardiac patches, free of biomaterials. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), fibroblasts (FB) and endothelial cells (EC) were aggregated to create mixed cell spheroids. Cardiac patches were created from spheroids (CM:FB:EC = 70:15:15, 70:0:30, 45:40:15) using a 3D bioprinter. Cardiac patches were analyzed with light and video microscopy, immunohistochemistry, immunofluorescence, cell viability assays and optical electrical mapping. Cardiac tissue patches of all cell ratios beat spontaneously after 3D bioprinting. Patches exhibited ventricular-like action potential waveforms and uniform electrical conduction throughout the patch. Conduction velocities were higher and action potential durations were significantly longer in patches containing a lower percentage of FBs. Immunohistochemistry revealed staining for CM, FB and EC markers, with rudimentary CD31+ blood vessel formation. Immunofluorescence revealed the presence of Cx43, the main cardiac gap junction protein, localized to cell-cell borders. In vivo implantation suggests vascularization of 3D bioprinted cardiac patches with engraftment into native rat myocardium. This constitutes a significant step towards a new generation of stem cell-based treatment for heart failure.
Collapse
Affiliation(s)
- Chin Siang Ong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Takuma Fukunishi
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Huaitao Zhang
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Chen Yu Huang
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Andrew Nashed
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Adriana Blazeski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Luca Vricella
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John Conte
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Gordon F Tomaselli
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA.
| |
Collapse
|
31
|
Goradel NH, Hour FG, Negahdari B, Malekshahi ZV, Hashemzehi M, Masoudifar A, Mirzaei H. Stem Cell Therapy: A New Therapeutic Option for Cardiovascular Diseases. J Cell Biochem 2017; 119:95-104. [PMID: 28543595 DOI: 10.1002/jcb.26169] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/24/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are known as one of major causes of morbidity and mortality worldwide. Despite the many advancement in therapies are associated with cardiovascular diseases, it seems that finding of new therapeutic option is necessary. Cell therapy is one of attractive therapeutic platforms for treatment of a variety of diseases such as cardiovascular diseases. Among of various types of cell therapy, stem cell therapy has been emerged as an effective therapeutic approach in this area. Stem cells divided into multipotent stem cells and pluripotent stem cells. A large number studies indicated that utilization of each of them are associated with a variety of advantages and disadvantages. Multiple lines evidence indicated that stem cell therapy could be used as suitable therapeutic approach for treatment of cardiovascular diseases. Many clinical trials have been performed for assessing efficiency of stem cell therapies in human. However, stem cell therapy are associated with some challenges, but, it seems resolving of them could contribute to using of them as effective therapeutic approach for patients who suffering from cardiovascular diseases. In the current review, we summarized current therapeutic strategies based on stem cells for cardiovascular diseases. J. Cell. Biochem. 119: 95-104, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Ghiyami- Hour
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Vaisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Hashemzehi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW In this review, we focus on the multiple advancements in the field of cardiovascular regenerative medicine and the state-of-the art of building a heart. An organ is comprised of cells, but cells alone do not comprise an organ. We summarize the components needed, the hurdles, and likely translational steps defining the opportunities for discovery. RECENT FINDINGS The therapies being developed in regenerative medicine aim not only to repair, but also to regenerate or replace ailing tissues and organs. The first generation of cardiac regenerative medicine was gene therapy. The past decade has focused primarily on cell therapy, particularly for repair after ischemic injury with mixed results. Although cell therapy is promising, it will likely never reverse end-stage heart failure; and thus, the unmet need is, and will remain, for organs. Scientists have now tissue engineering and regenerative medicine concepts to invent alternative therapies for a wide spectrum of diseases encompassing cardiovascular, respiratory, gastrointestinal, hepatic, renal, musculoskeletal, ocular, and neurodegenerative disorders. Current studies focus on potential scaffolds and applying concepts and techniques learned with testbeds to building human sized organs. Special focus has been given to scaffold sources, cells types and sources, and cell integration with scaffolds. The complexity arises in combining them to yield an organ. SUMMARY Regenerative medicine has emerged as one of the most promising fields of translational research and has the potential to minimize both the need for, and increase the availability of, donor organs. The field is characterized by its integration of biology, physical sciences, and engineering. The proper integration of these fields could lead to off-the-shelf bioartificial organs that are suitable for transplantation. Building a heart will necessarily require a scaffold that can provide cardiac function. We believe that the advent of decellularization methods provides complex, unique, and natural scaffold sources. Ultimately, cell biology and tissue engineering will need to synergize with scaffold biology, finding cell sources and reproducible ways to expand their numbers is an unmet need. But tissue engineering is moving toward whole organ synthesis at an unparalleled pace.
Collapse
Affiliation(s)
- Doris A. Taylor
- Regenerative Medicine Research, Texas Heart Institute, PO Box 20345, Houston, TX 77225-0345 USA
| | - Rohan B. Parikh
- Regenerative Medicine Research, Texas Heart Institute, PO Box 20345, Houston, TX 77225-0345 USA
| | - Luiz C. Sampaio
- Regenerative Medicine Research, Texas Heart Institute, PO Box 20345, Houston, TX 77225-0345 USA
| |
Collapse
|
33
|
Williams JK, Andersson KE. Regenerative pharmacology: recent developments and future perspectives. Regen Med 2016; 11:859-870. [DOI: 10.2217/rme-2016-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the current status of research that utilizes the application of pharmacological sciences to accelerate, optimize and characterize the development, maturation and function of bioengineered and regenerating tissues. These regenerative pharmacologic approaches have been applied to diseases of the urogenital tract, the heart, the brain, the musculoskeletal system and diabetes. Approaches have included the use of growth factors (such as VEGF and chemokines (stromal-derived factor – CXCL12) to mobilize cell to the sights of tissue loss or damage. The promise of this approach is to bypass the lengthy and expensive processes of cell isolation and implant fabrication to stimulate the body to heal itself with its own tissue regenerative pathways.
Collapse
Affiliation(s)
- James Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|