1
|
Thamman R, Hosseini N, Dikou ML, Hassan IU, Marchenko O, Abiola O, Grapsa J. Imaging Advances in Heart Failure. Card Fail Rev 2024; 10:e12. [PMID: 39386081 PMCID: PMC11462517 DOI: 10.15420/cfr.2023.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/17/2023] [Indexed: 10/12/2024] Open
Abstract
This paper delves into the significance of imaging in the diagnosis, aetiology and therapeutic guidance of heart failure, aiming to facilitate early referral and improve patient outcomes. Imaging plays a crucial role not only in assessing left ventricular ejection fraction, but also in characterising the underlying cardiac abnormalities and reaching a specific diagnosis. By providing valuable data on cardiac structure, function and haemodynamics, imaging helps diagnose the condition, evaluate haemodynamic status and, consequently, identify the underlying pathophysiological phenotype, as well as stratifying the risk for outcomes. In this article, we provide a comprehensive exploration of these aspects.
Collapse
Affiliation(s)
- Ritu Thamman
- Department of Cardiology, University of Pittsburgh School of MedicinePittsburgh, PA, US
| | | | | | | | | | - Olukayode Abiola
- Department of Cardiology, Lister General HospitalStevenage, Hertfordshire, UK
| | - Julia Grapsa
- Department of Cardiology, St Thomas’ HospitalLondon, UK
| |
Collapse
|
2
|
Yang Y, Wang F, Han X, Xu H, Zhang Y, Xu W, Wang S, Lu L. Automatic reorientation to generate short-axis myocardial PET images. EJNMMI Phys 2024; 11:70. [PMID: 39090442 PMCID: PMC11294504 DOI: 10.1186/s40658-024-00673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Accurately redirecting reconstructed Positron emission tomography (PET) images into short-axis (SA) images shows great significance for subsequent clinical diagnosis. We developed a system for automatic redirection and quantitative analysis of myocardial PET images. METHODS A total of 128 patients were enrolled for 18 F-FDG PET/CT myocardial metabolic images (MMIs), including 3 image classifications: without defects, with defects, and excess uptake. The automatic reorientation system includes five modules: regional division, myocardial segmentation, ellipsoid fitting, image rotation and quantitative analysis. First, the left ventricular geometry-based canny edge detection (LVG-CED) was developed and compared with the other 5 common region segmentation algorithms, the optimized partitioning was determined based on partition success rate. Then, 9 myocardial segmentation methods and 4 ellipsoid fitting methods were combined to derive 36 cross combinations for diagnostic performance in terms of Pearson correlation coefficient (PCC), Kendall correlation coefficient (KCC), Spearman correlation coefficient (SCC), and determination coefficient. Finally, the deflection angles were computed by ellipsoid fitting and the SA images were derived by affine transformation. Furthermore, the polar maps were used for quantitative analysis of SA images, and the redirection effects of 3 different image classifications were analyzed using correlation coefficients. RESULTS On the dataset, LVG-CED outperformed other methods in the regional division module with a 100% success rate. In 36 cross combinations, PSO-FCM and LLS-SVD performed the best in terms of correlation coefficient. The linear results indicate that our algorithm (LVG-CED, PSO-FCM, and LLS-SVD) has good consistency with the reference manual method. In quantitative analysis, the similarities between our method and the reference manual method were higher than 96% at 17 segments. Moreover, our method demonstrated excellent performance in all 3 image classifications. CONCLUSION Our algorithm system could realize accurate automatic reorientation and quantitative analysis of PET MMIs, which is also effective for images suffering from interference.
Collapse
Affiliation(s)
- Yuling Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China
| | - Fanghu Wang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Xu Han
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China
| | - Hui Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Yangmei Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China
| | - Weiping Xu
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Shuxia Wang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Lijun Lu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China.
- Pazhou Lab, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Li L, Ding W, Huang L, Zhuang X, Grau V. Multi-modality cardiac image computing: A survey. Med Image Anal 2023; 88:102869. [PMID: 37384950 DOI: 10.1016/j.media.2023.102869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/01/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Multi-modality cardiac imaging plays a key role in the management of patients with cardiovascular diseases. It allows a combination of complementary anatomical, morphological and functional information, increases diagnosis accuracy, and improves the efficacy of cardiovascular interventions and clinical outcomes. Fully-automated processing and quantitative analysis of multi-modality cardiac images could have a direct impact on clinical research and evidence-based patient management. However, these require overcoming significant challenges including inter-modality misalignment and finding optimal methods to integrate information from different modalities. This paper aims to provide a comprehensive review of multi-modality imaging in cardiology, the computing methods, the validation strategies, the related clinical workflows and future perspectives. For the computing methodologies, we have a favored focus on the three tasks, i.e., registration, fusion and segmentation, which generally involve multi-modality imaging data, either combining information from different modalities or transferring information across modalities. The review highlights that multi-modality cardiac imaging data has the potential of wide applicability in the clinic, such as trans-aortic valve implantation guidance, myocardial viability assessment, and catheter ablation therapy and its patient selection. Nevertheless, many challenges remain unsolved, such as missing modality, modality selection, combination of imaging and non-imaging data, and uniform analysis and representation of different modalities. There is also work to do in defining how the well-developed techniques fit in clinical workflows and how much additional and relevant information they introduce. These problems are likely to continue to be an active field of research and the questions to be answered in the future.
Collapse
Affiliation(s)
- Lei Li
- Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Wangbin Ding
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
| | - Liqin Huang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Chen X, Zhou B, Xie H, Guo X, Zhang J, Duncan JS, Miller EJ, Sinusas AJ, Onofrey JA, Liu C. DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT. Med Image Anal 2023; 88:102840. [PMID: 37216735 PMCID: PMC10524650 DOI: 10.1016/j.media.2023.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. Attenuation maps (μ-maps) derived from computed tomography (CT) are utilized for attenuation correction (AC) to improve the diagnostic accuracy of cardiac SPECT. However, in clinical practice, SPECT and CT scans are acquired sequentially, potentially inducing misregistration between the two images and further producing AC artifacts. Conventional intensity-based registration methods show poor performance in the cross-modality registration of SPECT and CT-derived μ-maps since the two imaging modalities might present totally different intensity patterns. Deep learning has shown great potential in medical imaging registration. However, existing deep learning strategies for medical image registration encoded the input images by simply concatenating the feature maps of different convolutional layers, which might not fully extract or fuse the input information. In addition, deep-learning-based cross-modality registration of cardiac SPECT and CT-derived μ-maps has not been investigated before. In this paper, we propose a novel Dual-Channel Squeeze-Fusion-Excitation (DuSFE) co-attention module for the cross-modality rigid registration of cardiac SPECT and CT-derived μ-maps. DuSFE is designed based on the co-attention mechanism of two cross-connected input data streams. The channel-wise or spatial features of SPECT and μ-maps are jointly encoded, fused, and recalibrated in the DuSFE module. DuSFE can be flexibly embedded at multiple convolutional layers to enable gradual feature fusion in different spatial dimensions. Our studies using clinical patient MPI studies demonstrated that the DuSFE-embedded neural network generated significantly lower registration errors and more accurate AC SPECT images than existing methods. We also showed that the DuSFE-embedded network did not over-correct or degrade the registration performance of motion-free cases. The source code of this work is available at https://github.com/XiongchaoChen/DuSFE_CrossRegistration.
Collapse
Affiliation(s)
- Xiongchao Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Bo Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Huidong Xie
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xueqi Guo
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jiazhen Zhang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - James S Duncan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Edward J Miller
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Albert J Sinusas
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - John A Onofrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Chi Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Hu H, Huang H, Li M, Gao X, Yin L, Qi R, Wu RS, Chen X, Ma Y, Shi K, Li C, Maus TM, Huang B, Lu C, Lin M, Zhou S, Lou Z, Gu Y, Chen Y, Lei Y, Wang X, Wang R, Yue W, Yang X, Bian Y, Mu J, Park G, Xiang S, Cai S, Corey PW, Wang J, Xu S. A wearable cardiac ultrasound imager. Nature 2023; 613:667-675. [PMID: 36697864 PMCID: PMC9876798 DOI: 10.1038/s41586-022-05498-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/31/2022] [Indexed: 01/26/2023]
Abstract
Continuous imaging of cardiac functions is highly desirable for the assessment of long-term cardiovascular health, detection of acute cardiac dysfunction and clinical management of critically ill or surgical patients1-4. However, conventional non-invasive approaches to image the cardiac function cannot provide continuous measurements owing to device bulkiness5-11, and existing wearable cardiac devices can only capture signals on the skin12-16. Here we report a wearable ultrasonic device for continuous, real-time and direct cardiac function assessment. We introduce innovations in device design and material fabrication that improve the mechanical coupling between the device and human skin, allowing the left ventricle to be examined from different views during motion. We also develop a deep learning model that automatically extracts the left ventricular volume from the continuous image recording, yielding waveforms of key cardiac performance indices such as stroke volume, cardiac output and ejection fraction. This technology enables dynamic wearable monitoring of cardiac performance with substantially improved accuracy in various environments.
Collapse
Affiliation(s)
- Hongjie Hu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Hao Huang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Mohan Li
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Lu Yin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Ruixiang Qi
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ray S Wu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Xiangjun Chen
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Yuxiang Ma
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keren Shi
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | - Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Timothy M Maus
- Department of Anesthesiology, University of California, San Diego Health Sulpizio Cardiovascular Center, La Jolla, CA, USA
| | - Brady Huang
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chengchangfeng Lu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Muyang Lin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Sai Zhou
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Zhiyuan Lou
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Yue Gu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Yimu Chen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Yusheng Lei
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Xinyu Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Ruotao Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Wentong Yue
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Xinyi Yang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Yizhou Bian
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Jing Mu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Geonho Park
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Shu Xiang
- Softsonics, Inc., San Diego, CA, USA
| | - Shengqiang Cai
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Paul W Corey
- Department of Anesthesiology, Sharp Memorial Hospital, San Diego, CA, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Sheng Xu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Lala RI, Mercea S, Jipa RA, Puschita M, Pop-Moldovan A. The chronic coronary syndrome—Heart failure roundabout: A multimodality imaging workflow approach. Front Cardiovasc Med 2022; 9:1019529. [DOI: 10.3389/fcvm.2022.1019529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Heart failure (HF) is a complex syndrome of considerable burden with high mortality and hospitalization rates. Approximately two-thirds of patients with HF have ischemic etiology, which makes crucial the identification of relevant coronary artery disease (CAD). Moreover, patients with chronic coronary syndrome (CCS) can first show signs of dyspnea and left ventricular (LV) dysfunction. If establishing a diagnosis of HF and consequent management is clear enough, it will not be the same when it comes to recommendations for etiology assessment. Ischemic heart disease is the most studied disease by cardiac multimodality imaging with excellent diagnostic performance. Based on this aspect, the high prevalence of CAD, the worst outcome—HF patients should undergo a diagnostic work-up using these multimodality imaging techniques. The aim of this mini-review is to provide insights on multimodality imaging for diagnosing CCS in patients with new onset of HF and propose a diagnostic work-up based on current international studies and guidelines.
Collapse
|
7
|
Chen X, Zhou B, Shi L, Liu H, Pang Y, Wang R, Miller EJ, Sinusas AJ, Liu C. CT-free attenuation correction for dedicated cardiac SPECT using a 3D dual squeeze-and-excitation residual dense network. J Nucl Cardiol 2022; 29:2235-2250. [PMID: 34085168 DOI: 10.1007/s12350-021-02672-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Attenuation correction (AC) using CT transmission scanning enables the accurate quantitative analysis of dedicated cardiac SPECT. However, AC is challenging for SPECT-only scanners. We developed a deep learning-based approach to generate synthetic AC images from SPECT images without AC. METHODS CT-free AC was implemented using our customized Dual Squeeze-and-Excitation Residual Dense Network (DuRDN). 172 anonymized clinical hybrid SPECT/CT stress/rest myocardial perfusion studies were used in training, validation, and testing. Additional body mass index (BMI), gender, and scatter-window information were encoded as channel-wise input to further improve the network performance. RESULTS Quantitative and qualitative analysis based on image voxels and 17-segment polar map showed the potential of our approach to generate consistent SPECT AC images. Our customized DuRDN showed superior performance to conventional network design such as U-Net. The averaged voxel-wise normalized mean square error (NMSE) between the predicted AC images by DuRDN and the ground-truth AC images was 2.01 ± 1.01%, as compared to 2.23 ± 1.20% by U-Net. CONCLUSIONS Our customized DuRDN facilitates dedicated cardiac SPECT AC without CT scanning. DuRDN can efficiently incorporate additional patient information and may achieve better performance compared to conventional U-Net.
Collapse
Affiliation(s)
- Xiongchao Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bo Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Luyao Shi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hui Liu
- Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520-8048, USA
- Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
| | - Yulei Pang
- Department of Mathematics, Southern Connecticut State University, New Haven, CT, USA
| | - Rui Wang
- Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520-8048, USA
- Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
| | - Edward J Miller
- Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520-8048, USA
- Department of Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Albert J Sinusas
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520-8048, USA
- Department of Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Chi Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520-8048, USA.
| |
Collapse
|
8
|
Haider A, Bengs S, Portmann A, Rossi A, Ahmed H, Etter D, Warnock GI, Mikail N, Grämer M, Meisel A, Gisler L, Jie C, Keller C, Kozerke S, Weber B, Schibli R, Mu L, Kaufmann PA, Regitz-Zagrosek V, Ametamey SM, Gebhard C. Role of sex hormones in modulating myocardial perfusion and coronary flow reserve. Eur J Nucl Med Mol Imaging 2022; 49:2209-2218. [PMID: 35024889 PMCID: PMC9165260 DOI: 10.1007/s00259-022-05675-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022]
Abstract
Background A growing body of evidence highlights sex differences in the diagnostic accuracy of cardiovascular imaging modalities. Nonetheless, the role of sex hormones in modulating myocardial perfusion and coronary flow reserve (CFR) is currently unclear. The aim of our study was to assess the impact of female and male sex hormones on myocardial perfusion and CFR. Methods Rest and stress myocardial perfusion imaging (MPI) was conducted by small animal positron emission tomography (PET) with [18F]flurpiridaz in a total of 56 mice (7–8 months old) including gonadectomized (Gx) and sham-operated males and females, respectively. Myocardial [18F]flurpiridaz uptake (% injected dose per mL, % ID/mL) was used as a surrogate for myocardial perfusion at rest and following intravenous regadenoson injection, as previously reported. Apparent coronary flow reserve (CFRApp) was calculated as the ratio of stress and rest myocardial perfusion. Left ventricular (LV) morphology and function were assessed by cardiac magnetic resonance (CMR) imaging. Results Orchiectomy resulted in a significant decrease of resting myocardial perfusion (Gx vs. sham, 19.4 ± 1.0 vs. 22.2 ± 0.7 % ID/mL, p = 0.034), while myocardial perfusion at stress remained unchanged (Gx vs. sham, 27.5 ± 1.2 vs. 27.3 ± 1.2 % ID/mL, p = 0.896). Accordingly, CFRApp was substantially higher in orchiectomized males (Gx vs. sham, 1.43 ± 0.04 vs. 1.23 ± 0.05, p = 0.004), and low serum testosterone levels were linked to a blunted resting myocardial perfusion (r = 0.438, p = 0.020) as well as an enhanced CFRApp (r = −0.500, p = 0.007). In contrast, oophorectomy did not affect myocardial perfusion in females. Of note, orchiectomized males showed a reduced LV mass, stroke volume, and left ventricular ejection fraction (LVEF) on CMR, while no such effects were observed in oophorectomized females. Conclusion Our experimental data in mice indicate that sex differences in myocardial perfusion are primarily driven by testosterone. Given the diagnostic importance of PET-MPI in clinical routine, further studies are warranted to determine whether testosterone levels affect the interpretation of myocardial perfusion findings in patients. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05675-2.
Collapse
Affiliation(s)
- Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Hazem Ahmed
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Dominik Etter
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Geoffrey I Warnock
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Muriel Grämer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Livio Gisler
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Caitlin Jie
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, CH-8092, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Roger Schibli
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Charité Universitaetsmedizin Berlin, D-10115, Berlin, Germany.,University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland. .,Center for Molecular Cardiology, University of Zurich, CH-8952, Schlieren, Switzerland.
| |
Collapse
|
9
|
Zhang F, Wang J, Shao X, Yang M, Qian Y, Yang X, Wu Z, Li S, Xin W, Shi Y, Liu B, Yu W, He Z, Zhou W, Wang Y. Incremental value of myocardial wall motion and thickening to perfusion alone by gated SPECT myocardial perfusion imaging for viability assessment in patients with ischemic heart failure. J Nucl Cardiol 2021; 28:2545-2556. [PMID: 32060856 PMCID: PMC10961704 DOI: 10.1007/s12350-020-02040-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE The objective of this study was to assess the incremental value of myocardial wall motion and thickening compared with perfusion alone obtained from gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) in diagnosing myocardial viability in patients with ischemic heart failure. METHODS Eighty-three consecutive patients with ischemic heart failure who underwent both 99mTc-MIBI gated SPECT MPI and 18F-FDG positron emission tomography (PET) myocardial metabolic imaging were retrospectively enrolled. SPECT/PET myocardial viability was defined as the reference standard. Segmental myocardial perfusion, wall motion, and thickening were measured by an automated algorithm from gated SPECT MPI. Univariate and stepwise multivariate analysis were conducted to establish an optimal multivariate model for predicting hibernating myocardium and scar. RESULTS Among the 1411 segments evaluated, 774 segments had normal perfusion and 637 segments had decreased perfusion. The latter were classified by 18F-FDG PET into 338 hibernating segments and 299 scarred segments. The multivariate regression analysis showed that the model that combined myocardial perfusion uptake with wall motion and thickening scores had the optimal predictive efficiency to distinguish hibernating myocardium from scar in the segments with decreased perfusion. The model had the largest C-statistic (0.753 vs 0.666, P < 0.0001), and the global chi-square was increased from 53.281 to 111.234 when compared with perfusion alone (P < 0.001). CONCLUSIONS Assessment of myocardial wall motion and thickening in addition to conventional perfusion uptake in the segments with decreased perfusion enables better differentiation of hibernating myocardium from scar in patients with ischemic heart failure. Considering wide availability and high cost-effectiveness, regional myocardial function integrated with perfusion on gated SPECT MPI has great promise to become a clinical tool in the assessment of myocardial viability.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, Jiangsu, China
| | - Jianfeng Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, Jiangsu, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, Jiangsu, China
| | - Minfu Yang
- Department of Nuclear Medicine, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Yongxiang Qian
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaoyu Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenchong Xin
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, Jiangsu, China
| | - Yunmei Shi
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, Jiangsu, China
| | - Bao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, Jiangsu, China
| | - Wenji Yu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, Jiangsu, China
| | - Zhuo He
- College of Computing, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, USA
| | - Weihua Zhou
- College of Computing, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, USA.
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, Jiangsu, China.
| |
Collapse
|
10
|
Zhang Y, Zhang Y, Shi Y, Dong W, Mu Y, Wang J, Gao Y, Hu R, Xu Y, Chen Y, Ma J. Influence of Waist-to-Hip Ratio on the Prognosis of Heart Failure Patients With Revascularized Coronary Heart Disease. Front Cardiovasc Med 2021; 8:732200. [PMID: 34660733 PMCID: PMC8517130 DOI: 10.3389/fcvm.2021.732200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Heart failure (HF) is considered one of the most common complications of coronary heart disease (CHD), with a higher incidence of readmission and mortality. Thus, exploring the risk factors related to the prognosis is necessary. Moreover, the effect of the waist-to-hip ratio (WHR) on HF patients with revascularized CHD is still unclear. Thus, we aimed to assess the influence of WHR on the prognosis of HF patients with revascularized CHD. Methods: We collected data of HF patients with revascularized CHD who were referred to the Cardiac Rehabilitation Clinic of PLA Hospital from June 30, 2015, to June 30, 2019. Cox proportional hazard regression analysis was used to determine the relationship between WHR and prognosis of HF patients with revascularized CHD. Patients were divided into higher and lower WHR groups based on the cutoff WHR value calculated by the X-tile software. Cox regression analysis was used to analysis the two groups. We drew the receiver operating characteristic curve (ROC) of WHR and analyzed the differences between the two groups. Endpoints were defined as major adverse cardiac events (MACE) (including all-cause mortality, non-fatal myocardial infarction, unscheduled revascularization, and stroke). Results: During the median follow-up of 39 months and maximum follow-up of 54 months, 109 patients were enrolled, of which 91.7% were males, and the mean age was 56.0 ± 10.4 years. WHR was associated with the incidence of MACE in the Cox regression analysis (p = 0.001); an increase in WHR of 0.01 unit had a hazard ratio (HR) of 1.134 (95%CI: 1.057-1.216). The WHR cutoff value was 0.93. Patients in the higher WHR group had a significantly higher risk of MACE than those in the lower WHR group (HR = 7.037, 95%CI: 1.758-28.168). The ROC area under the curve was 0.733 at 4 years. Patients in the higher WHR group had a higher body mass index (BMI; 26.7 ± 3.5 vs. 25.4 ± 2.4, P = 0.033) than patients in the lower WHR group. Conclusions: WHR is an independent risk factor of the long-term prognosis of Chinese HF patients with revascularized CHD. Patients with WHR ≥ 0.93 require intensified treatment. Higher WHR is related to higher BMI and ΔVO2/ΔWR.
Collapse
Affiliation(s)
- Yingyue Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yan Zhang
- The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Yajun Shi
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Wei Dong
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yang Mu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yifan Gao
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Rong Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yong Xu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Jing Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Melo MDTD, Paiva MG, Santos MVC, Rochitte CE, Moreira VDM, Saleh MH, Brandão SCS, Gallafrio CC, Goldwasser D, Gripp EDA, Piveta RB, Silva TO, Santo THCE, Ferreira WP, Salemi VMC, Cauduro SA, Barberato SH, Lopes HMC, Pena JLB, Rached HRS, Miglioranza MH, Pinheiro AC, Vrandecic BALM, Cruz CBBV, Nomura CH, Cerbino FME, Costa IBSDS, Coelho Filho OR, Carneiro ACDC, Burgos UMMC, Fernandes JL, Uellendahl M, Calado EB, Senra T, Assunção BL, Freire CMV, Martins CN, Sawamura KSS, Brito MM, Jardim MFS, Bernardes RJM, Diógenes TC, Vieira LDO, Mesquita CT, Lopes RW, Segundo Neto EMV, Rigo L, Marin VLS, Santos MJ, Grossman GB, Quagliato PC, Alcantara MLD, Teodoro JAR, Albricker ACL, Barros FS, Amaral SID, Porto CLL, Barros MVL, Santos SND, Cantisano AL, Petisco ACGP, Barbosa JEM, Veloso OCG, Spina S, Pignatelli R, Hajjar LA, Kalil Filho R, Lopes MACQ, Vieira MLC, Almeida ALC. Brazilian Position Statement on the Use Of Multimodality Imaging in Cardio-Oncology - 2021. Arq Bras Cardiol 2021; 117:845-909. [PMID: 34709307 PMCID: PMC8528353 DOI: 10.36660/abc.20200266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
| | | | | | - Carlos Eduardo Rochitte
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital do Coração (HCOR), São Paulo, SP - Brasil
| | | | - Mohamed Hassan Saleh
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brasil
| | | | | | - Daniel Goldwasser
- Hospital Federal de Ipanema, Rio de Janeiro, RJ - Brasil
- Hospital Copa D'Or, Rio de Janeiro, RJ - Brasil
- Casa de Saúde São José, Rio de Janeiro, RJ - Brasil
| | - Eliza de Almeida Gripp
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil
- Hospital Universitário Antônio Pedro, Rio de Janeiro, RJ - Brasil
| | | | - Tonnison Oliveira Silva
- Hospital Cardio Pulmonar - Centro de Estudos em Cardiologia, Salvador, BA - Brasil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA - Brasil
| | | | | | - Vera Maria Cury Salemi
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Silvio Henrique Barberato
- CardioEco Centro de Diagnóstico Cardiovascular, Curitiba, PR - Brasil
- Quanta Diagnóstico, Curitiba, PR - Brasil
| | | | | | | | - Marcelo Haertel Miglioranza
- Instituto de Cardiologia do Rio Grande do Sul - Laboratório de Pesquisa e Inovação em Imagem Cardiovascular, Porto Alegre, RS - Brasil
- Hospital Mãe de Deus, Porto Alegre, RS - Brasil
| | | | | | | | - César Higa Nomura
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital Sírio-Libanês, São Paulo, SP - Brasil
| | - Fernanda Mello Erthal Cerbino
- Clínica de Diagnóstico por Imagem, Rio de Janeiro, RJ - Brasil
- Diagnósticos da América AS, Rio de Janeiro, RJ - Brasil
| | | | | | | | | | - Juliano Lara Fernandes
- Radiologia Clínica de Campinas, Campinas, SP - Brasil
- Instituto de Ensino e Pesquisa José Michel Kalaf, Campinas, SP - Brasil
| | - Marly Uellendahl
- Diagnósticos da América AS, Rio de Janeiro, RJ - Brasil
- Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brasil
| | | | - Tiago Senra
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brasil
- Hospital Sírio-Libanês, São Paulo, SP - Brasil
| | - Bruna Leal Assunção
- Universidade de São Paulo Instituto do Câncer do Estado de São Paulo, São Paulo, SP - Brasil
| | - Claudia Maria Vilas Freire
- Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG - Brasil
- ECOCENTER, Belo Horizonte, MG - Brasil
| | | | - Karen Saori Shiraishi Sawamura
- Hospital do Coração (HCOR), São Paulo, SP - Brasil
- Hospital Universitário Antônio Pedro, Rio de Janeiro, RJ - Brasil
- Instituto da Criança da Universidade de São Paulo (USP), São Paulo, SP - Brasil
| | - Márcio Miranda Brito
- Universidade Federal do Tocantins - Campus de Araguaina, Araguaina, TO - Brasil
- Hospital Municipal de Araguaina, Araguaina, TO - Brasil
| | | | | | | | | | - Claudio Tinoco Mesquita
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil
- Universidade Federal Fluminense (UFF), Rio de Janeiro, RJ - Brasil
- Hospital Vitória, Rio de Janeiro, RJ - Brasil
| | | | | | - Letícia Rigo
- Hospital Beneficência Portuguesa, São Paulo, SP - Brasil
| | | | | | - Gabriel Blacher Grossman
- Clínica Cardionuclear, Porto Alegre, RS - Brasil
- Hospital Moinhos de Vento, Porto Alegre, RS - Brasil
| | | | - Monica Luiza de Alcantara
- Americas Medical City, Rio de Janeiro, Rio de Janeiro, RJ - Brasil
- Americas Serviços Médicos, Rio de Janeiro, RJ - Brasil
- Rede D'Or, Rio de Janeiro, RJ - Brasil
| | | | | | | | | | | | | | - Simone Nascimento Dos Santos
- Hospital Brasília - Ecocardiografia, Brasília, DF - Brasil
- Eccos Diagnóstico Cardiovascular Avançado, Brasília, DF - Brasil
| | | | | | | | | | | | - Ricardo Pignatelli
- Texas Children's Hospital, Houston, Texas - EUA
- Baylor College of Medicine, Houston, Texas - EUA
| | - Ludhmilla Abrahão Hajjar
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Universidade de São Paulo Instituto do Câncer do Estado de São Paulo, São Paulo, SP - Brasil
| | - Roberto Kalil Filho
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Universidade de São Paulo Instituto do Câncer do Estado de São Paulo, São Paulo, SP - Brasil
| | - Marcelo Antônio Cartaxo Queiroga Lopes
- Hospital Alberto Urquiza Wanderley - Hemodinâmica e Cardiologia Intervencionista, João Pessoa, PB - Brasil
- Hospital Metropolitano Dom José Maria Pires, João Pessoa, PB - Brasil
- Sociedade Brasileira de Cardiologia, Rio de Janeiro, RJ - Brasil
| | - Marcelo Luiz Campos Vieira
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
| | - André Luiz Cerqueira Almeida
- Santa Casa de Misericórdia de Feira de Santana - Cardiologia, Feira de Santana, BA - Brasil
- Departamento de Imagem Cardiovascular da Sociedade Brasileira de Cardiologia, São Paulo, SP - Brasil
| |
Collapse
|
12
|
Balogh V, MacAskill MG, Hadoke PWF, Gray GA, Tavares AAS. Positron Emission Tomography Techniques to Measure Active Inflammation, Fibrosis and Angiogenesis: Potential for Non-invasive Imaging of Hypertensive Heart Failure. Front Cardiovasc Med 2021; 8:719031. [PMID: 34485416 PMCID: PMC8416043 DOI: 10.3389/fcvm.2021.719031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure, which is responsible for a high number of deaths worldwide, can develop due to chronic hypertension. Heart failure can involve and progress through several different pathways, including: fibrosis, inflammation, and angiogenesis. Early and specific detection of changes in the myocardium during the transition to heart failure can be made via the use of molecular imaging techniques, including positron emission tomography (PET). Traditional cardiovascular PET techniques, such as myocardial perfusion imaging and sympathetic innervation imaging, have been established at the clinical level but are often lacking in pathway and target specificity that is important for assessment of heart failure. Therefore, there is a need to identify new PET imaging markers of inflammation, fibrosis and angiogenesis that could aid diagnosis, staging and treatment of hypertensive heart failure. This review will provide an overview of key mechanisms underlying hypertensive heart failure and will present the latest developments in PET probes for detection of cardiovascular inflammation, fibrosis and angiogenesis. Currently, selective PET probes for detection of angiogenesis remain elusive but promising PET probes for specific targeting of inflammation and fibrosis are rapidly progressing into clinical use.
Collapse
Affiliation(s)
- Viktoria Balogh
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mark G MacAskill
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick W F Hadoke
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian A Gray
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana A S Tavares
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Punzo B, Cavaliere C, Maffei E, Bossone E, Saba L, Cademartiri F. Narrative review of cardiac computed tomography perfusion: insights into static rest perfusion. Cardiovasc Diagn Ther 2021; 10:1946-1953. [PMID: 33381436 DOI: 10.21037/cdt-20-552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiac or left ventricular perfusion performed with cardiac computed tomography (CCT) is a developing method that may have the potential to complete in a very straight forward way the assessment of ischemic heart disease by means of CT. Myocardial CT perfusion (CTP) can be achieved with a single static scan during the first-pass of the iodinate contrast agent, with the monoenergetic or dual-energy acquisition, or as a dynamic, time-resolved scan during stress by using coronary vasodilator agents. Several methods can be performed, and we focused on static perfusion. CTP may serve as a useful adjunct to coronary CT angiography (CTA) to improve specificity of detecting myocardial ischemia. Technological advances will reduce the radiation dose of myocardial CTP, such as low tube voltage imaging or new reconstruction algorithms, making it a more viable clinical option. The advantages of static first-pass non-stress perfusion are several; the main one is that it can be done to each and every patient who undergoes CCT for the assessment of coronary artery tree. Future advances in CTP will likely improve the diagnostic accuracy of CTP + CTA, and will better estimate the severity of ischemia Therefore, it is simple and comprehensive. However, it has several limitations. In this review we will discuss the technique with its advantages and limitations.
Collapse
Affiliation(s)
- Bruna Punzo
- Department of Radiology, SDN IRCCS, Naples, Italy
| | | | - Erica Maffei
- Department of Radiology, Area Vasta 1, ASUR Marche, Urbino (PU), Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, Naples, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
14
|
Beitzke D, Rasul S, Lassen ML, Pichler V, Senn D, Stelzmüller ME, Nolz R, Loewe C, Hacker M. Assessment of Myocardial Viability in Ischemic Heart Disease by PET/MRI: Comparison of Left Ventricular Perfusion, Hibernation, and Scar Burden. Acad Radiol 2020; 27:188-197. [PMID: 31053482 DOI: 10.1016/j.acra.2019.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE AND OBJECTIVES Hybrid positron emission tomography-magnetic resonance (PET-MR) is a novel imaging technology that enables a comprehensive assessment of myocardial viability. The aim of this study was to intra-individually compare simultaneously acquired viability parameters from MRI and PET to determine complementary and redundant information. MATERIALS AND METHODS Thirty-nine patients with ischemic heart disease (IHD) underwent cardiac PET-MR for myocardial viability assessment. Cardiac magnetic resonance (CMR), including late gadolinium enhancement (LGE), and PET, including a dynamic dual-tracer acquisition of [13N]ammonia ([13N]NH3)/[18F]fluorodeoxyglucose ([18F]FDG), were performed simultaneously. Allocation, extent, and transmural degree of left ventricular (LV) scars were measured from LGE. Perfusion, viability, and hibernation were assessed by PET. RESULTS A comparison of scar location revealed six more areas of infarction on MR than on PET. Mean LV scarring by CMR was 14% (range, 2% to 42%) and 14% (range, 1% to 46%) by PET (CMR vs. PET: p = 0.9). An intra-individual comparison of scarring showed a good inter-method correlation (r = 0.7), which was also evident in the subgroup with low ejection fraction (EF) (r = 0.6). Hibernation and transmural degree of scars showed a moderate to weak correlation (r = 0.4), which was even worse in the low EF group (r = 0.1). CONCLUSIONS In patients with IHD, there was a good correlation between PET and CMR for the LV scar extent using hybrid cardiac PET-MR. The degree of transmural scarring by CMR showed no correlation to PET hibernation. Therefore, cardiac PET-MR might be a suitable tool for a comprehensive assessment of myocardial viability if used to predict response to cardiac reperfusion strategies.
Collapse
Affiliation(s)
- Dietrich Beitzke
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna, Austria
| | - Sazan Rasul
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Gürtel 18-20, 1090 Vienna, Austria
| | - Martin Lyngby Lassen
- QIMP Group, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Gürtel 18-20, 1090 Vienna, Austria
| | - Daniela Senn
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Gürtel 18-20, 1090 Vienna, Austria
| | | | - Richard Nolz
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna, Austria
| | - Christian Loewe
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Mastrocola LE, Amorim BJ, Vitola JV, Brandão SCS, Grossman GB, Lima RDSL, Lopes RW, Chalela WA, Carreira LCTF, Araújo JRND, Mesquita CT, Meneghetti JC. Update of the Brazilian Guideline on Nuclear Cardiology - 2020. Arq Bras Cardiol 2020; 114:325-429. [PMID: 32215507 PMCID: PMC7077582 DOI: 10.36660/abc.20200087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Barbara Juarez Amorim
- Universidade Estadual de Campinas (Unicamp), Campinas, SP - Brazil
- Sociedade Brasileira de Medicina Nuclear (SBMN), São Paulo, SP - Brazil
| | | | | | - Gabriel Blacher Grossman
- Hospital Moinhos de Vento, Porto Alegre, RS - Brazil
- Clínica Cardionuclear, Porto Alegre, RS - Brazil
| | - Ronaldo de Souza Leão Lima
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brazil
- Fonte Imagem Medicina Diagnóstica, Rio de Janeiro, RJ - Brazil
- Clínica de Diagnóstico por Imagem (CDPI), Grupo DASA, Rio de Janeiro, RJ - Brazil
| | | | - William Azem Chalela
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brazil
| | | | | | | | - José Claudio Meneghetti
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brazil
| |
Collapse
|
16
|
|
17
|
Stojanovic I, Schneider JE, Cooper J. Cost-impact of cardiac magnetic resonance imaging with Fast-SENC compared to SPECT in the diagnosis of coronary artery disease in the U.S. J Med Econ 2019; 22:430-438. [PMID: 30732489 DOI: 10.1080/13696998.2019.1580713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AIMS The purpose of this study is to assess the economic cost differences and the associated treatment resource changes between the developing coronary artery disease (CAD) diagnostic tool fast strain-encoded cardiac imaging (Fast-SENC) and the current commonly used stress test single-photon emission computed tomography (SPECT). MATERIALS AND METHODS A "payer perspective" model was created first, consisting of long-term and short-term components that used a hypothetical cohort of patients of average age (60.8 years) presenting with chest pain and suspected CAD to assess cost-impact. A cost impact model was then built that assessed likely savings from a "hospital perspective" from substituting Fast-SENC for a portion of SPECTs assuming an average number of annual SPECT tests performed in US hospitals. RESULTS In the payer model, using Fast-SENC followed by coronary angiography (CA) and percutaneous coronary intervention (PCI) treatment when necessary is less costly than the SPECT method when considering both direct and indirect costs of testing. Expected costs of the Fast-SENC were between $2,510 and $2,632 per correct diagnosis, while expected costs for the SPECT were between $3,157 and $4,078. Fast-SENC reduced false positives by 50% and false negatives by 86%, generating additional cost savings. The hospital model showed total costs per CAD patient visit of $825 for SPECT and $376 for Fast-SENC. LIMITATIONS Limitations of this study are that clinical data are sourced from other published clinical trials on how CAD diagnostic strategies impact clinical outcome, and that necessary assumptions were made which impact health outcomes. CONCLUSION The lower cost, higher sensitivity and specificity rates, and faster, less burdensome process for detecting CAD patients make Fast-SENC a more capable and economically beneficial stress test than SPECT. The payer model and hospital model demonstrate an alignment between payer and provider economics as Fast-SENC provides monetary savings for patients and resource benefits for hospitals.
Collapse
Affiliation(s)
| | | | - Jacie Cooper
- a Avalon Health Economics , Morristown , NJ , USA
| |
Collapse
|
18
|
Kim SR, Lerman LO. Diagnostic imaging in the management of patients with metabolic syndrome. Transl Res 2018; 194:1-18. [PMID: 29175480 PMCID: PMC5839955 DOI: 10.1016/j.trsl.2017.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) is the constellation of metabolic risk factors that might foster development of type 2 diabetes and cardiovascular disease. Abdominal obesity and insulin resistance play a prominent role among all metabolic traits of MetS. Because intervention including weight loss can reduce these morbidity and mortality in MetS, early detection of the severity and complications of MetS could be useful. Recent advances in imaging modalities have provided significant insight into the development and progression of abdominal obesity and insulin resistance, as well as target organ injuries. The purpose of this review is to summarize advances in diagnostic imaging modalities in MetS that can be applied for evaluating each components and target organs. This may help in early detection, monitoring target organ injury, and in turn developing novel therapeutic target to alleviate and avert them.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn.
| |
Collapse
|