1
|
van Doorn ECH, Amesz JH, Sadeghi AH, de Groot NMS, Manintveld OC, Taverne YJHJ. Preclinical Models of Cardiac Disease: A Comprehensive Overview for Clinical Scientists. Cardiovasc Eng Technol 2024; 15:232-249. [PMID: 38228811 PMCID: PMC11116217 DOI: 10.1007/s13239-023-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
For recent decades, cardiac diseases have been the leading cause of death and morbidity worldwide. Despite significant achievements in their management, profound understanding of disease progression is limited. The lack of biologically relevant and robust preclinical disease models that truly grasp the molecular underpinnings of cardiac disease and its pathophysiology attributes to this stagnation, as well as the insufficiency of platforms that effectively explore novel therapeutic avenues. The area of fundamental and translational cardiac research has therefore gained wide interest of scientists in the clinical field, while the landscape has rapidly evolved towards an elaborate array of research modalities, characterized by diverse and distinctive traits. As a consequence, current literature lacks an intelligible and complete overview aimed at clinical scientists that focuses on selecting the optimal platform for translational research questions. In this review, we present an elaborate overview of current in vitro, ex vivo, in vivo and in silico platforms that model cardiac health and disease, delineating their main benefits and drawbacks, innovative prospects, and foremost fields of application in the scope of clinical research incentives.
Collapse
Affiliation(s)
- Elisa C H van Doorn
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jorik H Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amir H Sadeghi
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja M S de Groot
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Yannick J H J Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Batista Napotnik T, Kos B, Jarm T, Miklavčič D, O'Connor RP, Rems L. Genetically engineered HEK cells as a valuable tool for studying electroporation in excitable cells. Sci Rep 2024; 14:720. [PMID: 38184741 PMCID: PMC10771480 DOI: 10.1038/s41598-023-51073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024] Open
Abstract
Electric pulses used in electroporation-based treatments have been shown to affect the excitability of muscle and neuronal cells. However, understanding the interplay between electroporation and electrophysiological response of excitable cells is complex, since both ion channel gating and electroporation depend on dynamic changes in the transmembrane voltage (TMV). In this study, a genetically engineered human embryonic kidney cells expressing NaV1.5 and Kir2.1, a minimal complementary channels required for excitability (named S-HEK), was characterized as a simple cell model used for studying the effects of electroporation in excitable cells. S-HEK cells and their non-excitable counterparts (NS-HEK) were exposed to 100 µs pulses of increasing electric field strength. Changes in TMV, plasma membrane permeability, and intracellular Ca2+ were monitored with fluorescence microscopy. We found that a very mild electroporation, undetectable with the classical propidium assay but associated with a transient increase in intracellular Ca2+, can already have a profound effect on excitability close to the electrostimulation threshold, as corroborated by multiscale computational modelling. These results are of great relevance for understanding the effects of pulse delivery on cell excitability observed in context of the rapidly developing cardiac pulsed field ablation as well as other electroporation-based treatments in excitable tissues.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Bor Kos
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Tomaž Jarm
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Rodney P O'Connor
- École des Mines de Saint-Étienne, Department of Bioelectronics, Georges Charpak Campus, Centre Microélectronique de Provence, 880 Route de Mimet, 13120, Gardanne, France
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Kovalenko SG, Frolova SR, Kramkova VK, Berezovskii AK, Popov MA, Shumakov DV, Zybin DI, Agafonov EG, Dontsov VV, Agladze KI. Development of a Method for Isolation of Mature Cardiomyocytes from Human Heart Biopsy Specimens. Bull Exp Biol Med 2023; 175:585-591. [PMID: 37768452 DOI: 10.1007/s10517-023-05907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 09/29/2023]
Abstract
To increase the yield of living cells and their survival, studies were carried out to optimize the method for isolating cardiomyocytes from biopsy specimens excised from the right atrial appendages. It was found that creatine, blebbistatin, and taurine are necessary components of the buffer solution during cardiomyocyte isolation, and that composition of the solutions is a more important factor than their oxygenation.
Collapse
Affiliation(s)
- S G Kovalenko
- Research Laboratory of Molecular and Cellular Diagnostics, M. F. Vladimirsky Moscow Region Research Clinical Institute, Moscow, Russia
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region, Russia
| | - Sh R Frolova
- Research Laboratory of Molecular and Cellular Diagnostics, M. F. Vladimirsky Moscow Region Research Clinical Institute, Moscow, Russia
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region, Russia
| | - V K Kramkova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region, Russia
| | - A K Berezovskii
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region, Russia
| | - M A Popov
- Department of Heart and Vessels Surgery, M. F. Vladimirsky Moscow Region Research Clinical Institute, Moscow, Russia
| | - D V Shumakov
- Department of Heart and Vessels Surgery, M. F. Vladimirsky Moscow Region Research Clinical Institute, Moscow, Russia
| | - D I Zybin
- Department of Heart and Vessels Surgery, M. F. Vladimirsky Moscow Region Research Clinical Institute, Moscow, Russia
| | - E G Agafonov
- Department of Heart and Vessels Surgery, M. F. Vladimirsky Moscow Region Research Clinical Institute, Moscow, Russia
| | - V V Dontsov
- Department of Heart and Vessels Surgery, M. F. Vladimirsky Moscow Region Research Clinical Institute, Moscow, Russia
| | - K I Agladze
- Research Laboratory of Molecular and Cellular Diagnostics, M. F. Vladimirsky Moscow Region Research Clinical Institute, Moscow, Russia.
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region, Russia.
| |
Collapse
|
4
|
Bourque K, Jones-Tabah J, Pétrin D, Martin RD, Tanny JC, Hébert TE. Comparing the signaling and transcriptome profiling landscapes of human iPSC-derived and primary rat neonatal cardiomyocytes. Sci Rep 2023; 13:12248. [PMID: 37507481 PMCID: PMC10382583 DOI: 10.1038/s41598-023-39525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
The inaccessibility of human cardiomyocytes significantly hindered years of cardiovascular research efforts. To overcome these limitations, non-human cell sources were used as proxies to study heart function and associated diseases. Rodent models became increasingly acceptable surrogates to model the human heart either in vivo or through in vitro cultures. More recently, due to concerns regarding animal to human translation, including cross-species differences, the use of human iPSC-derived cardiomyocytes presented a renewed opportunity. Here, we conducted a comparative study, assessing cellular signaling through cardiac G protein-coupled receptors (GPCRs) in rat neonatal cardiomyocytes (RNCMs) and human induced pluripotent stem cell-derived cardiomyocytes. Genetically encoded biosensors were used to explore GPCR-mediated nuclear protein kinase A (PKA) and extracellular signal-regulated kinase 1/ 2 (ERK1/2) activities in both cardiomyocyte populations. To increase data granularity, a single-cell analytical approach was conducted. Using automated high content microscopy, our analyses of nuclear PKA and ERK1/2 signaling revealed distinct response clusters in rat and human cardiomyocytes. In line with this, bulk RNA-seq revealed key differences in the expression patterns of GPCRs, G proteins and downstream effector expression levels. Our study demonstrates that human stem cell-derived models of the cardiomyocyte offer distinct advantages for understanding cellular signaling in the heart.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
5
|
Schreiber LM, Lohr D, Baltes S, Vogel U, Elabyad IA, Bille M, Reiter T, Kosmala A, Gassenmaier T, Stefanescu MR, Kollmann A, Aures J, Schnitter F, Pali M, Ueda Y, Williams T, Christa M, Hofmann U, Bauer W, Gerull B, Zernecke A, Ergün S, Terekhov M. Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research. Front Cardiovasc Med 2023; 10:1068390. [PMID: 37255709 PMCID: PMC10225557 DOI: 10.3389/fcvm.2023.1068390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/04/2023] [Indexed: 06/01/2023] Open
Abstract
A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.
Collapse
Affiliation(s)
- Laura M. Schreiber
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - David Lohr
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Steffen Baltes
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Ibrahim A. Elabyad
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maya Bille
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Theresa Reiter
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Aleksander Kosmala
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Tobias Gassenmaier
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maria R. Stefanescu
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alena Kollmann
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Julia Aures
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Florian Schnitter
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Mihaela Pali
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Yuichiro Ueda
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany
| | - Tatiana Williams
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martin Christa
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Wolfgang Bauer
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany
| | - Maxim Terekhov
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
6
|
Boukenna M, Rougier JS, Aghagolzadeh P, Pradervand S, Guichard S, Hämmerli AF, Pedrazzini T, Abriel H. Multiomics uncover the proinflammatory role of Trpm4 deletion after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2023; 324:H504-H518. [PMID: 36800508 DOI: 10.1152/ajpheart.00671.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Upon myocardial infarction (MI), ischemia-induced cell death triggers an inflammatory response responsible for removing necrotic material and inducing tissue repair. TRPM4 is a Ca2+-activated ion channel permeable to monovalent cations. Although its role in cardiomyocyte-driven hypertrophy and arrhythmia post-MI has been established, no study has yet investigated its role in the inflammatory process orchestrated by endothelial cells, immune cells, and fibroblasts. This study aims to assess the role of TRPM4 in 1) survival and cardiac function, 2) inflammation, and 3) healing post-MI. We performed ligation of the left coronary artery or sham intervention on 154 Trpm4 WT or KO mice under isoflurane anesthesia. Survival and echocardiographic functions were monitored up to 5 wk. We collected serum during the acute post-MI phase to analyze proteomes and performed single-cell RNA sequencing on nonmyocytic cells of hearts after 24 and 72 h. Lastly, we assessed chronic fibrosis and angiogenesis. We observed no significant differences in survival or cardiac function, even though our proteomics data showed significantly decreased tissue injury markers (i.e., creatine kinase M and VE-cadherin) in KO serum after 12 h. On the other hand, inflammation, characterized by serum amyloid P component in the serum, higher number of recruited granulocytes, inflammatory monocytes, and macrophages, as well as expression of proinflammatory genes, was significantly higher in KO. This correlated with increased chronic cardiac fibrosis and angiogenesis. Since inflammation and fibrosis are closely linked to adverse remodeling, future therapeutic attempts at inhibiting TRPM4 will need to assess these parameters carefully before proceeding with translational studies.NEW & NOTEWORTHY Deletion of Trpm4 increases markers of cardiac and systemic inflammation within the first 24 h after MI, while inducing an earlier fibrotic transition at 72 h and more overall chronic fibrosis and angiogenesis at 5 wk. The descriptive, robust, and methodologically broad approach of this study sheds light on an important caveat that will need to be taken into account in all future therapeutic attempts to inhibit TRPM4 post-MI.
Collapse
Affiliation(s)
- Mey Boukenna
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jean-Sébastien Rougier
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Parisa Aghagolzadeh
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Sylvain Pradervand
- Centre d'Oncologie de Précision, Département d'Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabrina Guichard
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Anne-Flore Hämmerli
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Gunata M, Parlakpinar H. Experimental heart failure models in small animals. Heart Fail Rev 2023; 28:533-554. [PMID: 36504404 DOI: 10.1007/s10741-022-10286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is one of the most critical health and economic burdens worldwide, and its prevalence is continuously increasing. HF is a disease that occurs due to a pathological change arising from the function or structure of the heart tissue and usually progresses. Numerous experimental HF models have been created to elucidate the pathophysiological mechanisms that cause HF. An understanding of the pathophysiology of HF is essential for the development of novel efficient therapies. During the past few decades, animal models have provided new insights into the complex pathogenesis of HF. Success in the pathophysiology and treatment of HF has been achieved by using animal models of HF. The development of new in vivo models is critical for evaluating treatments such as gene therapy, mechanical devices, and new surgical approaches. However, each animal model has advantages and limitations, and none of these models is suitable for studying all aspects of HF. Therefore, the researchers have to choose an appropriate experimental model that will fully reflect HF. Despite some limitations, these animal models provided a significant advance in the etiology and pathogenesis of HF. Also, experimental HF models have led to the development of new treatments. In this review, we discussed widely used experimental HF models that continue to provide critical information for HF patients and facilitate the development of new treatment strategies.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye.
| |
Collapse
|
8
|
Zhu K, Bao X, Wang Y, Lu T, Zhang L. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte modelling of cardiovascular diseases for natural compound discovery. Biomed Pharmacother 2023; 157:113970. [PMID: 36371854 DOI: 10.1016/j.biopha.2022.113970] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Natural compounds extracted from medicinal plants characterized by diverse biological activities and low toxicity or side effects, are increasingly taking center stage in the search for new drugs. Currently, preclinical evaluation of natural products relies mainly on the use of immortalized cell lines of human origin or animal models. Increasing evidence indicates that cardiomyopathy models based on immortalized cell lines do not recapitulate pathogenic phenotypes accurately and a substantial physiological discrepancy between animals and humans casts doubt on the clinical relevance of animal models for these studies. The newly developed human induced pluripotent stem cell (hiPSC) technology in combination with highly-efficient cardiomyocyte differentiation methods provides an ideal tool for modeling human cardiomyopathies in vitro. Screening of drugs, especially screening of natural products, based on these models has been widely used and has shown that evaluation in such models can recapitulate important aspects of the physiological properties of drugs. The purpose of this review is to provide information on the latest developments in this area of research and to help researchers perform screening of natural products using the hiPSC-CM platform.
Collapse
Affiliation(s)
- Keyang Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiaoming Bao
- Department of Cardiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ting Lu
- Clinical Research Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
9
|
Jimenez-Vazquez EN, Jain A, Jones DK. Enhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate. Curr Protoc 2022; 2:e601. [PMID: 36383047 PMCID: PMC9710304 DOI: 10.1002/cpz1.601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cardiac myocytes isolated from adult heart tissue have a rod-like shape with highly organized intracellular structures. Cardiomyocytes derived from human pluripotent stem cells (iPSC-CMs), on the other hand, exhibit disorganized structure and contractile mechanics, reflecting their pronounced immaturity. These characteristics hamper research using iPSC-CMs. The protocol described here enhances iPSC-CM maturity and function by controlling the cellular shape and environment of the cultured cells. Microstructured silicone membranes function as a cell culture substrate that promotes cellular alignment. iPSC-CMs cultured on micropatterned membranes display an in-vivo-like rod-shaped morphology. This physiological cellular morphology along with the soft biocompatible silicone substrate, which has similar stiffness to the native cardiac matrix, promotes maturation of contractile function, calcium handling, and electrophysiology. Incorporating this technique for enhanced iPSC-CM maturation will help bridge the gap between animal models and clinical care, and ultimately improve personalized medicine for cardiovascular diseases. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Cardiomyocyte differentiation of iPSCs Basic Protocol 2: Purification of differentiated iPSC-CMs using MACS negative selection Basic Protocol 3: Micropatterning on PDMS.
Collapse
Affiliation(s)
| | - Abhilasha Jain
- Department of Pharmacology, University of Michigan Medical School
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School
- Department of Internal Medicine, University of Michigan Medical School
| |
Collapse
|
10
|
Zhou B, Shi X, Tang X, Zhao Q, Wang L, Yao F, Hou Y, Wang X, Feng W, Wang L, Sun X, Wang L, Hu S. Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct Target Ther 2022; 7:254. [PMID: 35882831 PMCID: PMC9325714 DOI: 10.1038/s41392-022-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases are the most common cause of death globally. Accurately modeling cardiac homeostasis, dysfunction, and drug response lies at the heart of cardiac research. Adult human primary cardiomyocytes (hPCMs) are a promising cellular model, but unstable isolation efficiency and quality, rapid cell death in culture, and unknown response to cryopreservation prevent them from becoming a reliable and flexible in vitro cardiac model. Combing the use of a reversible inhibitor of myosin II ATPase, (-)-blebbistatin (Bleb), and multiple optimization steps of the isolation procedure, we achieved a 2.74-fold increase in cell viability over traditional methods, accompanied by better cellular morphology, minimally perturbed gene expression, intact electrophysiology, and normal neurohormonal signaling. Further optimization of culture conditions established a method that was capable of maintaining optimal cell viability, morphology, and mitochondrial respiration for at least 7 days. Most importantly, we successfully cryopreserved hPCMs, which were structurally, molecularly, and functionally intact after undergoing the freeze-thaw cycle. hPCMs demonstrated greater sensitivity towards a set of cardiotoxic drugs, compared to human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Further dissection of cardiomyocyte drug response at both the population and single-cell transcriptomic level revealed that hPCM responses were more pronouncedly enriched in cardiac function, whereas hiPSC-CMs responses reflected cardiac development. Together, we established a full set of methodologies for the efficient isolation and prolonged maintenance of functional primary adult human cardiomyocytes in vitro, unlocking their potential as a cellular model for cardiovascular research, drug discovery, and safety pharmacology.
Collapse
Affiliation(s)
- Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Le Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongfeng Hou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,18 Jinma Industrial Park, Fangshan District, Beijing, China
| | - Xianqiang Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Feng
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqing Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China. .,Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
12
|
Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021; 10:cells10123483. [PMID: 34943991 PMCID: PMC8699880 DOI: 10.3390/cells10123483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.
Collapse
|
13
|
Krutrök N, Pehrsson S, Van Zuydam N, Jennbacken K, Wikström J. Ventilation via nose cone results in similar hemodynamic parameters and blood gas levels as endotracheal intubation during open chest surgery in rats. Lab Anim 2021; 56:157-164. [PMID: 34407659 DOI: 10.1177/00236772211031039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Open chest surgery in rodents requires assisted breathing and the most common approach for ventilation is via an endotracheal tube. Even with well-trained operators the endotracheal intubation is technically challenging and may lead to prolonged procedures and endotracheal intubation complications. Nose cone ventilation is a simpler procedure compared to endotracheal intubation and has the potential to improve animal welfare by reducing procedure time and endotracheal intubation associated complications. Rats are obligate nose breathers, and therefore replacing intubation with air supply from a nose cone would be an advantage and a more natural way of breathing. Here, we compared the values for several blood gases, blood pressure and heart rate from rats that were nose cone ventilated with rats that underwent endotracheal intubation at 12 timepoints equally distributed across three surgical stages: baseline, open chest and closed chest. Throughout the monitoring period the hemodynamic and blood gas values for both methods of ventilation were within published, normal ranges for the rat and were biologically equivalent (equivalence test p value ≤ 0.05). Our data showed that nose cone ventilation-maintained blood gases and hemodynamic homeostasis equivalent to endotracheal intubation. Nose cone ventilation can be recommended as an alternative to endotracheal intubation in rat experiments where investigators require airway control.
Collapse
Affiliation(s)
- Nina Krutrök
- Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Sweden
| | - Susanne Pehrsson
- Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Sweden
| | | | - Karin Jennbacken
- Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, Sweden
| | | |
Collapse
|
14
|
Liu Chung Ming C, Sesperez K, Ben-Sefer E, Arpon D, McGrath K, McClements L, Gentile C. Considerations to Model Heart Disease in Women with Preeclampsia and Cardiovascular Disease. Cells 2021; 10:899. [PMID: 33919808 PMCID: PMC8070848 DOI: 10.3390/cells10040899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation, and is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to the variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD), including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion; however, this therapeutic approach leads to ischemic/reperfusion injury (IRI), often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.
Collapse
Affiliation(s)
- Clara Liu Chung Ming
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - Kimberly Sesperez
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Eitan Ben-Sefer
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - David Arpon
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Carmine Gentile
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2000, Australia
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Dela Justina V, Gama LA, Schönholzer T, Bressan AF, Lima VV, Americo MF, Giachini FR. Resistance mesenteric arteries display hypercontractility in the resolution time of Strongyloides venezuelensis infection. Exp Parasitol 2021; 222:108078. [PMID: 33485874 DOI: 10.1016/j.exppara.2021.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/23/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
The blood flow in the mesenteric region is crucial for nutrient absorption and immune response in the gastrointestinal tract. The presence of nematodes or their excreted/secreted products seems to provoke vascular dysfunction. However, it is unclear whether and how the intestinal nematodes with habitat in the intestinal niche could affect the mesenteric vascular resistance. In this study, male Wistar rats were infected with 2000 larvae of S. venezuelensis, and experiments were conducted at 0 (non-infected control), 10 or 30 days post-infection (DPI). Eggs were counted in rats' feces and adult worms recovered from the small intestine. Second- or third-order mesenteric arteries were extracted for concentration-response curves (CRC) to phenylephrine [PE; in the presence or absence of L-NAME or indomethacin] and acetylcholine. The number of eggs and adult worms were significantly higher in the 10 DPI group than those of 30 DPI group. Augmented PE-induced contraction was seen after 30 DPI compared to 10 DPI or control group. Hypercontractility to PE was partially prevented by L-NAME and wholly abolished by indomethacin incubation. Endothelium-dependent relaxation and endothelial nitric oxide synthase expression were unchanged among groups. COX-1 and COX-2 display a different pattern of expression over the infection. Hypercontractility observed in mesenteric resistance arteries in the resolution time of S. venezuelensis infection may represent systemic damage, which can generate significant cardiovascular and gastrointestinal repercussions.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Institute of Biological Sciences, Federal University of Goias, Goiânia, GO, Brazil
| | - Loyane Almeida Gama
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil; Institute of Biosciences, São Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Tatiane Schönholzer
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil
| | - Alecsander F Bressan
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil
| | - Madileine F Americo
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil; Institute of Biosciences, São Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Fernanda R Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia, GO, Brazil; Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil.
| |
Collapse
|
16
|
Chinyere IR, Moukabary T, Hutchinson MD, Lancaster JJ, Juneman E, Goldman S. Progression of infarct-mediated arrhythmogenesis in a rodent model of heart failure. Am J Physiol Heart Circ Physiol 2021; 320:H108-H116. [PMID: 33164577 PMCID: PMC7847079 DOI: 10.1152/ajpheart.00639.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022]
Abstract
Heart failure (HF) post-myocardial infarction (MI) presents with increased vulnerability to monomorphic ventricular tachycardia (mmVT). To appropriately evaluate new therapies for infarct-mediated reentrant arrhythmia in the preclinical setting, chronologic characterization of the preclinical animal model pathophysiology is critical. This study aimed to evaluate the rigor and reproducibility of mmVT incidence in a rodent model of HF. We hypothesize a progressive increase in the incidence of mmVT as the duration of HF increases. Adult male Sprague-Dawley rats underwent permanent left coronary artery ligation or SHAM surgery and were maintained for either 6 or 10 wk. At end point, SHAM and HF rats underwent echocardiographic and invasive hemodynamic evaluation. Finally, rats underwent electrophysiologic (EP) assessment to assess susceptibility to mmVT and define ventricular effective refractory period (ERP). In 6-wk HF rats (n = 20), left ventricular (LV) ejection fraction (EF) decreased (P < 0.05) and LV end-diastolic pressure (EDP) increased (P < 0.05) compared with SHAM (n = 10). Ten-week HF (n = 12) revealed maintenance of LVEF and LVEDP (P > 0.05), (P > 0.05). Electrophysiology studies revealed an increase in incidence of mmVT between SHAM and 6-wk HF (P = 0.0016) and ERP prolongation (P = 0.0186). The incidence of mmVT and ventricular ERP did not differ between 6- and 10-wk HF (P = 1.0000), (P = 0.9831). Findings from this rodent model of HF suggest that once the ischemia-mediated infarct stabilizes, proarrhythmic deterioration ceases. Within the 6- and 10-wk period post-MI, no echocardiographic, invasive hemodynamic, or electrophysiologic changes were observed, suggesting stable HF. This is the necessary context for the evaluation of experimental therapies in rodent HF.NEW & NOTEWORTHY Rodent model of ischemic cardiomyopathy exhibits a plateau of inducible monomorphic ventricular tachycardia incidence between 6 and 10 wk postinfarction.
Collapse
Affiliation(s)
- Ikeotunye Royal Chinyere
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- MD-PhD Program, College of Medicine, University of Arizona, Tucson, Arizona
| | - Talal Moukabary
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| | - Mathew D Hutchinson
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| | | | - Elizabeth Juneman
- Sarver Heart Center, University of Arizona, Tucson, Arizona
- Division of Cardiology, Banner-University Medical Center, Tucson, Arizona
| | - Steven Goldman
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
17
|
Zhu Z, Ling X, Zhou H, Zhang C. Dexmedetomidine at a dose of 1 µM attenuates H9c2 cardiomyocyte injury under 3 h of hypoxia exposure and 3 h of reoxygenation through the inhibition of endoplasmic reticulum stress. Exp Ther Med 2020; 21:132. [PMID: 33376514 PMCID: PMC7751463 DOI: 10.3892/etm.2020.9564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) has been confirmed to induce endoplasmic reticulum stress (ERS) during downstream cascade reactions after the sufficient deterioration of cardiomyocyte function. However, clinically outcomes have been inconsistent with experimental findings because the mechanism has not been entirely elucidated. Dexmedetomidine (DEX), an α2 adrenergic receptor agonist with anti-inflammatory and organ-protective activity, has been shown to attenuate IRI in the heart. The present study aimed to determine whether DEX is able to protect injured cardiomyocytes under in vitro hypoxia/reoxygenation (H/R) conditions and evaluate the conditions under which ERS is efficiently ameliorated. The cytotoxicity of DEX in H9c2 cells was evaluated 24 h after treatment with several different concentrations of DEX. The most appropriate H/R model parameters were determined by the assessment of cell viability and injury with Cell Counting Kit-8 and lactate dehydrogenase (LDH) release assays after incubation under hypoxic conditions for 3 h and reoxygenation conditions for 3, 6, 12 and 24 h. Additionally, the aforementioned methods were used to assess cardiomyocytes cultured with various concentrations of DEX under H/R conditions. Furthermore, the degree of apoptosis and the mRNA and protein expression levels of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and caspase-12 were evaluated in all groups. The addition of 1, 5 and 10 µM DEX to the cell culture significantly increased the proliferation of H9c2 cells by >80% under normal culture conditions. In the H/R model assessment, following 3 h of anoxia exposure, H9c2 cell viability decreased to 62.67% with 3 h of reoxygenation and to 36% with 6 h of reoxygenation compared with the control. The viability of H9c2 cells subjected to hypoxia for 3 h and reoxygenation for 3 h increased by 61.3% when pretreated with 1 µM DEX, and the LDH concentration in the supernatant was effectively decreased by 13.7%. H/R significantly increased the percentage of apoptotic cells, as detected by flow cytometry, and increased the expression levels of GRP78, CHOP and caspase-12, while treatment with either DEX or 4-phenylbutyric acid (4-PBA) significantly attenuated these effects. Additionally, despite the protective effect of DEX against H/R injury, 4-PBA attenuated the changes induced by DEX and H/R. In conclusion, treatment with 1 µM DEX alleviated cell injury, apoptosis and the increases in GRP78, CHOP and caspase-12 expression levels in H9c2 cells induced by 3 h of hypoxia and 3 h of reoxygenation.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaoyan Ling
- Outpatient Nursing Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Caijun Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
18
|
Grigorian-Shamagian L, Sanz-Ruiz R, Climent A, Badimon L, Barile L, Bolli R, Chamuleau S, Grobbee DE, Janssens S, Kastrup J, Kragten-Tabatabaie L, Madonna R, Mathur A, Menasché P, Pompilio G, Prosper F, Sena E, Smart N, Zimmermann WH, Fernández-Avilés F. Insights into therapeutic products, preclinical research models, and clinical trials in cardiac regenerative and reparative medicine: where are we now and the way ahead. Current opinion paper of the ESC Working Group on Cardiovascular Regenerative and Reparative Medicine. Cardiovasc Res 2020; 117:1428-1433. [PMID: 33258961 DOI: 10.1093/cvr/cvaa337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023] Open
Abstract
Great expectations have been set around the clinical potential of regenerative and reparative medicine in the treatment of cardiovascular diseases [i.e. in particular, heart failure (HF)]. Initial excitement, spurred by encouraging preclinical data, resulted in a rapid translation into clinical research. The sobering outcome of the resulting clinical trials suggests that preclinical testing may have been insufficient to predict clinical outcome. A number of barriers for clinical translation include the inherent variability of the biological products and difficulties to develop potency and quality assays, insufficient rigour of the preclinical research and reproducibility of the results, manufacturing challenges, and scientific irregularities reported in the last years. The failure to achieve clinical success led to an increased scrutiny and scepticism as to the clinical readiness of stem cells and gene therapy products among clinicians, industry stakeholders, and funding bodies. The present impasse has attracted the attention of some of the most active research groups in the field, which were then summoned to analyse the position of the field and tasked to develop a strategy, to re-visit the undoubtedly promising future of cardiovascular regenerative and reparative medicine, based on lessons learned over the past two decades. During the scientific retreat of the ESC Working Group on Cardiovascular Regenerative and Reparative Medicine (CARE) in November 2018, the most relevant and timely research aspects in regenerative and/or reparative medicine were presented and critically discussed, with the aim to lay out a strategy for the future development of the field. We report herein the main ideas and conclusions of that meeting.
Collapse
Affiliation(s)
- Lilian Grigorian-Shamagian
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Doctor Esquerdo 46, 28007 Madrid, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Sanz-Ruiz
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Doctor Esquerdo 46, 28007 Madrid, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Andreu Climent
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Doctor Esquerdo 46, 28007 Madrid, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Lina Badimon
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, and Cardiovascular Research Chair, Autonomous University of Barcelona, Spain
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation and Faculty of Biomedical Sciences Università Svizzera Italiana, Lugano, Switzerland
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S. Jackson St., ACB, 3rd Floor, Louisville, KY 40292, USA
| | - Steven Chamuleau
- Department of Cardiology, Amsterdam UMC, Location AMC
- B2-239
- Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Diederick E Grobbee
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Stefan Janssens
- Department of Cardiovascular Medicine, UZ Leuven Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Jens Kastrup
- Department of Cardiology, The heart Centre, Rigshospitalet University of Copenhagen, Denmark
| | | | | | - Anthony Mathur
- Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University of London, Barts Heart Centre, St Bartholomew's Hospital, UK
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou 20, Université de Paris, PARCC, INSERM, rue Leblanc 75015 Paris, F-75015, Paris, France
| | - Giulio Pompilio
- Pompilio G Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Italy.,Department of Clinical Sciences and Community Health, University of Milano, Italy
| | - Felipe Prosper
- Hematology and Cell Therapy, Clinica Universidad de Navarra, Pamplona and Tercel, Instituto de Salud Carlos III, Madrid, Spain
| | - Emily Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola Smart
- Department of Physiology, Anatomy & Genetics, University of Oxford, UK
| | - Wolfgram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August University, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Potsdamer Str. 58 10785 Berlin, Germany
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Doctor Esquerdo 46, 28007 Madrid, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
A human hair-based platform for long-term maintenance of 3D engineered cardiac tissues in vitro. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Searching for Preclinical Models of Acute Decompensated Heart Failure: a Concise Narrative Overview and a Novel Swine Model. Cardiovasc Drugs Ther 2020; 36:727-738. [PMID: 33098053 PMCID: PMC9270312 DOI: 10.1007/s10557-020-07096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 11/25/2022]
Abstract
Purpose Available animal models of acute heart failure (AHF) and their limitations are discussed herein. A novel and preclinically relevant porcine model of decompensated AHF (ADHF) is then presented. Methods Myocardial infarction (MI) was induced by occlusion of left anterior descending coronary artery in 17 male pigs (34 ± 4 kg). Two weeks later, ADHF was induced in the survived animals (n = 15) by occlusion of the circumflex coronary artery, associated with acute volume overload and increases in arterial blood pressure by vasoconstrictor infusion. After onset of ADHF, animals received 48-h iv infusion of either serelaxin (n = 9) or placebo (n = 6). The pathophysiology and progression of ADHF were described by combining evaluation of hemodynamics, echocardiography, bioimpedance, blood gasses, circulating biomarkers, and histology. Results During ADHF, animals showed reduced left ventricle (LV) ejection fraction < 30%, increased thoracic fluid content > 35%, pulmonary edema, and high pulmonary capillary wedge pressure ~ 30 mmHg (p < 0.01 vs. baseline). Other ADHF-induced alterations in hemodynamics, i.e., increased central venous and pulmonary arterial pressures; respiratory gas exchanges, i.e., respiratory acidosis with low arterial PO2 and high PCO2; and LV dysfunction, i.e., increased LV end-diastolic/systolic volumes, were observed (p < 0.01 vs. baseline). Representative increases in circulating cardiac biomarkers, i.e., troponin T, natriuretic peptide, and bio-adrenomedullin, occurred (p < 0.01 vs. baseline). Finally, elevated renal and liver biomarkers were observed 48 h after onset of ADHF. Mortality was ~ 50%. Serelaxin showed beneficial effects on congestion, but none on mortality. Conclusion This new model, resulting from a combination of chronic and acute MI, and volume and pressure overload, was able to reproduce all the typical clinical signs occurring during ADHF in a consistent and reproducible manner. Electronic supplementary material The online version of this article (10.1007/s10557-020-07096-5) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Tune JD, Baker HE, Berwick Z, Moberly SP, Casalini ED, Noblet JN, Zhen E, Kowala MC, Christe ME, Goodwill AG. Distinct hemodynamic responses to (pyr)apelin-13 in large animal models. Am J Physiol Heart Circ Physiol 2020; 318:H747-H755. [PMID: 32108522 DOI: 10.1152/ajpheart.00365.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study tested the hypothesis that (pyr)apelin-13 dose-dependently augments myocardial contractility and coronary blood flow, irrespective of changes in systemic hemodynamics. Acute effects of intravenous (pyr)apelin-13 administration (10 to 1,000 nM) on blood pressure, heart rate, left ventricular pressure and volume, and coronary parameters were measured in dogs and pigs. Administration of (pyr)apelin-13 did not influence blood pressure (P = 0.59), dP/dtmax (P = 0.26), or dP/dtmin (P = 0.85) in dogs. However, heart rate dose-dependently increased > 70% (P < 0.01), which was accompanied by a significant increase in coronary blood flow (P < 0.05) and reductions in left ventricular end-diastolic volume and stroke volume (P < 0.001). In contrast, (pyr)apelin-13 did not significantly affect hemodynamics, coronary blood flow, or indexes of contractile function in pigs. Furthermore, swine studies found no effect of intracoronary (pyr)apelin-13 administration on coronary blood flow (P = 0.83) or vasorelaxation in isolated, endothelium-intact (P = 0.89) or denuded (P = 0.38) coronary artery rings. Examination of all data across (pyr)apelin-13 concentrations revealed an exponential increase in cardiac output as peripheral resistance decreased across pigs and dogs (P < 0.001; R2 = 0.78). Assessment of the Frank-Starling relationship demonstrated a significant linear relationship between left ventricular end-diastolic volume and stroke volume across species (P < 0.001; R2 = 0.70). Taken together, these findings demonstrate that (pyr)apelin-13 does not directly influence myocardial contractility or coronary blood flow in either dogs or pigs.NEW & NOTEWORTHY Our findings provide much needed insight regarding the pharmacological cardiac and coronary effects of (pyr)apelin-13 in larger animal preparations. In particular, data highlight distinct hemodynamic responses of apelin across species, which are independent of any direct effect on myocardial contractility or perfusion.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hana E Baker
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Zachary Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven P Moberly
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eli D Casalini
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jillian N Noblet
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eugene Zhen
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Mark C Kowala
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Michael E Christe
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|