1
|
Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L, Zhao H, Li P, Liu M, Yuan R, Miao Y, Zhu Y, Cong W. The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review. Noncoding RNA Res 2025; 11:158-187. [PMID: 39896344 PMCID: PMC11783329 DOI: 10.1016/j.ncrna.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, posing significant challenges to healthcare systems. Despite advances in medical interventions, the molecular mechanisms underlying CVDs are not yet fully understood. For decades, protein-coding genes have been the focus of CVD research. However, recent advances in genomics have highlighted the importance of long non-coding RNAs (lncRNAs) in cardiovascular health and disease. Changes in lncRNA expression specific to tissues may result from various internal or external factors, leading to tissue damage, organ dysfunction, and disease. In this review, we provide a comprehensive discussion of the regulatory mechanisms underlying lncRNAs and their roles in the pathogenesis and progression of CVDs, such as coronary heart disease, atherosclerosis, heart failure, arrhythmias, cardiomyopathies, and diabetic cardiomyopathy, to explore their potential as therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuena Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiwen Huang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuying Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lantian Hu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Liu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Weihong Cong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
2
|
Horiuchi Y, Wettersten N. Treatment strategies for diuretic resistance in patients with heart failure. J Cardiol 2025; 85:1-7. [PMID: 38914279 DOI: 10.1016/j.jjcc.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Improving congestion with diuretic therapy is crucial in the treatment of heart failure (HF). However, despite the use of loop diuretics, diuresis may be inadequate and congestion persists, which is known as diuretic resistance. Diuretic resistance and residual congestion are associated with a higher risk of rehospitalization and mortality. Causes of diuretic resistance in HF include diuretic pharmacokinetic changes, renal hemodynamic perturbations, neurohumoral activations, renal tubular remodeling, and use of nephrotoxic drugs as well as patient comorbidities. Combination diuretic therapy (CDT) has been advocated for the treatment of diuretic resistance. Thiazides, acetazolamides, tolvaptan, mineralocorticoid receptor antagonist, and sodium-glucose co-transporter-2 inhibitors are among the candidates, but none of these treatments has yet demonstrated significant diuretic efficacy or improved prognosis. At present, it is essential to identify and treat the causes of diuretic resistance in individual patients and to use CDT based on a better understanding of the characteristics of each drug to achieve adequate diuresis. Further research is needed to effectively assess and manage diuretic resistance and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Yu Horiuchi
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan.
| | - Nicholas Wettersten
- Division of Cardiovascular Medicine, San Diego Veterans Affairs Medical Center, San Diego, CA, USA; Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Ren J, Zhao J, Yang S, An S, Cai C, Wang J, Gu M, Niu H, Li S, Hua W, Gao B. Transcoronary study of biomarkers in patients with heart failure: Insights into intracardiac production. ESC Heart Fail 2024. [PMID: 39728840 DOI: 10.1002/ehf2.15175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/01/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS Biomarkers are pivotal in the management of heart failure (HF); however, their lack of cardiac specificity could limit clinical utility. This study aimed to investigate the transcoronary changes and intracardiac production of these biomarkers. METHODS Transcoronary gradients for B-type natriuretic peptide (BNP) and five novel biomarkers-galectin-3 (Gal-3), soluble suppression of tumourigenicity 2 (sST2), tissue inhibitor of metalloproteinase 1 (TIMP-1), growth differentiation factor 15 (GDF-15) and myeloperoxidase (MPO)-were determined using femoral artery (FA) and coronary sinus (CS) samples from 30 HF patients and 10 non-HF controls. Intracardiac biomarker production was assessed in an HF canine model using real-time quantitative PCR (qPCR) and western blot (WB) analysis. RESULTS Compared with the control group, levels of all detected biomarkers were significantly elevated in the HF group, while transcoronary gradients were only observed for BNP, Gal-3 and TIMP-1 levels in the HF group (BNP: FA: 841.5 ± 727.2 ng/mL vs. CS: 1132.0 ± 959.1 ng/mL, P = 0.005; Gal-3: FA: 9.5 ± 3.0 ng/mL vs. CS: 19.7 ± 16.4 ng/mL, P = 0.002; and TIMP-1: FA: 286.7 ± 68.9 ng/mL vs. CS: 377.3 ± 108.9 ng/mL, P = 0.001). Real-time qPCR and WB analysis revealed significant elevation of BNP, Gal-3 and TIMP-1 in the cardiac tissues of the HF group relative to other groups. CONCLUSIONS This study provided evidence of transcoronary changes in BNP, Gal-3 and TIMP-1 levels in HF patients, offering insights into their intracardiac production. These findings enhance the understanding of the biology of these biomarkers and may inform their clinical application.
Collapse
Affiliation(s)
- Jie Ren
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junhan Zhao
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengwen Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shuoyan An
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Chi Cai
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Gu
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Niu
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shurong Li
- Department of Anesthesiology, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Hua
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Beiyao Gao
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Liu Y, Sun Y, Dai W. Effect of sacubitril-valsartan on left ventricular remodeling in patients with acute myocardial infarction after primary percutaneous coronary intervention: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1366035. [PMID: 38863978 PMCID: PMC11165101 DOI: 10.3389/fphar.2024.1366035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
Background Sacubitril-valsartan has been widely reported for reducing the risk of cardiovascular death and improving left ventricular remodeling in patients with heart failure (HF). However, the effect of sacubitril-valsartan in patients with acute myocardial infarction (AMI) remains controversial. Therefore, we conducted this meta-analysis to investigate whether sacubitril-valsartan could reverse left ventricular remodeling and reduce cardiovascular adverse events in AMI patients after primary percutaneous coronary intervention (PPCI). Materials and methods Two researchers independently retrieved the relevant literature from PubMed, Embase, The Cochrane Library, China National Knowledge Infrastructure (CNKI), and the Wanfang database. The retrieval time was limited from inception to 1 June 2023. Randomized controlled trials (RCTs) meeting the inclusion criteria were included and analyzed. Results In total, 21 RCTs involving 2442 AMI patients who underwent PPCI for revascularization were included in this meta-analysis. The meta-analysis showed that compared with the angiotensin-converting enzyme inhibitors (ACEI)/angiotensin receptor blockers (ARB), sacubitril-valsartan treatment in AMI patients after PPCI significantly reduced left ventricular end-diastolic dimension (LVEDD) (weighted mean difference (WMD) -3.11, 95%CI: -4.05∼-2.16, p < 0.001), left ventricular end-diastolic volume (LVEDV) (WMD -7.76, 95%CI: -12.24∼-3.27, p = 0.001), left ventricular end-systolic volume (LVESV) (WMD -6.80, 95%CI: -9.45∼-4.15, p < 0.001) and left ventricular end-systolic dimension (LVESD) (WMD -2.53, 95%CI: -5.30-0.24, p < 0.001). Subgroup analysis according to the dose of sacubitril-valsartan yielded a similar result. Meanwhile, PPCI patients using sacubitril-valsartan therapy showed lower risk of major adverse cardiac events (MACE) (OR = 0.36, 95%CI: 0.28-0.46, p < 0.001), myocardial reinfarction (OR = 0.54, 95%CI: 0.30-0.98, p = 0.041) and HF (OR = 0.35, 95%CI: 0.26-0.47, p < 0.001) without increasing the risk of renal insufficiency, hyperkalemia, or symptomatic hypotension. At the same time, the change of LV ejection fraction (LVEF) (WMD 3.91, 95%CI: 3.41-4.41, p < 0.001), 6 min walk test (6MWT) (WMD 43.56, 95%CI: 29.37-57.76, p < 0.001) and NT-proBNP level (WMD -130.27, 95%CI: -159.14∼-101.40, p < 0.001) were statistically significant. Conclusion In conclusion, our meta-analysis indicates that compared with ACEI/ARB, sacubitril-valsartan may be superior to reverse left ventricular remodeling, improve cardiac function, and effectively reduce the risk of MACE, myocardial reinfarction, and HF in AMI patients after PPCI during follow-up without increasing the risk of adverse reactions including renal insufficiency, hyperkalemia, and symptomatic hypotension.
Collapse
Affiliation(s)
- Yiheng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Sun
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
5
|
Manolis AA, Manolis TA, Manolis AS. Neurohumoral Activation in Heart Failure. Int J Mol Sci 2023; 24:15472. [PMID: 37895150 PMCID: PMC10607846 DOI: 10.3390/ijms242015472] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In patients with heart failure (HF), the neuroendocrine systems of the sympathetic nervous system (SNS), the renin-angiotensin-aldosterone system (RAAS) and the arginine vasopressin (AVP) system, are activated to various degrees producing often-observed tachycardia and concomitant increased systemic vascular resistance. Furthermore, sustained neurohormonal activation plays a key role in the progression of HF and may be responsible for the pathogenetic mechanisms leading to the perpetuation of the pathophysiology and worsening of the HF signs and symptoms. There are biomarkers of activation of these neurohormonal pathways, such as the natriuretic peptides, catecholamine levels and neprilysin and various newer ones, which may be employed to better understand the mechanisms of HF drugs and also aid in defining the subgroups of patients who might benefit from specific therapies, irrespective of the degree of left ventricular dysfunction. These therapies are directed against these neurohumoral systems (neurohumoral antagonists) and classically comprise beta blockers, angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blockers and vaptans. Recently, the RAAS blockade has been refined by the introduction of the angiotensin receptor-neprilysin inhibitor (ARNI) sacubitril/valsartan, which combines the RAAS inhibition and neprilysin blocking, enhancing the actions of natriuretic peptides. All these issues relating to the neurohumoral activation in HF are herein reviewed, and the underlying mechanisms are pictorially illustrated.
Collapse
Affiliation(s)
- Antonis A. Manolis
- First Department of Cardiology, Evagelismos Hospital, 106 76 Athens, Greece;
| | - Theodora A. Manolis
- Department of Psychiatry, Aiginiteio University Hospital, 115 28 Athens, Greece;
| | - Antonis S. Manolis
- First Department of Cardiology, Ippokrateio University Hospital, 115 27 Athens, Greece
| |
Collapse
|
6
|
Yang JZ, Zhang KK, Shen HW, Liu Y, Li XW, Chen LJ, Liu JL, Li JH, Zhao D, Wang Q, Zhou CS. Sigma-1 receptor knockout disturbs gut microbiota, remodels serum metabolome, and exacerbates isoprenaline-induced heart failure. Front Microbiol 2023; 14:1255971. [PMID: 37720144 PMCID: PMC10501138 DOI: 10.3389/fmicb.2023.1255971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Heart failure (HF) is usually the end stage of the continuum of various cardiovascular diseases. However, the mechanism underlying the progression and development of HF remains poorly understood. The sigma-1 receptor (Sigmar1) is a non-opioid transmembrane receptor implicated in many diseases, including HF. However, the role of Sigmar1 in HF has not been fully elucidated. Methods In this study, we used isoproterenol (ISO) to induce HF in wild-type (WT) and Sigmar1 knockout (Sigmar1-/-) mice. Multi-omic analysis, including microbiomics, metabolomics and transcriptomics, was employed to comprehensively evaluate the role of Sigmar1 in HF. Results Compared with the WT-ISO group, Sigmar1-/- aggravated ISO-induced HF, including left ventricular systolic dysfunction and ventricular remodeling. Moreover, Sigmar1-/- exacerbated ISO-induced gut microbiota dysbiosis, which was demonstrated by the lower abundance of probiotics g_Akkermansia and g_norank_f_Muribaculaceae, and higher abundance of pathogenic g_norank_f_Oscillospiraceae and Allobaculum. Furthermore, differential metabolites among WT-Control, WT-ISO and Sigmar-/--ISO groups were mainly enriched in bile secretion, tryptophan metabolism and phenylalanine metabolism, which presented a close association with microbial dysbiosis. Corresponding with the exacerbation of the microbiome, the inflammation-related NOD-like receptor signaling pathway, NF-kappa B signaling pathway and TNF signaling pathway were activated in the heart tissues. Conclusion Taken together, this study provides evidence that a Sigmar1 knockout disturbs the gut microbiota and remodels the serum metabolome, which may exacerbate HF by stimulating heart inflammation.
Collapse
Affiliation(s)
- Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Hong-Wu Shen
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China
- Security Department, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Dong Zhao
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chu-Song Zhou
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Liu T, Wang B, Xiao S, Sun L, Zhu Z, Wang S, Li B, Yao J, Huang C, Ge W, Qian L, Lu Z, Pan Y. Correlation analysis between the static and the changed neutrophil-to-lymphocyte ratio and in-hospital mortality in critical patients with acute heart failure. Postgrad Med 2023; 135:50-57. [PMID: 36154549 DOI: 10.1080/00325481.2022.2129177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Association between neutrophil-to-lymphocyte ratio (NLR) on admission and poor prognosis in patients with acute heart failure (AHF) has been well established. However, the relationship between dynamic changes in NLR and in-hospital mortality in AHF patients has not been studied. Our purpose was to determine if an early change in NLR within the first week after AHF patients was admitted to intensive care unit (ICU) was associated with in-hospital mortality. METHODS Data from the medical information mart for intensive care IV (the MIMIC-IV) database was analyzed. The effect of baseline NLR on in-hospital mortality in critical patients with AHF was evaluated utilizing smooth curve fitting and multivariable logistic regression analysis. Moreover, comparison of the dynamic change in NLR among survivors and non-survivors was performed using the generalized additive mixed model (GAMM). RESULTS There were 1169 participants who took part in the present study, 986 of whom were in-hospital survivors and 183 of whom were in-hospital non-survivors. The smooth curve fitting revealed a positive relationship between baseline NLR and in-hospital mortality, and multivariable logistic regression analysis indicated that baseline NLR was an independent risk factor for in-hospital mortality (OR 1.04, 95% CI 1.02,1.07, P-value = 0.001). After adjusting for confounders, GAMM showed that the difference in NLR between survivors and non-survivors grew gradually during the first week after ICU admission, and the difference grew by an average of 0.51 per day (β = 0.51, 95% CI 0.45-0.56, P-value <0.001). CONCLUSIONS Baseline NLR was associated with poor prognosis in critical patients with AHF. Early rises in NLR were linked to higher in-hospital mortality, which suggests that keeping track of how NLR early changes might help identify short-term prognosis of critical patients with AHF.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Bing Wang
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Shengjue Xiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lifang Sun
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Zhijian Zhu
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Shasha Wang
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Baoyin Li
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Jianhui Yao
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Conggang Huang
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Wei Ge
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Lei Qian
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yesheng Pan
- Department of Cardiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Zhuang J, Xie L, Chen H, Yan X, Lu J, Ye J, Zhang Y, Qiang W, Zhang Q, Zhou L. Correlation of Serum Laminin Levels with Cardiac Function and In-Hospital Prognosis in Patients with Atrial Fibrillation. Int Heart J 2023; 64:172-177. [PMID: 37005313 DOI: 10.1536/ihj.22-393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
We aimed to investigate the correlation between serum laminin (LN) levels and cardiac function in patients with atrial fibrillation (AF) and its predictive value for in-hospital prognosis. This study included 295 patients with AF who were admitted to the Second Affiliated Hospital of Nantong University from January 2019 to January 2021. The patients were divided into three groups according to the New York Heart Association (NYHA) functional classification (I-II, III, and IV); the LN levels increased with increasing NYHA class (P < 0.05). Spearman's correlation analysis revealed a positive correlation between LN and NT-proBNP (r = 0.527, P < 0.001). Of the patients, 36 had in-hospital major adverse cardiac events (MACEs), of whom 30 had acute heart failure, 5 had malignant arrhythmias, and one had stroke. The area under the ROC curve for predicting the in-hospital MACEs by LN was 0.815 (95% CI: 0.740-0.890, P < 0.001). Multivariate logistic regression analysis revealed that LN could be an independent predictor of in-hospital MACEs (odds ratio: 1.009, 95% confidence interval: 1.004-1.015, P = 0.001). In conclusion, LN may serve as a potential biomarker to evaluate the severity of cardiac function and predict in-hospital prognosis in AF patients.
Collapse
Affiliation(s)
- Jianfen Zhuang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University
- Department of Cardiology, The Second Affiliated Hospital of Nantong University
| | - Ling Xie
- Department of Cardiology, The Second Affiliated Hospital of Nantong University
| | - Haixiao Chen
- Department of General Practice, Affiliated Hospital 2 of Nantong University
| | - Xiaoyun Yan
- Department of General Practice, Affiliated Hospital 2 of Nantong University
| | - Jinya Lu
- Department of General Practice, Affiliated Hospital 2 of Nantong University
| | - Jiaqi Ye
- Department of General Practice, Affiliated Hospital 2 of Nantong University
| | - Yin Zhang
- Department of General Practice, Affiliated Hospital 2 of Nantong University
| | - Wenhui Qiang
- Department of General Practice, Affiliated Hospital 2 of Nantong University
| | - Qing Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
9
|
Zhao B, Wang W, Liu Y, Guan S, Wang M, Song F, Shangguan W, Miao S, Zhang X, Liu H, Liu E, Liang X. Establishment of a lncRNA-miRNA-mRNA network in a rat model of atrial fibrosis by whole transcriptome sequencing. J Interv Card Electrophysiol 2022; 63:723-736. [DOI: 10.1007/s10840-022-01120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
|
10
|
Xiong B, Nie D, Qian J, Yao Y, Yang G, Rong S, Zhu Q, Du Y, Jiang Y, Huang J. The benefits of sacubitril-valsartan in patients with acute myocardial infarction: a systematic review and meta-analysis. ESC Heart Fail 2021; 8:4852-4862. [PMID: 34716749 PMCID: PMC8712802 DOI: 10.1002/ehf2.13677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS We aimed to investigate whether sacubitril-valsartan could further improve the prognosis, cardiac function, and left ventricular (LV) remodelling in patients following acute myocardial infarction (AMI). METHODS AND RESULTS We searched the PubMed, Embase, Cochrane Library, and China National Knowledge Infrastructure (CNKI) from inception to 10 May 2021 to identify potential articles. Randomized controlled trials (RCTs) meeting the inclusion criteria were included and analysed. Thirteen RCTs, covering 1358 patients, were analysed. Compared with angiotensin-converting enzyme inhibitors (ACEI)/angiotensin receptor blockers (ARB), sacubitril-valsartan did not significantly reduced the cardiovascular mortality [risk ratio (RR) 0.65, 95% confidence interval (CI) 0.22 to 1.93, P = 0.434] and the rate of myocardial reinfarction (RR 0.65, 95% CI 0.29 to 1.46, P = 0.295) of patients following AMI, but the rate of hospitalization for heart failure (HF) (RR 0.48, 95% CI 0.35 to 0.66, P < 0.001) and the change of LV ejection fraction (LVEF) [weighted mean difference (WMD) 5.49, 95% CI 3.62 to 7.36, P < 0.001] were obviously improved. The N-terminal pro-brain natriuretic peptide (NT-ProBNP) level (WMD -310.23, 95% CI -385.89 to -234.57, P < 0.001) and the LV end-diastolic dimension (LVEDD) (WMD -3.16, 95% CI -4.59 to -1.73, P < 0.001) were also significantly lower in sacubitril-valsartan group than in ACEI/ARB group. Regarding safety, sacubitril-valsartan did not increase the risk of hypotension, hyperkalaemia, angioedema, and cough. CONCLUSIONS This meta-analysis suggests that early administration of sacubitril-valsartan may be superior to conventional ACEI/ARB to decrease the risk of hospitalization for HF, improve the cardiac function, and reverse the LV remodelling in patients following AMI.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010, China
| | - Dan Nie
- Department of Gastroenterology, The Chongqing Traditional Chinese Medicine Hospital, Chongqing Academy of Traditional Chinese Medicine, Chongqing, China
| | - Jun Qian
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010, China
| | - Yuanqing Yao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010, China
| | - Gang Yang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010, China
| | - Que Zhu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010, China
| | - Yun Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010, China
| | - Yonghong Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76, Linjiang Road, Chongqing, 400010, China
| |
Collapse
|
11
|
Jorbenadze A, Fudim M, Mahfoud F, Adamson PB, Bekfani T, Wachter R, Sievert H, Ponikowski PP, Cleland JGF, Anker SD. Extra-cardiac targets in the management of cardiometabolic disease: Device-based therapies. ESC Heart Fail 2021; 8:3327-3338. [PMID: 34002946 PMCID: PMC8318435 DOI: 10.1002/ehf2.13361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/14/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) does not occur in a vacuum and is commonly defined and exacerbated by its co‐morbid conditions. Neurohormonal imbalance and systemic inflammation are some of the key pathomechanisms of HF but also commonly encountered co‐morbidities such as arterial hypertension, diabetes mellitus, cachexia, obesity and sleep‐disordered breathing. A cornerstone of HF management is neurohormonal blockade, which in HF with reduced ejection fraction has been tied to a reduction in morbidity and mortality. Pharmacological treatment effective in patients with HF with reduced ejection fraction did not show substantial effects in HF with preserved ejection fraction. Here, we review novel device‐based therapies using neuromodulation of extra‐cardiac targets to treat cardiometabolic disease.
Collapse
Affiliation(s)
| | - Marat Fudim
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology, and Intensive Care Medicine, Saarland University, Saarbrücken, Germany
| | | | - Tarek Bekfani
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
| | - Rolf Wachter
- Clinic and Polyclinic for Cardiology, University Hospital Leipzig, Leipzig, Germany
| | | | | | - John G F Cleland
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Stefan D Anker
- Division of Cardiology and Metabolism - Heart Failure, Cachexia & Sarcopenia, Department of Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Madonna R. Exploring the mechanisms of action of gliflozines in heart failure and possible implications in pulmonary hypertension. Vascul Pharmacol 2021; 138:106839. [PMID: 33524548 DOI: 10.1016/j.vph.2021.106839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Although results from two major trials trials have shown a clear benefit of gliflozines in the management of heart failure (HF) irrespective of diabetes status, the mechanism of cardiac benefits remains incompletely understood. Gliflozines have an osmotic diuretic effect that differs from that of other diuretic classes, resulting in greater electrolyte-free water clearance, and clinical studies have shown that intravascular volume depletion is rare and occurs at similar frequency in the gliflozines and placebo groups. As a consequence of the negligible effects on the blood volume and body's fluid balance compared to diuretics, gliflozines may limit the reflex neurohumoral stimulation and activation of renin-angiotensin-aldosterone system (RAAS). Since neurohormonal and RAAS activation in patients with HF reduced or ejection fraction (HFrEF and HFpEF) also leads to systemic and pulmonary arterial stiffening, pulmonary hypertension (PH) and PH-related right ventricular failure, gliflozines may lead to a mitigation of systemic and pulmonary arterial stiffening, which in turn can reduce the degree of PH associated with HFrEF or HFpEF, can improve the ventricular arterial coupling and can reduce the overload of the left and right ventricle, improving their function. The current review discusses the latest findings regarding the effects of SGLT2 inhibitors on heart failure with focus also on pulmonary hypertension, discussing the molecular mechanisms involved.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States of America; Institute of Cardiology, University of Pisa, Pisa, Italy.
| |
Collapse
|