1
|
Islam R, Hong Z. YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis. MECHANOBIOLOGY IN MEDICINE 2024; 2:100085. [PMID: 39281415 PMCID: PMC11391866 DOI: 10.1016/j.mbm.2024.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Cardiovascular diseases (CVDs) persistently rank as a leading cause of premature death and illness worldwide. The Hippo signaling pathway, known for its highly conserved nature and integral role in regulating organ size, tissue homeostasis, and stem cell function, has been identified as a critical factor in the pathogenesis of CVDs. Recent findings underscore the significance of the Yes-associated protein (YAP) and the Transcriptional Coactivator with PDZ-binding motif (TAZ), collectively referred to as YAP/TAZ. These proteins play pivotal roles as downstream components of the Hippo pathway, in the regulation of cardiovascular development and homeostasis. YAP/TAZ can regulate various cellular processes such as cell proliferation, migration, differentiation, and apoptosis through their interactions with transcription factors, particularly those within the transcriptional enhancer associate domain (TEAD) family. The aim of this review is to provide a comprehensive overview of the current understanding of YAP/TAZ signaling in cardiovascular physiology and pathogenesis. We analyze the regulatory mechanisms of YAP/TAZ activation, explore their downstream effectors, and examine their association across numerous cardiovascular disorders, including myocardial hypertrophy, myocardial infarction, pulmonary hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, angiogenesis, restenosis, and cardiac fibrosis. Furthermore, we investigate the potential therapeutic implications of targeting the YAP/TAZ pathway for the treatment of CVDs. Through this comprehensive review, our aim is to elucidate the current understanding of YAP/TAZ signaling in cardiovascular biology and underscore its potential implications for the diagnosis and therapeutic intervention of CVDs.
Collapse
Affiliation(s)
- Rakibul Islam
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Zhongkui Hong
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Tian Y, Liu R, Yang Q, Zhang J, Liu Z, Dong B, Gao J, Wan L. Carnosol suppresses cardiomyocyte hypertrophy via promoting the activation of AMPK pathway. Biochem Biophys Res Commun 2024; 729:150343. [PMID: 38986259 DOI: 10.1016/j.bbrc.2024.150343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Pathological cardiac hypertrophy is associated with adverse cardiovascular events and can gradually lead to heart failure, arrhythmia, and even sudden death. However, the current development of treatment strategies has been unsatisfactory. Therefore, it is of great significance to find new and effective drugs for the treatment of myocardial hypertrophy. We found that carnosol can inhibit myocardial hypertrophy induced by PE stimulation, and the effect is very significant at 5 μM. Moreover, we demonstrated that 50 mg/kg of carnosol protect against cardiac hypertrophy and fibrosis induced by TAC surgery in mice. Mechanically, we proved that the inhibitory effect of carnosol on cardiac hypertrophy depends on its regulation on the phosphorylation activation of AMPK. In conclusion, our study suggested that carnosol may be a novel drug component for the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu Tian
- Department of Neurology, Huanggang Central hospital of Yangtze University, Huanggang, China
| | - Ruhan Liu
- Department of Combine Traditional Chinese and Western Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Qin Yang
- Department of Cardiovascular Surgery, Huanggang Central Hospital of Yangtze University, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Jianqing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bizhen Dong
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Ju Gao
- Department of Neurology, Huanggang Central hospital of Yangtze University, Huanggang, China.
| | - Lipeng Wan
- Department of Emergency Medicine, Huanggang Central Hospital of Yangtze University, Huanggang, China.
| |
Collapse
|
3
|
Gu L, Wan X, Liu Y, Gong Z, Huang R, Shi Y, Liu H. Mesenchymal stem cells may alleviate angiotensin II-induced myocardial fibrosis and hypertrophy by upregulating SFRS3 expression. Rev Port Cardiol 2024:S0870-2551(24)00221-X. [PMID: 38986812 DOI: 10.1016/j.repc.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES The development of cardiac fibrosis (CF) and hypertrophy (CH) can lead to heart failure. Mesenchymal stem cells (MSCs) have shown promise in treating cardiac diseases. However, the relationship between MSCs and splicing factor arginine/serine rich-3 (SFRS3) remains unclear. In this study, our objectives are to investigate the effect of MSCs on SFRS3 expression, and their impact on CF and CH. Additionally, we aim to explore the function of the overexpression of SFRS3 in angiotensin II (Ang II)-treated cardiac fibroblasts (CFBs) and cardiac myocytes (CMCs). METHODS Rat cardiac fibroblasts (rCFBs) or rat cardiac myocytes (rCMCs) were co-cultured with rat MSCs (rMSCs). The function of SFRS3 in Ang II-induced rCFBs and rCMCs was studied by overexpressing SFRS3 in these cells, both with and without the presence of rMSCs. We assessed the expression of SFRS3 and evaluated the cell cycle, proliferation and apoptosis of rCFBs and rCMCs. We also measured the levels of interleukin (IL)-β, IL-6 and tumor necrosis factor (TNF)-α and assessed the degree of fibrosis in rCFBs and hypertrophy in rCMCs. RESULTS rMSCs induced SFRS3 expression and promoted cell cycle, proliferation, while reducing apoptosis of Ang II-treated rCFBs and rCMCs. Co-culture of rMSCs with these cells also repressed cytokine production and mitigated the fibrosis of rCFBs, as well as hypertrophy of rCMCs triggered by Ang II. Overexpression of SFRS3 in the rCFBs and rCMCs yielded identical effects to rMSC co-culture. CONCLUSION MSCs may alleviate Ang II-induced cardiac fibrosis and cardiomyocyte hypertrophy by increasing SFRS3 expression in vitro.
Collapse
Affiliation(s)
- Ling Gu
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an, Fujian, China
| | - Xin Wan
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an, Fujian, China
| | - Ying Liu
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an, Fujian, China
| | - Zhenbin Gong
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an, Fujian, China
| | - Rijin Huang
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an, Fujian, China
| | - Yundi Shi
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an, Fujian, China.
| | - Huogen Liu
- Department of Critical Care Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu'an, Fujian, China
| |
Collapse
|
4
|
Mikšiūnas R, Labeit S, Bironaite D. Class I and II Histone Deacetylase Inhibitors as Therapeutic Modulators of Dilated Cardiac Tissue-Derived Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2024; 25:6758. [PMID: 38928463 PMCID: PMC11203858 DOI: 10.3390/ijms25126758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of dilated cardiomyopathy (DCM) is increasing globally, highlighting the need for innovative therapeutic approaches to prevent its onset. In this study, we examined the energetic and epigenetic distinctions between dilated and non-dilated human myocardium-derived mesenchymal stem/stromal cells (hmMSCs) and assessed the effects of class I and II HDAC inhibitors (HDACi) on these cells and their cardiomyogenic differentiation. Cells were isolated from myocardium biopsies using explant outgrowth methods. Mitochondrial and histone deacetylase activities, ATP levels, cardiac transcription factors, and structural proteins were assessed using flow cytometry, PCR, chemiluminescence, Western blotting, and immunohistochemistry. The data suggest that the tested HDAC inhibitors improved acetylation and enhanced the energetic status of both types of cells, with significant effects observed in dilated myocardium-derived hmMSCs. Additionally, the HDAC inhibitors activated the cardiac transcription factors Nkx2-5, HOPX, GATA4, and Mef2C, and upregulated structural proteins such as cardiac troponin T and alpha cardiac actin at both the protein and gene levels. In conclusion, our findings suggest that HDACi may serve as potential modulators of the energetic status and cardiomyogenic differentiation of human heart hmMSCs. This avenue of exploration could broaden the search for novel therapeutic interventions for dilated cardiomyopathy, ultimately leading to improvements in heart function.
Collapse
Affiliation(s)
- Rokas Mikšiūnas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08406 Vilnius, Lithuania;
| | | | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08406 Vilnius, Lithuania;
| |
Collapse
|
5
|
Ping P, Yang T, Ning C, Zhao Q, Zhao Y, Yang T, Gao Z, Fu S. Chlorogenic acid attenuates cardiac hypertrophy via up-regulating Sphingosine-1-phosphate receptor1 to inhibit endoplasmic reticulum stress. ESC Heart Fail 2024; 11:1580-1593. [PMID: 38369950 PMCID: PMC11098655 DOI: 10.1002/ehf2.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 10/06/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
AIMS Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. METHODS AND RESULTS To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO-induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO-treated H9c2 cells. Moreover, CGA inhibited ISO-induced up-regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R-like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase-12/9/3) but increased the expression of anti-apoptosis marker bcl-2 in a dose-dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine-1-phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P < 0.05). CGA also restored ISO-induced inhibition on the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA-induced effects (P < 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P < 0.05). CONCLUSIONS CGA treatment attenuated ISO-induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.
Collapse
Affiliation(s)
- Ping Ping
- General Station for Drug and Instrument Supervision and ControlJoint Logistic Support Force of Chinese People's Liberation ArmyBeijingChina
| | - Ting Yang
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Chaoxue Ning
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Qingkai Zhao
- Department of Health and MedicineHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Yali Zhao
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Tao Yang
- Department of OncologyHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Zhitao Gao
- School of Laboratory MedicineXinxiang Medical UniversityXinxiangChina
| | - Shihui Fu
- Department of CardiologyHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
- Department of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
6
|
Chen C, Hu S, Hu HJ, Liu ZX, Wu XT, Zou T, Su H. Dronedarone Attenuates Ang II-Induced Myocardial Hypertrophy Through Regulating SIRT1/FOXO3/PKIA Axis. Korean Circ J 2024; 54:172-186. [PMID: 38654563 PMCID: PMC11040268 DOI: 10.4070/kcj.2023.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Long-term pathological myocardial hypertrophy (MH) seriously affects the normal function of the heart. Dronedarone was reported to attenuate left ventricular hypertrophy of mice. However, the molecular regulatory mechanism of dronedarone in MH is unclear. METHODS Angiotensin II (Ang II) was used to induce cell hypertrophy of H9C2 cells. Transverse aortic constriction (TAC) surgery was performed to establish a rat model of MH. Cell size was evaluated using crystal violet staining and rhodamine phalloidin staining. Reverse transcription quantitative polymerase chain reaction and western blot were performed to detect the mRNA and protein expressions of genes. JASPAR and luciferase activity were conducted to predict and validate interaction between forkhead box O3 (FOXO3) and protein kinase inhibitor alpha (PKIA) promoter. RESULTS Ang II treatment induced cell hypertrophy and inhibited sirtuin 1 (SIRT1) expression, which were reversed by dronedarone. SIRT1 overexpression or PKIA overexpression enhanced dronedarone-mediated suppression of cell hypertrophy in Ang II-induced H9C2 cells. Mechanistically, SIRT1 elevated FOXO3 expression through SIRT1-mediated deacetylation of FOXO3 and FOXO3 upregulated PKIA expression through interacting with PKIA promoter. Moreover, SIRT1 silencing compromised dronedarone-mediated suppression of cell hypertrophy, while PKIA upregulation abolished the influences of SIRT1 silencing. More importantly, dronedarone improved TAC surgery-induced MH and impairment of cardiac function of rats via affecting SIRT1/FOXO3/PKIA axis. CONCLUSIONS Dronedarone alleviated MH through mediating SIRT1/FOXO3/PKIA axis, which provide more evidences for dronedarone against MH.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Song Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng-Jing Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Xuan Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xin-Teng Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tao Zou
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hua Su
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Li J, Ma ZY, Cui YF, Cui YT, Dong XH, Wang YZ, Fu YY, Xue YD, Tong TT, Ding YZ, Zhu YM, Huang HJ, Zhao L, Lv HZ, Xiong LZ, Zhang K, Han YX, Ban T, Huo R. Cardiac-specific deletion of BRG1 ameliorates ventricular arrhythmia in mice with myocardial infarction. Acta Pharmacol Sin 2024; 45:517-530. [PMID: 37880339 PMCID: PMC10834533 DOI: 10.1038/s41401-023-01170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
Malignant ventricular arrhythmia (VA) after myocardial infarction (MI) is mainly caused by myocardial electrophysiological remodeling. Brahma-related gene 1 (BRG1) is an ATPase catalytic subunit that belongs to a family of chromatin remodeling complexes called Switch/Sucrose Non-Fermentable Chromatin (SWI/SNF). BRG1 has been reported as a molecular chaperone, interacting with various transcription factors or proteins to regulate transcription in cardiac diseases. In this study, we investigated the potential role of BRG1 in ion channel remodeling and VA after ischemic infarction. Myocardial infarction (MI) mice were established by ligating the left anterior descending (LAD) coronary artery, and electrocardiogram (ECG) was monitored. Epicardial conduction of MI mouse heart was characterized in Langendorff-perfused hearts using epicardial optical voltage mapping. Patch-clamping analysis was conducted in single ventricular cardiomyocytes isolated from the mice. We showed that BRG1 expression in the border zone was progressively increased in the first week following MI. Cardiac-specific deletion of BRG1 by tail vein injection of AAV9-BRG1-shRNA significantly ameliorated susceptibility to electrical-induced VA and shortened QTc intervals in MI mice. BRG1 knockdown significantly enhanced conduction velocity (CV) and reversed the prolonged action potential duration in MI mouse heart. Moreover, BRG1 knockdown improved the decreased densities of Na+ current (INa) and transient outward potassium current (Ito), as well as the expression of Nav1.5 and Kv4.3 in the border zone of MI mouse hearts and in hypoxia-treated neonatal mouse ventricular cardiomyocytes. We revealed that MI increased the binding among BRG1, T-cell factor 4 (TCF4) and β-catenin, forming a transcription complex, which suppressed the transcription activity of SCN5A and KCND3, thereby influencing the incidence of VA post-MI.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Zi-Yue Ma
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yun-Feng Cui
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ying-Tao Cui
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Xian-Hui Dong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yong-Zhen Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yu-Yang Fu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ya-Dong Xue
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ting-Ting Tong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ying-Zi Ding
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ya-Mei Zhu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Hai-Jun Huang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ling Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Hong-Zhao Lv
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ling-Zhao Xiong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Kai Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yu-Xuan Han
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Tao Ban
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China.
- Heilongjiang Academy of Medical Sciences, Baojian Road, Nangang District, Harbin, 150081, China.
| | - Rong Huo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
8
|
Zhang X, Nie Y, Zhang R, Yu J, Ge J. Reduced DNMT1 levels induce cell apoptosis via upregulation of METTL3 in cardiac hypertrophy. Heliyon 2024; 10:e24572. [PMID: 38314261 PMCID: PMC10837504 DOI: 10.1016/j.heliyon.2024.e24572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
DNA methylation is also involved in the development and progression of cardiac diseases. Although studies have shown that DNA methylation and RNA m6A methylation play an important role in the development of myocardial hypertrophy, whether DNA methylation and RNA m6A methylation have a coordinated role in the development of myocardial hypertrophy and influence each other is still unknown. Here, we found that DNMT1 expression was downregulated in TAC mice and Ang II-treated NRCMs. Moreover, DNMT1 overexpression inhibited Ang II-induced apoptosis of NRCMs. Furthermore, we found that the expression of METTL3 was up-regulated after inhibiting the expression of DNMT1 by a DNMT1 inhibitor or small interfering RNA. In addition, ectopic expression DNMT1 inhibited METTL3 expression in NRCMs. Furthermore, METTL3 expression was elevated in NRCMs treated with Ang II, and suppression of METTL3 inhibited cell apoptosis induced by Ang II in NRCMs.In addition, this study revealed that the DNMT1/METTL3 pathway affected Ang II-induced apoptosis in NRCMs. Finally, this study found that DNMT1, but not METTL3, might directly regulated the ANP and BNP expression. Collectively, our findings revealed the role of the DNMT1/METTL3 pathway in cardiac hypertrophy and provided a novel molecular mechanism describing the physiological and pathological processes.
Collapse
Affiliation(s)
| | | | - Rui Zhang
- Department of Cardiac surgery, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Jiquan Yu
- Department of Cardiac surgery, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Jianjun Ge
- Department of Cardiac surgery, The First Affiliated Hospital of USTC, Hefei, 230001, China
| |
Collapse
|
9
|
Ishioka M, Nihashi Y, Sunagawa Y, Umezawa K, Shimosato T, Kagami H, Morimoto T, Takaya T. Myogenetic Oligodeoxynucleotide Induces Myocardial Differentiation of Murine Pluripotent Stem Cells. Int J Mol Sci 2023; 24:14380. [PMID: 37762684 PMCID: PMC10532123 DOI: 10.3390/ijms241814380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
An 18-base myogenetic oligodeoxynucleotide (myoDN), iSN04, acts as an anti-nucleolin aptamer and induces myogenic differentiation of skeletal muscle myoblasts. This study investigated the effect of iSN04 on murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In the undifferentiated state, iSN04 inhibited the proliferation of ESCs and iPSCs but did not affect the expression of pluripotent markers. In the differentiating condition, iSN04 treatment of ESCs/iPSCs from day 5 onward dramatically induced differentiation into Nkx2-5+ beating cardiomyocytes with upregulation of Gata4, Isl1, and Nkx2-5, whereas iSN04 treatment from earlier stages completely inhibited cardiomyogenesis. RNA sequencing revealed that iSN04 treatment from day 5 onward contributes to the generation of cardiac progenitors by modulating the Wnt signaling pathway. Immunostaining showed that iSN04 suppressed the cytoplasmic translocation of nucleolin and restricted it to the nucleoli. These results demonstrate that nucleolin inhibition by iSN04 facilitates the terminal differentiation of cardiac mesoderm into cardiomyocytes but interferes with the differentiation of early mesoderm into the cardiac lineage. This is the first report on the generation of cardiomyocytes from pluripotent stem cells using a DNA aptamer. Since iSN04 did not induce hypertrophic responses in primary-cultured cardiomyocytes, iSN04 would be useful and safe for the regenerative therapy of heart failure using stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Mina Ishioka
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.S.); (T.M.)
| | - Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.S.); (T.M.)
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
10
|
Zhang Q, Song C, Zhang M, Liu Y, Wang L, Xie Y, Qi H, Ba L, Shi P, Cao Y, Sun H. Super-enhancer-driven lncRNA Snhg7 aggravates cardiac hypertrophy via Tbx5/GLS2/ferroptosis axis. Eur J Pharmacol 2023:175822. [PMID: 37277029 DOI: 10.1016/j.ejphar.2023.175822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are expressed aberrantly in cardiac disease, but their roles in cardiac hypertrophy are still unknown. Here we sought to identify a specific lncRNA and explore the mechanisms underlying lncRNA functions. Our results revealed that lncRNA Snhg7 was a super-enhancer-driven gene in cardiac hypertrophy by using chromatin immunoprecipitation sequencing (ChIP-Seq). We next found that lncRNA Snhg7 induced ferroptosis by interacting with T-box transcription factor 5 (Tbx5), a cardiac transcription factor. Moreover, Tbx5 bound to the promoter of glutaminase 2 (GLS2) and regulated cardiomyocyte ferroptosis activity in cardiac hypertrophy. Importantly, extra-terminal domain inhibitor JQ1 could suppress super-enhancers in cardiac hypertrophy. Inhibition of lncRNA Snhg7 could block the expressions of Tbx5, GLS2 and levels of ferroptosis in cardiomyocytes. Furthermore, we verified that Nkx2-5 as a core transcription factor, directly bound the super-enhancer of itself and lncRNA Snhg7, increasing both of their activation. Collectively, we are the first to identify lncRNA Snhg7 as a novel functional lncRNA in cardiac hypertrophy, might regulate cardiac hypertrophy via ferroptosis. Mechanistically, lncRNA Snhg7 could transcriptionally regulate Tbx5/GLS2/ferroptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Qianhui Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Chao Song
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meitian Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Yongsheng Liu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Lixin Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Yawen Xie
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Lina Ba
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China.
| |
Collapse
|
11
|
Huang J, Qu Q, Dai Y, Ren D, Qian J, Ge J. Detrimental Role of PDZ-RhoGEF in Pathological Cardiac Hypertrophy. Hypertension 2023; 80:403-415. [PMID: 36448462 DOI: 10.1161/hypertensionaha.122.19142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Postsynaptic density 95/disk-large/ZO-1 Rho guanine nucleotide exchange factor (PDZ-RhoGEF, PRG) functions as a RhoGEF for activated Gα13 and transmits activation signals to downstream signaling pathways in various pathological processes. Although the prohypertrophic effect of activated Gα13 (guanine nucleotide binding protein alpha 13; a heterotrimeric G protein) is well-established, the role of PDZ-RhoGEF in pathological cardiac hypertrophy is still obscure. METHODS Genetically engineered mice and neonatal rat ventricular myocytes were generated to investigate the function of PRG in pathological myocardial hypertrophy. The prohypertrophic stimuli-induced alternations in the morphology and intracellular signaling were measured in myocardium and neonatal rat ventricular myocytes. Furthermore, multiple molecular methodologies were used to identify the precise molecular mechanisms underlying PDZ-RhoGEF function. RESULTS Increased PDZ-RhoGEF expression was documented in both hypertrophied hearts and neonatal rat ventricular myocytes. Upon prohypertrophic stimuli, the PDZ-RhoGEF-deficient hearts displayed alleviated cardiomyocyte enlargement and attenuated collagen deposition with improved cardiac function, whereas the adverse hypertrophic responses in hearts and neonatal rat ventricular myocytes were markedly exaggerated by PDZ-RhoGEF overexpression. Mechanistically, RhoA (ras homolog family member A)-dependent signaling pathways may function as the downstream effectors of PDZ-RhoGEF in hypertrophic remodeling, as confirmed by rescue experiments using a RhoA inhibitor and dominant-negative RhoA. Furthermore, PDZ-RhoGEF is associated with activated Gα13 and contributes to Gα13-mediated activation of RhoA-dependent signaling. CONCLUSIONS Our data provide the first evidence that PDZ-RhoGEF promotes pathological cardiac hypertrophy by linking activated Gα13 to RhoA-dependent signaling pathways. Therefore, PDZ-RhoGEF has the potential to be a diagnostic marker or therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jia Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Qingrong Qu
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China and Shanghai Clinical Research Center for Tuberculosis, Shanghai, China (Q.Q.)
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Daoyuan Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| |
Collapse
|
12
|
Jiang X, Ning P, Yan F, Wang J, Cai W, Yang F. Impact of myeloid differentiation protein 1 on cardiovascular disease. Biomed Pharmacother 2023; 157:114000. [PMID: 36379121 DOI: 10.1016/j.biopha.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of disability and mortality worldwide and a significant global burden. Many lines of evidence suggest complex remodeling responses to cardiovascular disease, such as myocardial ischemia, hypertension and valve disease, which lead to poor clinical outcomes, including heart failure, arrhythmia and sudden cardiac death (SCD). The mechanisms underlying cardiac remodeling are closely related to reactive oxygen species (ROS) and inflammation. Myeloid differentiation protein 1 (MD1) is a secreted glycoprotein known as lymphocyte antigen 86. The complex of MD1 and radioprotective 105 (RP105) is an important regulator of inflammation and is involved in the modulation of vascular remodeling and atherosclerotic plaque development. A recent study suggested that the expression of MD1 in hypertrophic cardiomyopathy (HCM) patients is decreased compared with that in donor hearts. Therefore, MD1 may play an important role in the pathological processes of cardiovascular disease and have potential clinical value. Here, this review aims to discuss the current knowledge regarding the role of MD1 in the regulation of cardiac pathophysiology.
Collapse
Affiliation(s)
- Xiaobo Jiang
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Peng Ning
- The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Geriatric Diseases Institute of Chengdu, Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| | - Fang Yan
- Geriatric Department, Chengdu Fifth People's Hospital, Chengdu 611137, China; Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| | - Jianfeng Wang
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Cai
- Geriatric Diseases Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu 611137, China; The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Yang
- The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Geriatric Diseases Institute of Chengdu, Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611137, China.
| |
Collapse
|
13
|
Lizcano F, Bustamante L. Molecular perspectives in hypertrophic heart disease: An epigenetic approach from chromatin modification. Front Cell Dev Biol 2022; 10:1070338. [DOI: 10.3389/fcell.2022.1070338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenetic changes induced by environmental factors are increasingly relevant in cardiovascular diseases. The most frequent molecular component in cardiac hypertrophy is the reactivation of fetal genes caused by various pathologies, including obesity, arterial hypertension, aortic valve stenosis, and congenital causes. Despite the multiple investigations performed to achieve information about the molecular components of this pathology, its influence on therapeutic strategies is relatively scarce. Recently, new information has been taken about the proteins that modify the expression of fetal genes reactivated in cardiac hypertrophy. These proteins modify the DNA covalently and induce changes in the structure of chromatin. The relationship between histones and DNA has a recognized control in the expression of genes conditioned by the environment and induces epigenetic variations. The epigenetic modifications that regulate pathological cardiac hypertrophy are performed through changes in genomic stability, chromatin architecture, and gene expression. Histone 3 trimethylation at lysine 4, 9, or 27 (H3-K4; -K9; -K27me3) and histone demethylation at lysine 9 and 79 (H3-K9; -K79) are mediators of reprogramming in pathologic hypertrophy. Within the chromatin architecture modifiers, histone demethylases are a group of proteins that have been shown to play an essential role in cardiac cell differentiation and may also be components in the development of cardiac hypertrophy. In the present work, we review the current knowledge about the influence of epigenetic modifications in the expression of genes involved in cardiac hypertrophy and its possible therapeutic approach.
Collapse
|
14
|
Brogi S, Tabanelli R, Calderone V. Combinatorial approaches for novel cardiovascular drug discovery: a review of the literature. Expert Opin Drug Discov 2022; 17:1111-1129. [PMID: 35853260 DOI: 10.1080/17460441.2022.2104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In this article, authors report an inclusive discussion about the combinatorial approach for the treatment of cardiovascular diseases (CVDs) and for counteracting the cardiovascular risk factors. The mentioned strategy was demonstrated to be useful for improving the efficacy of pharmacological treatments and in CVDs showed superior efficacy with respect to the classical monotherapeutic approach. AREAS COVERED According to this topic, authors analyzed the combinatorial treatments that are available on the market, highlighting clinical studies that demonstrated the efficacy of combinatorial drug strategies to cure CVDs and related risk factors. Furthermore, the review gives an outlook on the future perspective of this therapeutic option, highlighting novel drug targets and disease models that could help the future cardiovascular drug discovery. EXPERT OPINION The use of specifically designed and increasingly rational and effective drug combination therapies can therefore be considered the evolution of polypharmacy in cardiometabolic and CVDs. This approach can allow to intervene on multiple etiopathogenetic mechanisms of the disease or to act simultaneously on different pathologies/risk factors, using the combinations most suitable from a pharmacodynamic, pharmacokinetic, and toxicological perspective, thus finding the most appropriate therapeutic option.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
15
|
Ji M, Liu Y, Zuo Z, Xu C, Lin L, Li Y. Downregulation of amphiregulin improves cardiac hypertrophy via attenuating oxidative stress and apoptosis. Biol Direct 2022; 17:21. [PMID: 35996142 PMCID: PMC9394079 DOI: 10.1186/s13062-022-00334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Amphiregulin (AREG) is a ligand of epidermal growth factor receptor and participates in the fibrosis of multiple organs. However, whether AREG can regulate hypertrophic cardiomyopathy is not well known. This research aims to explore the effect of AREG on cardiac hypertrophy, and whether the oxidative stress and apoptosis was involved in the influence of AREG on cardiac hypertrophy. Angiotensin (Ang) II induced cardiac hypertrophy in mice and neonatal rat cardiomyocytes (NRCMs) or HL-1 cells in vitro. AREG expressions raised in the heart of mice. After AREG downregulation, the increases of Ang II induced cardiac weight and cardiomyocytes area were inhibited. Down-regulation of AREG could inhibit Ang II induced the increases of atrial natriuretic peptide, brain natriuretic peptide, beta-myosin heavy chain in the heart of mice, and NRCMs and HL-1 cells. The enhancement of oxidative stress in mice heart with Ang II treatment was alleviated by AREG knockdown. The raises of Ang II induced Bax and cleaved caspase3 in mice heart were inhibited by AREG downregulation. AREG downregulation reduced myocardial hypertrophy via inhibition of oxidative and apoptosis. AREG may be a target for future cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Mingyue Ji
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Yun Liu
- Department of Intensive Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi Zuo
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Cheng Xu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 JimoRoad, Shanghai, 200120, China.
| | - Yong Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
16
|
Zhang R, Xu X, Chen X, Hao C, Ji Z, Zuo P, Yang M, Ma G, Li Y. Upregulation of key genes Eln and Tgfb3 were associated with the severity of cardiac hypertrophy. BMC Genomics 2022; 23:592. [PMID: 35964009 PMCID: PMC9375926 DOI: 10.1186/s12864-022-08778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypertension-induced cardiac hypertrophy is one of the most common pre-conditions that accompanies heart failure. This study aimed to identify the key pathogenic genes in the disease process. Methods GSE18224 was re-analyzed and differentially expressed genes (DEGs) were obtained. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out. Networks of transcription factor (TF)-mRNA, microRNA (miRNA)-mRNA and Protein-Protein interaction (PPI) were constructed, and a key module was further screened out from PPI network. GSE36074 dataset and our transverse aortic constriction (TAC) mouse model were used to validate gene expression in the module. Finally, the correlation between the genes and biomarkers of cardiac hypertrophy were evaluated. Results Totally, there were 348 DEGs in GSE18224, which were mainly enriched in biological processes including collagen fibril organization, cellular response to transforming growth factor-beta stimulus and were involved in ECM-receptor interaction and Oxytocin signaling pathway. There were 387 miRNAs targeted by 257 DEGs, while 177 TFs targeted 71 DEGs. The PPI network contained 222 nodes and 770 edges, with 18 genes screened out into the module. After validation, 8 genes, which were also significantly upregulated in the GSE36074 dataset, were selected from the 18 DEGs. 2 of the 8 DEGs, including Eln and Tgfb3 were significantly upregulated in our mouse model of myocardial hypertrophy. Finally, the expression of Eln and Tgfb3 were found to be positively correlated with the level of the disease biomarkers. Conclusions Upregulated key genes Eln and Tgfb3 were positively correlated with the severity of cardiac hypertrophy, which may provide potential therapeutic targets for the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08778-0.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, P. R. China
| | - Xuan Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, P. R. China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, P. R. China
| | - Chunshu Hao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, P. R. China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, P. R. China
| | - Pengfei Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, P. R. China
| | - Mingming Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, P. R. China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, P. R. China.
| | - Yongjun Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009, Nanjing, P. R. China.
| |
Collapse
|
17
|
Lupeol protects against cardiac hypertrophy via TLR4-PI3K-Akt-NF-κB pathways. Acta Pharmacol Sin 2022; 43:1989-2002. [PMID: 34916609 PMCID: PMC9343642 DOI: 10.1038/s41401-021-00820-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation and apoptosis are main pathological processes that lead to the development of cardiac hypertrophy. Lupeol, a natural triterpenoid, has shown anti-inflammatory and anti-apoptotic activities as well as potential protective effects on cardiovascular diseases. In this study we investigated whether lupeol attenuated cardiac hypertrophy and fibrosis induced by pressure overload in vivo and in vitro, and explored the underlying mechanisms. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC) surgery, and in neonatal rat cardiomyocytes (NRCMs) by stimulation with phenylephrine (PE) in vitro. We showed that administration of lupeol (50 mg ·kg-1· d-1, i.g., for 4 weeks) prevented the morphological changes and cardiac dysfunction and remodeling in TAC mice, and treatment with lupeol (50 μg/mL) significantly attenuated the hypertrophy of PE-stimulated NRCMs, and blunted the upregulated hypertrophic markers ANP, BNP, and β-MHC. Furthermore, lupeol treatment attenuated the apoptotic and inflammatory responses in the heart tissue. We revealed that lupeol attenuated the inflammatory responses including the reduction of inflammatory cytokines and inhibition of NF-κB p65 nuclear translocation, which was mediated by the TLR4-PI3K-Akt signaling. Administration of a PI3K/Akt agonist 740 Y-P reversed the protective effects of lupeol in TAC mice as well as in PE-stimulated NRCMs. Moreover, pre-treatment with a TLR4 agonist RS 09 abolished the protective effects of lupeol and restored the inhibition of PI3K-Akt-NF-κB signaling by lupeol in PE-stimulated NRCMs. Collectively, our results demonstrate that the lupeol protects against cardiac hypertrophy via anti-inflammatory mechanisms, which results from inhibiting the TLR4-PI3K-Akt-NF-κB signaling.
Collapse
|
18
|
Han Y, Nie J, Wang DW, Ni L. Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front Cardiovasc Med 2022; 9:931475. [PMID: 35958418 PMCID: PMC9360326 DOI: 10.3389/fcvm.2022.931475] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac hypertrophy is a key process in cardiac remodeling development, leading to ventricle enlargement and heart failure. Recently, studies show the complicated relation between cardiac hypertrophy and epigenetic modification. Post-translational modification of histone is an essential part of epigenetic modification, which is relevant to multiple cardiac diseases, especially in cardiac hypertrophy. There is a group of enzymes related in the balance of histone acetylation/deacetylation, which is defined as histone acetyltransferase (HAT) and histone deacetylase (HDAC). In this review, we introduce an important enzyme family HDAC, a key regulator in histone deacetylation. In cardiac hypertrophy HDAC I downregulates the anti-hypertrophy gene expression, including Kruppel-like factor 4 (Klf4) and inositol-5 phosphatase f (Inpp5f), and promote the development of cardiac hypertrophy. On the contrary, HDAC II binds to myocyte-specific enhancer factor 2 (MEF2), inhibit the assemble ability to HAT and protect against cardiac hypertrophy. Under adverse stimuli such as pressure overload and calcineurin stimulation, the HDAC II transfer to cytoplasm, and MEF2 can bind to nuclear factor of activated T cells (NFAT) or GATA binding protein 4 (GATA4), mediating inappropriate gene expression. HDAC III, also known as SIRTs, can interact not only to transcription factors, but also exist interaction mechanisms to other HDACs, such as HDAC IIa. We also present the latest progress of HDAC inhibitors (HDACi), as a potential treatment target in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu Han
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Dao Wen Wang,
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Li Ni,
| |
Collapse
|
19
|
Wu LF, Wang DP, Shen J, Gao LJ, Zhou Y, Liu QH, Cao JM. Global profiling of protein lysine malonylation in mouse cardiac hypertrophy. J Proteomics 2022; 266:104667. [PMID: 35788409 DOI: 10.1016/j.jprot.2022.104667] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Lysine malonylation, a novel identified protein posttranslational modification (PTM), is conservative and present in both eukaryotic and prokaryotic cells. Previous studies have reported that malonylation plays an important role in inflammation, angiogenesis, and diabetes. However, its potential role in cardiac remodeling remains unknown. Here, we observed a reduced lysine malonylation in hypertrophic mice hearts created by transverse aortic constriction (TAC) for 8 weeks. We also detected a decreased lysine malonylation in hypertrophic H9C2 cardiomyocytes induced by angiotensin II for 48 h. Using a proteomic method based on affinity purification and LC-MS/MS, we identified total 679 malonylated sites in 330 proteins in the hearts of sham mice and TAC mice. Bioinformatic analysis of the proteomic data revealed enrichment of malonylated proteins involved in cardiac structure and contraction, cGMP-PKG pathway, and metabolism. Specifically, we detected a decreased lysine malonylation in myocardial isocitrate dehydrogenase 2 (IDH2) by immunoprecipitation coupled with Western blotting both in vivo and in vitro. Together, our work suggests an important role and implication of protein lysine malonylation in cardiac hypertrophy, especially the IDH2. SIGNIFICANCE: Heart failure is the terminal stage of cardiac hypertrophy, which imposes an enormous clinical and economic burden worldwide. Despite our knowledge on the pathophysiology of the disease, current therapeutic approaches are still largely limited. Cardiac hypertrophy can be regulated at post-translational modifications (PTMs), and several PTMs have been reported in cardiac hypertrrophy and heart failure. In our study, we first reported a novel PTMs, lysine malonylation, in cardiac hypertophy. we found a reduced lysine malonylation in hypertrophic mice hearts in vivo and H9C2 cardiomyocytes after stimulating with angiotensinII for 48 h in vitro. Using affinity purification and LC-MS/MS, we identified 679 malonylated sites in 330 proteins in the hearts of sham and TAC mice. Compared to the sham group, 5 sites in 2 proteins were quantified as downregulated targets using a 2-fold threshold (downregulation <0.5-fold, P < 0.05). Functional analysis showed a significant enrichment in cardiac structure and contraction, cGMP-PKG pathway and metabolism. Notably, we identified a decreased Kmal level in isocitrate dehydrogenase 2 (IDH2), but the protein level of IDH2 has no changed in cardiac hypertrophy, These results highlight that lysine malonylation is associated with cardiac hypertrophy, and may be a new therapeutic target of the disease.
Collapse
Affiliation(s)
- Li-Fei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Li-Juan Gao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ying Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qing-Hua Liu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
20
|
Shi Y, Ge J, Li R, Li Y, Lin L. Targeting of midkine alleviates cardiac hypertrophy via attenuation of oxidative stress and autophagy. Peptides 2022; 153:170800. [PMID: 35427698 DOI: 10.1016/j.peptides.2022.170800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022]
Abstract
Midkine levels are related to various diseases, including cardiovascular disease, renal disease and autoimmune disease. The research aimed to investigate the mitigation influence of downregulation of intermediate factors on myocardial hypertrophy induced by angiotensin Ⅱ (Ang), and whether downregulation of midkine could attenuate oxidative stress and autophagy. Induced myocardial hypertrophy of the mice model and treated HL-1 cells with Ang Ⅱ in vitro. The expressions of midkine were increased in the model and HL-1 cells with Ang II treatment. Midkine silence alleviated cardiac hypertrophy induced by Ang II, and inhibited the increases of atrial natriuretic peptide (ANP), Brain natriuretic peptide (BNP) and beta-myosin heavy chain (β-MHC) in the heart of mice. The raises of ANP, BNP and β-MHC in Ang II-induced HL-1 cells were also suppressed after midkine downregulation. Downregulating of midkine inhibited the increases of oxidative stress markers 8-OHdG, superoxide anions and MDA in the heart of mice or in the Ang II-treated HL-1 cells. The raises of LC3B, Atg3, Atg5 and Beclin1 in mice heart and in the Ang II.-induced HL-1 cells were attenuated after midkine silence. These outcomes showed that midkine was upregulated in myocardial hypertrophy mice. Targeting of midkine could alleviate cardiac hypertrophy via attenuation of oxidative stress and autophagy.
Collapse
Affiliation(s)
- Yuntao Shi
- Cardiology Department, Gaochun People's Hospital, Nanjing, China
| | - Jialiang Ge
- Emergency medical department, Gaochun People's Hospital, Nanjing, China
| | - Rui Li
- Emergency medical department, Gaochun People's Hospital, Nanjing, China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Identification of a Hydrogen-Sulfide-Releasing Isochroman-4-One Hybrid as a Cardioprotective Candidate for the Treatment of Cardiac Hypertrophy. Molecules 2022; 27:molecules27134114. [PMID: 35807360 PMCID: PMC9268299 DOI: 10.3390/molecules27134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiac pathological hypertrophy is associated with undesirable epigenetic changes and causes maladaptive cardiac remodeling and heart failure, leading to high mortality rates. Specific drugs for the treatment of cardiac hypertrophy are still in urgent need. In the present study, a hydrogen-sulfide-releasing hybrid 13-E was designed and synthesized by appending p-hydroxythiobenzamide (TBZ), an H2S-releasing donor, to an analog of our previously discovered cardioprotective natural product XJP, 7,8-dihydroxy-3-methyl-isochromanone-4. This hybrid 13-E exhibited excellent H2S-generating ability and low cellular toxicity. The 13-E protected against cardiomyocyte hypertrophy In Vitro and reduced the induction of Anp and Bnp. More importantly, 13-E could reduce TAC-induced cardiac hypertrophy In Vivo, alleviate cardiac interstitial fibrosis and restore cardiac function. Unbiased transcriptomic analysis showed that 13-E regulated the AMPK signaling pathway and influenced fatty acid metabolic processes, which may be attributed to its cardioprotective activities.
Collapse
|
22
|
Chen F, Li W, Zhang D, Fu Y, Yuan W, Luo G, Liu F, Luo J. MALAT1 regulates hypertrophy of cardiomyocytes by modulating the miR-181a/HMGB2 pathway. Eur J Histochem 2022; 66:3426. [PMID: 35726535 PMCID: PMC9251611 DOI: 10.4081/ejh.2022.3426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
Noncoding RNAs are important for regulation of cardiac hypertrophy. The function of MALAT1 (a long noncoding mRNA), miR-181a, and HMGB2; their contribution to cardiac hypertrophy; and the regulatory relationship between them during this process remain unknown. In the present study, we treated primary cardiomyocytes with angiotensin II (Ang II) to mimic cardiac hypertrophy. MALAT1 expression was significantly downregulated in Ang II-treated cardiomyocytes compared with control cardiomyocytes. Ang II-induced cardiac hypertrophy was suppressed by overexpression of MALAT1 and promoted by genetic knockdown of MALAT1. A dual-luciferase reporter assay demonstrated that MALAT1 acted as a sponge for miR-181a and inhibited its expression during cardiac hypertrophy. Cardiac hypertrophy was suppressed by overexpression of a miR-181a inhibitor and enhanced by overexpression of a miR-181a mimic. HMGB2 was downregulated during cardiac hypertrophy and was identified as a target of miR-181a by bioinformatics analysis and a dual-luciferase reporter assay. miR-181a overexpression decreased the mRNA and protein levels of HMGB2. Rescue experiments indicated that MALAT1 overexpression reversed the effect of miR-181a on HMGB2 expression. In summary, the results of the present study show that MALAT1 acts as a sponge for miR-181a and thereby regulates expression of HMGB2 and development of cardiac hypertrophy. The novel MALAT1/miR-181a/HMGB2 axis might play a crucial role in cardiac hypertrophy and serve as a new therapeutic target.
Collapse
Affiliation(s)
- Feng Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong; Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi .
| | - Wenfeng Li
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong; Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi .
| | - Dandan Zhang
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Youlin Fu
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Wenjin Yuan
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Gang Luo
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Fuwei Liu
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| |
Collapse
|
23
|
Hartmann N, Preuß L, Mohamed BA, Schnelle M, Renner A, Hasenfuß G, Toischer K. Different activation of MAPKs and Akt/GSK3β after preload vs. afterload elevation. ESC Heart Fail 2022; 9:1823-1831. [PMID: 35315235 PMCID: PMC9065823 DOI: 10.1002/ehf2.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Aims Pressure overload (PO) and volume overload (VO) lead to concentric or eccentric hypertrophy. Previously, we could show that activation of signalling cascades differ in in vivo mouse models. Activation of these signal cascades could either be induced by intrinsic load sensing or neuro‐endocrine substances like catecholamines or the renin‐angiotensin‐aldosterone system. Methods and results We therefore analysed the activation of classical cardiac signal pathways [mitogen‐activated protein kinases (MAPKs) (ERK, p38, and JNK) and Akt‐GSK3β] in in vitro of mechanical overload (ejecting heart model, rabbit and human isolated muscle strips). Selective elevation of preload in vitro increased AKT and GSK3β phosphorylation after 15 min in isolated rabbit muscles strips (AKT 49%, GSK3β 26%, P < 0.05) and in mouse ejecting hearts (AKT 51%, GSK49%, P < 0.05), whereas phosphorylation of MAPKs was not influenced by increased preload. Selective elevation of afterload revealed an increase in ERK phosphorylation in the ejecting heart (43%, P < 0.05), but not in AKT, GSK3β, and the other MAPKs. Elevation of preload and afterload in the ejecting heart induced a significant phosphorylation of ERK (95%, P < 0.001) and showed a moderate increased AKT (P = 0.14) and GSK3β (P = 0.21) phosphorylation, which did not reach significance. Preload and afterload elevation in muscles strips from human failing hearts showed neither AKT nor ERK phosphorylation changes. Conclusions Our data show that preload activates the AKT–GSK3β and afterload the ERK pathway in vitro, indicating an intrinsic mechanism independent of endocrine signalling.
Collapse
Affiliation(s)
- Nico Hartmann
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany
| | - Lena Preuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany.,DZHK, German Centre for Cardiovascular Research, Göttingen, Germany
| | - Moritz Schnelle
- Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.,DZHK, German Centre for Cardiovascular Research, Göttingen, Germany
| | - Andre Renner
- Department of Thoracic, Cardiac and Vascular Surgery (Heart and Diabetes Center), North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany.,DZHK, German Centre for Cardiovascular Research, Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany.,DZHK, German Centre for Cardiovascular Research, Göttingen, Germany
| |
Collapse
|
24
|
Liquiritin Attenuates Angiotensin II-Induced Cardiomyocyte Hypertrophy via ATE1/TAK1-JNK1/2 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7861338. [PMID: 35341136 PMCID: PMC8942629 DOI: 10.1155/2022/7861338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Objective To investigate the protective effect and mechanism of liquiritin (LIQ) on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). Methods H9c2 cells were pretreated with LIQ before and after Ang II treatment. CCK8 assay was performed to evaluate cell viability. The cell surface area was measured by phalloidin staining. The mRNA expression of atrial and B-type natriuretic peptides (ANP and BNP, respectively) and β-myosin heavy chain (β-MHC) was determined by quantitative reverse transcription-polymerase chain reaction (RT-qPCR); the protein levels of arginyltransferase 1 (ATE1), transforming growth factor beta-activated kinase 1 (TAK1), phos-TAK1, c-Jun N-terminal kinases1/2 (JNK1/2), and phos-JNK1/2 were determined by Western blotting. After constructing the ATE1 overexpression cell models with the pcDNA3.1/ATE1, the abovementioned indicators were tested using the introduced methods. Results LIQ at a concentration of ≤30 μM was not cytotoxic to H9c2 cells before exposure to Ang II. The protective effect of LIQ was best observed at 30 μM after Ang II treatment. Phalloidin staining and RT-qPCR results indicated that the deposition of Ang II increased the cell surface area and levels of ANP, BNP, and β-MHC. On the other hand, Western blotting results showed that Ang II increased the ATE1 protein levels and TAK1 and JNK1/2 phosphorylation, which were significantly alleviated after LIQ treatment. LIQ also directly inhibited the ATE1 overexpression in H9c2 cells transfected with pcDNA3.1/ATE1 and further inhibited TAK1 and JNK1/2 phosphorylation. Conclusion LIQ can attenuate Ang II-induced cardiomyocyte hypertrophy by regulating the ATE1/TAK1-JNK1/2 pathway.
Collapse
|
25
|
Spironolactone Inhibits Cardiomyocyte Hypertrophy by Regulating the Ca 2+/Calcineurin/p-NFATc3 Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3843830. [PMID: 34956570 PMCID: PMC8702305 DOI: 10.1155/2021/3843830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the protective effect and molecular mechanism of spironolactone in isoproterenol-induced cardiomyocyte hypertrophy. In this study, primary cardiomyocytes were extracted from the heart of neonatal rats. After stable culture, they were processed with isoproterenol alone or isoproterenol (10 μM) combined with different doses (low dose of 10 μM and high dose of 50 μM), and the cellular activity was determined by MTT experiment. The volume of cells was measured with an inverted microscope and CIAS-1000 cell image analysis system. The mRNA expression levels of ANP and BNP in cells were explored by RT-qPCR. The levels of ANP and BNP proteins and NFATc3 phosphorylation in the nucleus were detected by western blot. The extracellular Ca2+ concentration and CaN activity were measured by colorimetry with the kit. Isoproterenol significantly enlarged the volume of cardiomyocytes (p < 0.001), upregulated mRNA and expression levels of ANP and BNP proteins (p < 0.001), increased extracellular Ca2+ concentration and CaN activity (p < 0.001), and upregulated NFATc3 phosphorylation in the nucleus (p < 0.001). The volume of cells treated with isoproterenol combined with different doses of spironolactone significantly decreased compared with those treated with isoproterenol alone (p < 0.001). mRNA and expression levels of ANP and BNP proteins downregulated significantly (p < 0.001). The extracellular Ca2+ (p < 0.01) concentration and CaN activity (p < 0.001) decreased significantly, and NFATc3 phosphorylation in the nucleus downregulated significantly (p < 0.001). There was no significant difference in cell volume (p=0.999), ANP and BNP mRNA (p=0.695), expression levels of proteins, CaN activity (0.154), and NFATc3 phosphorylation in the nucleus between the cells treated with isoproterenol combined with high-dose spironolactone and those in the control group. In conclusion, spironolactone can reverse isoproterenol-induced cardiomyocyte hypertrophy by inhibiting the Ca2+/CaN/NFATc3 pathway.
Collapse
|
26
|
Sun Q, Ren X, Sun Z, Duan J. The critical role of epigenetic mechanism in PM 2.5-induced cardiovascular diseases. Genes Environ 2021; 43:47. [PMID: 34654488 PMCID: PMC8518296 DOI: 10.1186/s41021-021-00219-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) has become the leading cause of death worldwide, which seriously threatens human life and health. Epidemiological studies have confirmed the occurrence and development of CVD are closely related to air pollution. In particular, fine particulate matter (PM2.5) is recognized as an important environmental factor contributing to increased morbidity, mortality and hospitalization rates among adults and children. However, the underlying mechanism by which PM2.5 promotes CVD development remains unclear. With the development of epigenetics, recent studies have shown that PM2.5 exposure may induce or aggravate CVD through epigenetic changes. In order to better understand the potential mechanisms, this paper reviews the epigenetic changes of CVD caused by PM2.5. We summarized the epigenetic mechanisms of PM2.5 causing cardiovascular pathological damage and functional changes, mainly involving DNA methylation, non-coding RNA, histone modification and chromosome remodeling. It will provide important clues for exploring the biological mechanisms affecting cardiovascular health.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China. .,School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.
| |
Collapse
|
27
|
Liu J, Hu J, Tan L, Zhou Q, Wu X. Abnormalities in lysine degradation are involved in early cardiomyocyte hypertrophy development in pressure-overloaded rats. BMC Cardiovasc Disord 2021; 21:403. [PMID: 34418957 PMCID: PMC8379758 DOI: 10.1186/s12872-021-02209-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/13/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cardiomyocyte metabolism changes before cardiac remodeling, but its role in early cardiac hypertrophy detection remains unclear. This study investigated early changes in plasma metabolomics in a pressure-overload cardiac hypertrophy model induced by transverse aortic constriction (TAC). METHODS The TAC model was constructed by partly ligating the aortic arch. Twelve Sprague-Dawley rats were randomly divided into the TAC group (n = 6) and sham group (n = 6). Three weeks after surgery, cardiac echocardiography was performed to assess cardiac remodeling and function. Hematoxylin/eosin (HE), Masson, and wheat germ agglutinin (WGA) stains were used to observe pathological changes. Plasma metabolites were detected by UPLC-QTOFMS and Q-TOFMS. Specific metabolites were screened by orthogonal partial least squares discriminant analysis (OPLS-DA). Metabolic pathways were characterized by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and the predictive value of the screened metabolites was analyzed by receiver operating characteristic (ROC) curve analysis. RESULTS Three weeks after surgery, the TAC and sham groups had similar left heart function and interventricular septum and diastolic left ventricular posterior wall thicknesses. However, on pathological examination, the cross-sectional area of cardiomyocytes and myocardial fibrosis severity were significantly elevated in TAC rats. OPLS-DA showed different metabolic patterns between the TAC and sham groups. Based on the criteria VIP > 1 and P < 0.05, 13 metabolites were screened out. KEGG analysis identified disrupted lysine degradation through the related metabolites 5-aminopentanoic acid, N6-acetyl-L-lysine, and L-lysine, with areas under the ROC curve (AUCs) of 0.917, 0.889, and 0.806, respectively, for predicting compensated cardiomyocyte hypertrophy. CONCLUSION Disruption of lysine degradation might be involved in early cardiac hypertrophy development, and related metabolites might be potential predictive and interventional targets for subclinical cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Jialing Liu
- Cardiovascular Department of the Second Affiliated Hospital of Chongqing Medical University, NO.74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Junhao Hu
- Cardiovascular Department of the Second Affiliated Hospital of Chongqing Medical University, NO.74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Lanlan Tan
- Cardiovascular Department of the Second Affiliated Hospital of Chongqing Medical University, NO.74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Qi Zhou
- Cardiovascular Department of the Second Affiliated Hospital of Chongqing Medical University, NO.74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| | - Xiaojing Wu
- Cardiovascular Department of Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, NO.1098 Xueyuan Street, Nanshan District, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
28
|
Novel Therapeutic Targets for the Treatment of Right Ventricular Remodeling: Insights from the Pulmonary Artery Banding Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168297. [PMID: 34444046 PMCID: PMC8391744 DOI: 10.3390/ijerph18168297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022]
Abstract
Right ventricular (RV) function is the main determinant of the outcome of patients with pulmonary hypertension (PH). RV dysfunction develops gradually and worsens progressively over the course of PH, resulting in RV failure and premature death. Currently, approved therapies for the treatment of left ventricular failure are not established for the RV. Furthermore, the direct effects of specific vasoactive drugs for treatment of pulmonary arterial hypertension (PAH, Group 1 of PH) on RV are not fully investigated. Pulmonary artery banding (PAB) allows to study the pathogenesis of RV failure solely, thereby testing potential therapies independently of pulmonary vascular changes. This review aims to discuss recent studies of the mechanisms of RV remodeling and RV-directed therapies based on the PAB model.
Collapse
|
29
|
Qin J, Guo N, Tong J, Wang Z. Function of histone methylation and acetylation modifiers in cardiac hypertrophy. J Mol Cell Cardiol 2021; 159:120-129. [PMID: 34175302 DOI: 10.1016/j.yjmcc.2021.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy is an adaptive response of the heart to increased workload induced by various physiological or pathological stimuli. It is a common pathological process in multiple cardiovascular diseases, and it ultimately leads to heart failure. The development of cardiac hypertrophy is accompanied by gene expression reprogramming, a process that is largely dependent on epigenetic regulation. Histone modifications such as methylation and acetylation are dynamically regulated under cardiac stress. These consequently contribute to the pathogenesis of cardiac hypertrophy via compensatory or maladaptive transcriptome reprogramming. Histone methylation and acetylation modifiers play crucial roles in epigenetic remodeling during the pathogenesis of cardiac hypertrophy. Regulation of histone methylation and acetylation modifiers serves as a bridge between signal transduction and downstream gene reprogramming. Exploring the role of histone modifiers in cardiac hypertrophy provides novel therapeutic strategies to treat cardiac hypertrophy and heart failure. In this review, we summarize the recent advancements in functional histone methylation and acetylation modifiers in cardiac hypertrophy, with an emphasis on the underlying mechanisms and the therapeutic potential.
Collapse
Affiliation(s)
- Jian Qin
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
30
|
Circular RNAs in Sudden Cardiac Death Related Diseases: Novel Biomarker for Clinical and Forensic Diagnosis. Molecules 2021; 26:molecules26041155. [PMID: 33670057 PMCID: PMC7926443 DOI: 10.3390/molecules26041155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
The prevention and diagnosis of sudden cardiac death (SCD) are among the most important keystones and challenges in clinical and forensic practice. However, the diagnostic value of the current biomarkers remains unresolved issues. Therefore, novel diagnostic biomarkers are urgently required to identify patients with early-stage cardiovascular diseases (CVD), and to assist in the postmortem diagnosis of SCD cases without typical cardiac damage. An increasing number of studies show that circular RNAs (circRNAs) have stable expressions in myocardial tissue, and their time- and tissue-specific expression levels might reflect the pathophysiological status of the heart, which makes them potential CVD biomarkers. In this article, we briefly introduced the biogenesis and functional characteristics of circRNAs. Moreover, we described the roles of circRNAs in multiple SCD-related diseases, including coronary artery disease (CAD), myocardial ischemia or infarction, arrhythmia, cardiomyopathy, and myocarditis, and discussed the application prospects and challenges of circRNAs as a novel biomarker in the clinical and forensic diagnosis of SCD.
Collapse
|
31
|
Yu W, Chen C, Cheng J. The role and molecular mechanism of FoxO1 in mediating cardiac hypertrophy. ESC Heart Fail 2020; 7:3497-3504. [PMID: 33089967 PMCID: PMC7755013 DOI: 10.1002/ehf2.13065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiac hypertrophy can lead to heart failure and cardiovascular events and has become a research hotspot in the field of cardiovascular disease. Despite extensive and in-depth research, the pathogenesis of cardiac hypertrophy is far from being fully understood. Increasing evidence has shown that the transcription factor forkhead box protein O 1 (FoxO1) is closely related to the occurrence and development of cardiac hypertrophy. This review summarizes the current literature on the role and molecular mechanism of FoxO1 in cardiac hypertrophy. We searched the database MEDLINE via PubMed for available evidence on the effect of FoxO1 on cardiac hypertrophy. FoxO1 has many effects on multiple diseases, including cardiovascular diseases, diabetes, cancer, aging, and stem cell activity. Recent studies have shown that FoxO1 plays a critical role in the development of cardiac hypertrophy. Evidence for this relationship includes the following. (i) FoxO1 can regulate cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy and (ii) is controlled by several upstream signalling molecules (e.g. phosphatidylinositol 3-kinase/Akt, AMP-activated protein kinase, and sirtuins) and regulates many downstream transcription proteins (e.g. ubiquitin ligases muscle RING finger 1/muscle atrophy F-box, calcineurin/nuclear factor of activated T cells, and microRNAs). In response to stress or external stimulation (e.g. low energy, oxidative stress, or growth factor signalling), FoxO1 undergoes post-translational modification and transfers from the cytoplasm to nucleus, thus regulating the expression of a series of target genes in myocardium that are involved in cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy. (iii) Finally, targeted regulation of FoxO1 is an effective method of intervening in myocardial hypertrophy. The information reviewed here should be significant for understanding the roles of FoxO1 in cardiac hypertrophy and should contribute to the design of further studies related to FoxO1 and the hypertrophic response. It should also shed light on a potential treatment for cardiac hypertrophy.
Collapse
Affiliation(s)
- Wei Yu
- Department of Internal MedicineXiang'an Hospital of Xiamen UniversityXiamen361102China
| | - Chunjuan Chen
- Department of CardiologySecond Affiliated Hospital of Shantou University Medical College69 Dong Xia North RoadShantou515041China
| | - Jidong Cheng
- Department of Internal MedicineXiang'an Hospital of Xiamen UniversityXiamen361102China
| |
Collapse
|
32
|
Zhang DH, Zhang JL, Huang Z, Wu LM, Wang ZM, Li YP, Tian XY, Kong LY, Yao R, Zhang YZ. Deubiquitinase Ubiquitin-Specific Protease 10 Deficiency Regulates Sirt6 signaling and Exacerbates Cardiac Hypertrophy. J Am Heart Assoc 2020; 9:e017751. [PMID: 33170082 PMCID: PMC7763723 DOI: 10.1161/jaha.120.017751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Cardiac hypertrophy (CH) is a physiological response that compensates for blood pressure overload. Under pathological conditions, hypertrophy can progress to heart failure as a consequence of the disorganized growth of cardiomyocytes and cardiac tissue. USP10 (ubiquitin‐specific protease 10) is a member of the ubiquitin‐specific protease family of cysteine proteases, which are involved in viral infection, oxidative stress, lipid drop formation, and heat shock. However, the role of USP10 in CH remains largely unclear. Here, we investigated the roles of USP10 in CH. Methods and Results Cardiac‐specific USP10 knockout (USP10‐CKO) mice and USP10‐transgenic (USP10‐TG) mice were used to examined the role of USP10 in CH following aortic banding. The specific functions of USP10 were further examined in isolated cardiomyocytes. USP10 expression was increased in murine hypertrophic hearts following aortic banding and in isolated cardiomyocytes in response to hypertrophic agonist. Mice deficient in USP10 in the heart exhibited exaggerated cardiac hypertrophy and fibrosis following pressure overload stress, which resulted in worsening of cardiac contractile function. In contrast, cardiac overexpression of USP10 protected against pressure overload‐induced maladaptive CH. Mechanistically, we demonstrated that USP10 activation and interaction with Sirt6 in response to angiotensin II led to a marked increase in the ubiquitination of Sirt6 and resulted in Akt signaling downregulation and attenuation of cardiomyocyte hypertrophy. Accordingly, inactivation of USP10 reduced Sirt6 abundance and stability and diminished Sirt6‐induced downstream signaling in cardiomyocytes. Conclusions USP10 functions as a Sirt6 deubiquitinase that induces cardiac myocyte hypertrophy and triggers maladaptive CH.
Collapse
Affiliation(s)
- Dian-Hong Zhang
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Jie-Lei Zhang
- Department of Endocrinology the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Zhen Huang
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Lei-Ming Wu
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Zhong-Min Wang
- Department of Cardiology FuWai Central China Cardiovascular Hospital Zhengzhou China
| | - Ya-Peng Li
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Xin-Yu Tian
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Ling-Yao Kong
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Rui Yao
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Yan-Zhou Zhang
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| |
Collapse
|
33
|
Yu Y, Su X, Qin Q, Hou Y, Zhang X, Zhang H, Jia M, Chen Y. Yes-associated protein and transcriptional coactivator with PDZ-binding motif as new targets in cardiovascular diseases. Pharmacol Res 2020; 159:105009. [DOI: 10.1016/j.phrs.2020.105009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
|