1
|
Hof F, Poggini L, Otero E, Gobaut B, Gonidec M, Duttine M, Rosa P, Sandre O, Pénicaud A. Magnetic Ordering in Ultrasmall Potassium Ferrite Nanoparticles Grown on Graphene Nanoflakes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3130-3142. [PMID: 34981916 DOI: 10.1021/acsami.1c19353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic nanoparticles are central to the development of efficient hyperthermia treatments, magnetic drug carriers, and multimodal contrast agents. While the magnetic properties of small crystalline iron oxide nanoparticles are well understood, the superparamagnetic size limit constitutes a significant barrier for further size reduction. Iron (oxy)hydroxide phases, albeit very common in the natural world, are far less studied, generally due to their poor crystallinity. Templating ultrasmall nanoparticles on substrates such as graphene is a promising method to prevent aggregation, typically an issue for both material characterization and applications. We generate ultrasmall nanoparticles, directly on the carbon framework by the reaction of a graphenide potassium solution, charged graphene flakes, with iron(II) salts. After mild water oxidation, the obtained composite material consists of ultrasmall potassium ferrite nanoparticles bound to the graphene nanoflakes. Magnetic properties as evidenced by magnetometry and X-ray magnetic circular dichroism, with open magnetic hysteresis loops near room temperature, are widely different from classical ultrasmall superparamagnetic iron oxide nanoparticles. The large value obtained for the effective magnetic anisotropy energy density Keff accounts for the presence of magnetic ordering at rather high temperatures. The synthesis of ultrasmall potassium ferrite nanoparticles under such mild conditions is remarkable given the harsh conditions used for the classical syntheses of bulk potassium ferrites. Moreover, the potassium incorporation in the crystal lattice occurs in the presence of potassium cations under mild conditions. A transfer of this method to related reactions would be of great interest, which underlines the synthetic value of this study. These findings also give another view on the previously reported electrocatalytic properties of these nanocomposite materials, especially for the sought-after oxygen reduction/evolution reaction. Finally, their longitudinal and transverse proton NMR relaxivities when dispersed in water were assessed at 37 °C under a magnetic field of 1.41 T, allowing potential applications in biological imaging.
Collapse
Affiliation(s)
- Ferdinand Hof
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France
| | - Lorenzo Poggini
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, Cedex, France
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, BP 48, F-91192 Gif sur Yvette, France
| | - Benoît Gobaut
- Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, BP 48, F-91192 Gif sur Yvette, France
| | - Mathieu Gonidec
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, Cedex, France
| | - Mathieu Duttine
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, Cedex, France
| | - Patrick Rosa
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, Cedex, France
| | - Olivier Sandre
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR-5629, F-33600 Pessac, France
| | - Alain Pénicaud
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France
| |
Collapse
|
2
|
Li B, Guo R, Tian J, Wang Z, Qu R. New Findings of Ferrate(VI) Oxidation Mechanism from Its Degradation of Alkene Imidazole Ionic Liquids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11733-11744. [PMID: 34369153 DOI: 10.1021/acs.est.1c03348] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical reactivity, kinetics, degradation pathways and mechanisms, and ecotoxicity of the oxidation of 1-vinyl-3-ethylimidazolium bromide ([VEIm]Br), the most common alternative to organic solvents, by Fe(VI) (HFeO4-) were studied by lab experiments and theoretical calculations. Results show that Fe(VI) can efficiently remove VEIm through the dioxygen transfer-hydrolysis mechanism, which has not been reported yet. The reactivity of VEIm toward Fe(VI) mainly depends on the double bonds in the side chain of VEIm. The second-order rate constant for VEIm was 629.45 M-1 s-1 at pH 7.0 and 25 °C. Typical water constituents, except for SO32-, Cl-, and Cu2+, had no obvious effects on the oxidation. The oxidation products were determined by high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry, which proves that there were interactions between the oxidation intermediates of the anion and cation parts of [VEIm]Br during the degradation process. The structures of related products and oxidation mechanisms were further rationalized by theoretical calculations. The ecotoxicity of products from the three oxidation pathways all showed a trend of increase after the initial decrease. We hope that the findings of this work can give researchers some new inspirations on Fe(VI) degradation of other alkene-containing contaminants.
Collapse
Affiliation(s)
- Beibei Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Jie Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
3
|
Chen BY, Kuo HW, Sharma VK, Den W. Chitosan Encapsulation of Ferrate VI for Controlled Release to Water:Mechanistic Insights and Degradation of Organic Contaminant. Sci Rep 2019; 9:18268. [PMID: 31797977 PMCID: PMC6892851 DOI: 10.1038/s41598-019-54798-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Tetraoxy-anion of iron in +6 oxidation state (FeVIO42−, FeVI), commonly called ferrate, has shown tremendous potential as a green oxidative agent for decontaminating water and air. Encapsulation of solid potassium salt of ferrate (K2FeO4) circumvents the inherent drawbacks of the instability of ferrate under humid conditions. In the encapsulated strategy, controlled release without exposing the solid ferrate to the humid environment avoids self-decomposition of the oxidant by water in the air, and the ferrate is mostly used to decontaminate water efficiently. This study demonstrated the formulation of oxidative microcapsules with natural materials present in chitosan, whose release rate of the core material can be controlled by the type of intermediate hydrocarbon layer and the pH-dependent swelling of chitosan shell. The pH played a pivotal role in swelling chitosan shell and releasing the core oxidant. In a strong acidic solution, chitosan tended to swell quickly and release FeVI at a faster rate than under neutral conditions. Additionally, among the several long-chain hydrocarbon compounds, oleic acid exhibited the strongest “locking” effect when applied as the intermediate layer, giving rise to the slow release of FeVI. Coconut oil and mineral oil, in comparison, allowed FeVI to penetrate the layer within shorter lengths of time and showed comparable degrees of degradation of target contaminant, methylene orange, under ambient temperature and near-neutral conditions. These findings have practical ramifications for remediating environmental and industrial processes.
Collapse
Affiliation(s)
- Bo-Yen Chen
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan ROC
| | - Hsuen-Wen Kuo
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan ROC
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas, USA
| | - Walter Den
- Institute for Water Resources Science and Technology, Department of Science and Mathematics, Texas A&M University-San Antonio, San Antonio, Texas, USA.
| |
Collapse
|