1
|
Das N, Addanki PK. Biochemical Examination of Plasma Ghrelin Levels in Individuals Afflicted With Chronic Periodontal Disease: A Comparative Study. Cureus 2024; 16:e56536. [PMID: 38646303 PMCID: PMC11027441 DOI: 10.7759/cureus.56536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
OBJECTIVE This study intended to assess plasma ghrelin levels in individuals with chronic periodontitis and analyze potential associations with bone turnover indicators, serum cytokines, and periodontal parameters. MATERIAL AND METHODS The research contained 80 patients each with 40 individuals with periodontally healthy controls (C) (28 males, 12 females) and 40 chronic periodontitis (CP) patients (29 males, 11 females). The blood samples were analyzed for soluble receptor activator nuclear factor kappa B ligand (sRANKL), interleukin-1 beta (IL-1β), total and acylated ghrelin, tumor necrosis factor-alpha (TNF-α), osteocalcin (OSC) and alkaline phosphatase (ALP), and periodontal parameters were recorded. RESULTS The CP group had considerably higher plasma concentrations of both acylated and total ghrelin than the C group (p<0.05). Gender-based investigation showed substantial differences only among men in both groups (p<0.05). Hence, no significant modifications were identified in serum sRANKL, TNFα, and ALP levels between the groups. However, there was a notable difference in serum OSC and IL-1β levels in the CP group (p<0.05). Furthermore, total ghrelin/acylated ghrelin and total ghrelin/ALP revealed positive correlations. No significant association was found between symptoms and ghrelin levels. CONCLUSION The study findings indicate elevated levels of ghrelin and acylated ghrelin in male CP patients.
Collapse
Affiliation(s)
- Neelam Das
- Department of Periodontology, Rama Dental College Hospital & Research Centre, Kanpur, IND
| | - Pavan Kumar Addanki
- Department of Periodontology, Kamineni Institute of Dental Sciences, Narketpally, IND
| |
Collapse
|
2
|
El Zein N, Abdallah MS, Daher CF, Mroueh M, Stephan J, Bahous SA, Eid A, Faour WH. Ghrelin modulates intracellular signalling pathways that are critical for podocyte survival. Cell Biochem Funct 2019; 37:245-255. [DOI: 10.1002/cbf.3397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Maya S. Abdallah
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
- Institut Européen des MembranesUniversité de Montpellier Montpellier France
| | - Costantine F. Daher
- School of Arts and Sciences, Natural Sciences DepartmentLebanese American University Byblos Lebanon
| | - Mohammad Mroueh
- Department of Pharmaceutical Sciences, School of PharmacyLebanese American University Byblos Lebanon
| | - Joseph Stephan
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
| | - Sola Aoun Bahous
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of MedicineAmerican University of Beirut Beirut Lebanon
| | - Wissam H. Faour
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
| |
Collapse
|
3
|
Yu Y, Zhang YH, Xu ZY, Liu TY, Wang QX, Ou CB, Ma JY. Effects of IBDV infection on expression of ghrelin and ghrelin-related genes in chicken. Poult Sci 2019; 98:119-127. [PMID: 30107600 DOI: 10.3382/ps/pey328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a peptide hormone that plays a modulatory role in the immune system. Studies have demonstrated that mammal ghrelin level is influenced by pathological status. However, it has not been reported whether chicken ghrelin level changes during pathogen infection. This study was designed to investigate changes of ghrelin levels in chickens infected with infectious bursal disease virus (IBDV) and to explore the relationship between ghrelin changes and bursal damage, and inflammatory cells infiltration induced by IBDV. The results showed that (1) plasma ghrelin concentration increased after IBDV infection. It reached a peak at 10443.6 ± 2612.9 pg/mL on 2 dpi, which was about 100-fold as high as that of the control. Then it decreased sharply on 3 dpi, which was only 31.7% as that of 2 dpi, and remained stable until 5 dpi. Meanwhile, ghrelin and ghrelin-related gene, ghrelin-o-acyltransferase (GOAT), and growth hormone secretagogue receptor (GHSR) mRNA expression levels in bursa were also increased after IBDV infection, and reached the peak on 2 dpi at 149, 28.8, and 117.2-fold higher than that of the control, respectively. Then they decreased and remained at a higher status. Correlation analysis showed that plasma ghrelin concentration and ghrelin, GOAT, and GHSR mRNA expressions in bursa were strongly associated with IBDV VP2 mRNA expression in bursa. (2) The damage of bursa was the most severe on 5 dpi with a histopathological score of 12. It had no direct correlation with plasma ghrelin level and ghrelin, GOAT, and GHSR mRNA expressions in bursa. However, the number of inflammatory cells infiltrating into bursa, which was the highest on 2 and 3 dpi, showed significant a positive correlation with the ghrelin and GHSR mRNA expression. Presumably chicken ghrelin may function as an anti-inflammatory factor. In conclusion, IBDV infection upregulates the expression of ghrelin and ghrelin-related gene in chickens, and chicken ghrelin may play an important regulatory role during pathogen infection.
Collapse
Affiliation(s)
- Y Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Y H Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Z Y Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - T Y Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Q X Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - C B Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - J Y Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| |
Collapse
|
4
|
Prostanoids in the pathophysiology of human coronary artery. Prostaglandins Other Lipid Mediat 2017; 133:20-28. [PMID: 28347710 DOI: 10.1016/j.prostaglandins.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/16/2017] [Accepted: 03/23/2017] [Indexed: 01/16/2023]
Abstract
Coronary artery disease is one of the leading causes of death in wordwide. There is growing evidence that prostanoids are involved in the physiology and pathophysiology of the human coronary artery by controlling vascular tone, remodelling of the vascular wall or angiogenesis. In this review, the production of prostanoids and the expression of prostanoid receptors in human coronary artery in health or disease are described. In addition, the interactions between sex hormones and prostanoids, their participations in the development of coronary artery diseases have been addressed. Globally, most of the studies performed in human coronary artery preparations have shown that prostacyclin (PGI2) has beneficial effects by inducing vasodilatation and promoting angiogenesis while reverse effects are confirmed by thromboxane A2 (TxA2). More studies are needed to determine the roles of the other prostanoids (PGE2, PGD2 and PGF2α) in vascular functions of the human coronary artery. Finally, in addition to the in vitro data about the human coronary artery, myocardial infarction induced by cyclooxygenase-2 (COX-2) inhibitor and the protective effects of aspirin after coronary artery bypass surgery suggest that prostanoids are key mediators in coronary homeostasis.
Collapse
|
5
|
Abstract
Percutaneous coronary intervention is a revolutionary treatment for ischemic heart disease, but in-stent restenosis (ISR) remains a clinical challenge. Inflammation, smooth muscle proliferation, endothelial function impairment, and local thrombosis have been identified as the main mechanisms for ISR. Considering the multifactorial mechanisms of ISR, a novel therapeutic agent with multiple bioactivities is required. Ghrelin is a novel gut-brain peptide predominantly produced by the stomach, and has been shown to play a role in various cardiovascular activities, such as increasing myocardial contractility, improving cardiac output, and inhibiting ventricular remodeling, as well as attenuating cardiac ischemia-reperfusion injury. Recent studies have demonstrated that ghrelin effectively inhibits vascular inflammation and vascular smooth muscle cell proliferation, repairs endothelial cells, promotes vascular endothelial function, inhibits platelet aggregation, and exerts antithrombotic effects. These findings suggest that ghrelin may be an innovative therapeutic candidate for the prevention and treatment of ISR.
Collapse
Affiliation(s)
- Z W Shu
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | | | | | | |
Collapse
|
6
|
Duran-Prado M, Morell M, Delgado-Maroto V, Castaño JP, Aneiros-Fernandez J, de Lecea L, Culler MD, Hernandez-Cortes P, O'Valle F, Delgado M. Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation. Circ Res 2013; 112:1444-55. [PMID: 23595952 DOI: 10.1161/circresaha.112.300695] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RATIONALE Proliferation and migration of smooth muscle cells (SMCs) are key steps for the progression of atherosclerosis and restenosis. Cortistatin is a multifunctional neuropeptide belonging to the somatostatin family that exerts unique functions in the nervous and immune systems. Cortistatin is elevated in plasma of patients experiencing coronary heart disease and attenuates vascular calcification. OBJECTIVE To investigate the occurrence of vascular cortistatin and its effects on the proliferation and migration of SMCs in vitro and in vivo and to delimitate the receptors and signal transduction pathways governing its actions. METHODS AND RESULTS SMCs from mouse carotid and human aortic arteries and from human atherosclerotic plaques highly expressed cortistatin. Cortistatin expression positively correlated with the progression of arterial intima hyperplasia. Cortistatin inhibited platelet-derived growth factor-stimulated proliferation of human aortic SMCs via binding to somatostatin receptors (sst2 and sst5) and ghrelin receptor, induction of cAMP and p38-mitogen-activated protein kinase, and inhibition of Akt activity. Moreover, cortistatin impaired lamellipodia formation and migration of human aortic SMCs toward platelet-derived growth factor by inhibiting, in a ghrelin-receptor-dependent manner, Rac1 activation and cytosolic calcium increases. These effects on SMC proliferation and migration correlated with an inhibitory action of cortistatin on the neointimal formation in 2 models of carotid arterial ligation. Endogenous cortistatin seems to play a critical role in regulating SMC function because cortistatin-deficient mice developed higher neointimal hyperplasic lesions than wild-type mice. CONCLUSIONS Cortistatin emerges as a natural endogenous regulator of SMCs under pathological conditions and an attractive candidate for the pharmacological management of vascular diseases that course with neointimal lesion formation.
Collapse
Affiliation(s)
- Mario Duran-Prado
- Department of Immunology and Cell Biology, Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yılmaz G, Kırzıoğlu FY, Doğuç DK, Koçak H, Orhan H. Ghrelin levels in chronic periodontitis patients. Odontology 2013; 102:59-67. [DOI: 10.1007/s10266-012-0100-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 12/05/2012] [Indexed: 12/20/2022]
|
8
|
Wu R, Chaung WW, Dong W, Ji Y, Barrera R, Nicastro J, Molmenti EP, Coppa GF, Wang P. Ghrelin maintains the cardiovascular stability in severe sepsis. J Surg Res 2012; 178:370-7. [PMID: 22459289 DOI: 10.1016/j.jss.2011.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cardiovascular dysfunction, characterized by reduced cardiac contractility and depressed endothelium-dependent vascular relaxation, is common in severe sepsis. Although it is known that ghrelin produces beneficial effects following various adverse circulatory conditions, it remains unknown whether ghrelin increases cardiac contractility and improves vascular responsiveness to vasoactive agents in severe sepsis. METHODS Male adult rats were subjected to sepsis by cecal ligation and puncture (CLP). At 5 h after CLP, a bolus intravenous injection of 2 nmol ghrelin was followed by a continuous infusion of 12 nmol ghrelin via a primed mini-pump over 15 h. At 20 h after CLP (i.e., severe sepsis), the maximal rates of ventricular pressure increase (+dP/dt(max)) and decrease (-dP/dt(max)) were determined in vivo. In additional groups of animals, the thoracic aortae were isolated at 20 h after CLP. The aortae were cut into rings, and placed in organ chambers. Norepinephrine (NE) was used to induce vascular contraction. Dose responses for an endothelium-dependent vasodilator, acetylcholine (ACh), and an endothelium-independent vasodilator, nitroglycerine (NTG) were carried out. RESULTS +dP/dt(max) and -dP/dt(max) decreased significantly at 20 h after CLP. Treatment with ghrelin significantly increased +dP/dt(max) and -dP/dt(max) by 36% (P < 0.05) and 35% (P < 0.05), respectively. Moreover, NE-induced vascular contraction and endothelium-dependent (ACh-induced) vascular relaxation decreased significantly at 20 h after CLP. Administration of ghrelin, however, increased NE-induced vascular contraction and ACh-induced vascular relaxation. In contrast, no significant reduction in NTG-induced vascular relaxation was seen in rats with severe sepsis irrespective of ghrelin treatment. CONCLUSIONS Ghrelin may be further developed as a useful agent for maintaining cardiovascular stability in severe sepsis.
Collapse
Affiliation(s)
- Rongqian Wu
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, and The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee S, Kim Y, Li E, Park S. Ghrelin protects spinal cord motoneurons against chronic glutamate excitotoxicity by inhibiting microglial activation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:43-8. [PMID: 22416219 PMCID: PMC3298825 DOI: 10.4196/kjpp.2012.16.1.43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/01/2012] [Accepted: 01/08/2012] [Indexed: 11/17/2022]
Abstract
Glutamate excitotoxicity is emerging as a contributor to degeneration of spinal cord motoneurons in amyotrophic lateral sclerosis (ALS). Recently, we have reported that ghrelin protects motoneurons against chronic glutamate excitotoxicity through the activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3β pathways. Previous studies suggest that activated microglia actively participate in the pathogenesis of ALS motoneuron degeneration. However, it is still unknown whether ghrelin exerts its protective effect on motoneurons via inhibition of microglial activation. In this study, we investigate organotypic spinal cord cultures (OSCCs) exposed to threohydroxyaspartate (THA), as a model of excitotoxic motoneuron degeneration, to determine if ghrelin prevents microglial activation. Exposure of OSCCs to THA for 3 weeks produced typical motoneuron death, and treatment of ghrelin significantly attenuated THA-induced motoneuron loss, as previously reported. Ghrelin prevented THA-induced microglial activation in the spinal cord and the expression of pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β. Our data indicate that ghrelin may act as a survival factor for motoneurons by functioning as a microglia-deactivating factor and suggest that ghrelin may have therapeutic potential for the treatment of ALS and other neurodegenerative disorders where inflammatory responses play a critical role.
Collapse
Affiliation(s)
- Sungyoub Lee
- Department of Pharmacology and Medical Research Center for Bioreaction to ROS and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | |
Collapse
|
10
|
Chow KBS, Sun J, Chu KM, Tai Cheung W, Cheng CHK, Wise H. The truncated ghrelin receptor polypeptide (GHS-R1b) is localized in the endoplasmic reticulum where it forms heterodimers with ghrelin receptors (GHS-R1a) to attenuate their cell surface expression. Mol Cell Endocrinol 2012; 348:247-54. [PMID: 21903149 DOI: 10.1016/j.mce.2011.08.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 11/27/2022]
Abstract
The ghrelin receptor (GHS-R1a) is remarkable amongst G-protein-coupled receptors for its high degree of constitutive activity, and this agonist-independent activity may be important for its physiological function in the control of food intake and body weight. Ghrelin receptors form heterodimers with the truncated ghrelin receptor polypeptide (GHS-R1b), which has a dominant-negative effect on ghrelin receptor function. Here we show that GHS-R1b has an intracellular localization distinct from ghrelin receptors, being primarily localized in the endoplasmic reticulum. Immunocytochemical studies suggest that GHS-R1b decreases the plasma membrane expression of ghrelin receptors, but the overall distribution profile of ghrelin receptors in isolated subcellular fractions is unaffected by GHS-R1b. Using bioluminescence resonance energy transfer methods, we have shown that while ghrelin receptor homodimers are evenly distributed in all subcellular fractions, GHS-R1a/GHS-R1b heterodimers are concentrated within the endoplasmic reticulum and these results suggest that GHS-R1b traps ghrelin receptors within the endoplasmic reticulum by the process of oligomerization. Furthermore, ghrelin receptors constitutively activated extracellular signal-regulated kinases 1/2 in the endoplasmic reticulum, but this small response was not affected by GHS-R1b and its physiological relevance is uncertain. Taken together, these results suggest that ghrelin receptors can be retained in the endoplasmic reticulum by heterodimerization with GHS-R1b, and constitutive activation of phospholipase C is attenuated due to decreased cell surface expression of ghrelin receptors. However, sufficient ghrelin receptor homodimers can still be expressed on the cell surface for maximal responses to agonist stimulation.
Collapse
Affiliation(s)
- Kevin B S Chow
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
11
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Andrews ZB. The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci 2010; 34:31-40. [PMID: 21035199 DOI: 10.1016/j.tins.2010.10.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 12/20/2022]
Abstract
Ghrelin is a peptide hormone produced and secreted in the stomach. Numerous studies over the past decade demonstrate its importance in food intake, body-weight regulation and glucose homeostasis. These effects are driven largely by the high expression of the ghrelin receptor (GHSR1a) in the hypothalamus. However, GHSR1a is also expressed in numerous extra-hypothalamic neuronal populations, suggesting that ghrelin has physiological functions besides those involved in metabolic functions. In this review, I focus on increasing evidence that ghrelin has important roles in extra-hypothalamic functions, including learning and memory, reward and motivation, anxiety and depression, and neuroprotection. Furthermore, I discuss how the recently demonstrated role of ghrelin in promoting survival during periods of caloric restriction could contribute to its inherent neuroprotective and neuromodulatory properties.
Collapse
Affiliation(s)
- Zane B Andrews
- Department of Physiology, Monash University, Clayton, VIC 3183, Australia.
| |
Collapse
|