1
|
Li G, Shen Q, Xu H, Zhou Y, Li C, Li Y, He M. SAA1 identified as a potential prediction biomarker for metastasis of hepatocellular carcinoma via multi-omics approaches. Front Oncol 2023; 13:1138995. [PMID: 37081987 PMCID: PMC10110885 DOI: 10.3389/fonc.2023.1138995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Background Metastasis is the major cause of high recurrence and mortality of hepatocellular carcinoma (HCC). Unfortunately, there are few reports on effective biomarkers of HCC metastasis. Previous studies have reported that SAA1 may be a predictor and prognostic biomarker for multiple malignant tumors. However, the role of SAA1 in HCC has not yet been investigated. Methods We applied RNA sequencing and proteomics analysis to investigate the expression landscape of HCC cell lines and patient serum, respectively. SAA1 is a common key gene and listed as a candidate biomarker of HCC metastasis. It was validated in two cell lines, 107 participants serum, and 63 matched HCC and adjacent non-tumorous liver tissues. Human Protein Atlas (HPA), Genotype-Tissue Expression (GTEx), and The Cancer Genome Atlas (TCGA) datasets were integrated to explore SAA1 expression among various cell types and organs. The diagnostic and prognostic value of SAA1 in HCC were determined through receiver operating characteristic (ROC) and Kaplan-Meier curves. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network were constructed for SAA1, as well as for its co-expressed genes. We further analyzed the correlation between SAA1 and co-expression genes. Results We found 7 differentially expressed genes (DEGs) and 14 differentially expressed proteins (DEPs) were related to HCC metastasis. SAA1, a key candidate biomarker, was highly enriched in hepatocytes and liver organ, and it was also highly expressed in HCC cells and the serum and tissues of HCC patients. The results of ROC curve analysis indicated that SAA1 had better predictive values for distinguishing HCC metastasis from non-metastasis. Kaplan-Meier curve analysis revealed that HCC patients with higher SAA1 expression had worse overall survival. Conclusions Our findings provide new insights into HCC metastasis by identifying candidate gene prediction biomarkers for HCC metastasis.
Collapse
Affiliation(s)
- Gang Li
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Qingrong Shen
- Department of Pharmacy, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Ying Zhou
- The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Cuiping Li
- School of Stomatology, Guangxi Medical University, Nanning, China
| | - Yasi Li
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning, China
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- *Correspondence: Min He,
| |
Collapse
|
2
|
O'Brian D, Prunty M, Hill A, Shoag J. The Role of C-Reactive Protein in Kidney, Bladder, and Prostate Cancers. Front Immunol 2021; 12:721989. [PMID: 34512646 PMCID: PMC8429489 DOI: 10.3389/fimmu.2021.721989] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
C-Reactive Protein (CRP) is associated with diverse outcomes in patients with, or suspected to have, genitourinary malignancies. CRP levels have been shown to be associated with the probability of a prostate cancer diagnosis in patients with elevated PSA, the probability of biochemical recurrence following definitive treatment for localized prostate cancer, and decreased overall survival for patients with advanced disease. In patients with bladder and kidney cancers, CRP levels have been associated with disease progression, stage, and cancer-specific survival. Despite the abundance of correlative studies, the relationship between CRP levels and genitourinary cancer pathogenesis is not clearly understood. Here, we review the evidence for CRP as a biomarker in genitourinary (GU) cancers, with specific focus on potential clinical applications.
Collapse
Affiliation(s)
- Daniel O'Brian
- Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Megan Prunty
- Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alexander Hill
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jonathan Shoag
- Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
3
|
Li X, Nakayama K, Goto T, Kimura H, Akamatsu S, Hayashi Y, Fujita K, Kobayashi T, Shimizu K, Nonomura N, Ogawa O, Inoue T. High level of phosphatidylcholines/lysophosphatidylcholine ratio in urine is associated with prostate cancer. Cancer Sci 2021; 112:4292-4302. [PMID: 34328656 PMCID: PMC8486217 DOI: 10.1111/cas.15093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022] Open
Abstract
The altered levels of phospholipids (PLs) and lysophospholipids (LPLs) in prostate cancer (CaP) and benign tissues in our previous findings prompted us to explore PLs and LPLs as potential biomarkers for CaP. Urinary lipidomics has attracted increasing attention in clinical diagnostics and prognostics for CaP. In this study, 31 prostate tissues obtained from radical prostatectomy were assessed using high‐resolution matrix‐assisted laser desorption/ionization imaging mass spectrometry (HR‐MALDI‐IMS). Urine samples were collected after digital rectal examination (DRE), and urinary lipids were extracted using the acidified Bligh‐Dyer method. The discovery set comprised 75 patients with CaP and 44 with benign prostatic hyperplasia (BPH) at Kyoto University Hospital; the validation set comprised 74 patients with CaP and 59 with BPH at Osaka University Hospital. Urinary lipidomic screening was performed using MALDI time‐of‐flight MS (MALDI‐TOF/MS). The levels of urinary lysophosphatidylcholine (LPC) and phosphatidylcholines (PCs) were compared between the CaP and BPH groups. The (PC [34:2] + PC [34:1])/LPC (16:0) ratio was significantly higher (P < .001) in CaP tissues than in benign epithelial tissues. The urinary PCs/LPC ratio was significantly higher (P < .001) in the CaP group than in the BPH group in the discovery and validation sets.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroko Kimura
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urology, Kindai University Faculty of Medicine, Higashi-Osaka, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Shimizu
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, Kyoto, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
4
|
Zhang H, Xu Y, Deng G, Yuan F, Tan Y, Gao L, Sun Q, Qi Y, Yang K, Geng R, Jiang H, Liu B, Chen Q. SAA1 knockdown promotes the apoptosis of glioblastoma cells via downregulation of AKT signaling. J Cancer 2021; 12:2756-2767. [PMID: 33854635 PMCID: PMC8040715 DOI: 10.7150/jca.48419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A1 (SAA1) is an inflammatory associated high-density lipoprotein. And It is also considered as a predictor and prognostic marker of cancer risk. However, its role and mechanisms in glioblastoma (GBM) still unclear. In this study, we validate that SAA1 is up-regulated in GBM, and its high expression predicts poor prognosis. SAA1 knockdown promotes the apoptosis of GBM cell. Mechanistically, SAA1 knockdown can inhibit serine/threonine protein kinase B (AKT) phosphorylation, thereby regulating the expression of apoptosis-related proteins such as Bcl2 and Bax, leading to GBM cell death. Moreover, Gliomas with low SAA1 expression have increased sensitivity to Temozolomide (TMZ). Low SAA1 expression segregated glioma patients who were treated with Temozolomide (TMZ) or with high MGMT promoter methylation into survival groups in TCGA and CGGA dataset. Our study strongly suggested that SAA1 was a regulator of cells apoptosis and acted not only as a prognostic marker but also a novel biomarker of sensitivity of glioma to TMZ.
Collapse
Affiliation(s)
- Huikai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yinqiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kun Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Detection of phospholipase A 2 in serum based on LRET mechanism between upconversion nanoparticles and SYBR green I. Anal Chim Acta 2020; 1143:37-44. [PMID: 33384128 DOI: 10.1016/j.aca.2020.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/01/2023]
Abstract
Phospholipase A2 (PLA2) may be a vital biomarker for the prediction and diagnosis of some diseases. Consequently, it is of great significance to quantitatively detect PLA2 in biologic samples. Herein, on the basis of the principle of luminescence resonance energy transfer (LRET) between upconversion nanoparticles (UCNPs) and SYBR Green I (SG), we proposed a technology for the highly sensitive detection of PLA2 amount. Therein, as an energy receptor, SG will be quantitatively loaded into liposomes firstly. Then, due to the hydrolysis of liposomes under the catalysis of PLA2, SG will be released and inserted into the double-stranded DNA (dsDNA) on the surface of UCNPs, which triggers the LRET because of the shortening of effective spatial distance between UCNPs and SG. Under exciting of NIR light, UCNPs emit luminescence at 476 nm, which makes SG emit fluorescence at 522 nm through LRET. Under optimal conditions, the emission intensity ratio (I522 nm/I476 nm) increased linearly with the PLA2 amount in the range of 20 U/L to 400 U/L, and the limit of detection (LOD) reached 15 U/L. Here, after comparing with the clinical standard method, it is found that the biosensor is expected to provide a convenient and sensitive assay for the detection of PLA2 in actual serum samples. Furthermore, such biosensor can also be used to test the inhibitor of PLA2.
Collapse
|
6
|
Kim RR, Chen Z, J. Mann T, Bastard K, F. Scott K, Church WB. Structural and Functional Aspects of Targeting the Secreted Human Group IIA Phospholipase A 2. Molecules 2020; 25:molecules25194459. [PMID: 32998383 PMCID: PMC7583969 DOI: 10.3390/molecules25194459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Human group IIA secretory phospholipase A2 (hGIIA) promotes the proliferation of cancer cells, making it a compelling therapeutic target, but it is also significant in other inflammatory conditions. Consequently, suitable inhibitors of hGIIA have always been sought. The activation of phospholipases A2 and the catalysis of glycerophospholipid substrates generally leads to the release of fatty acids such as arachidonic acid (AA) and lysophospholipid, which are then converted to mediator compounds, including prostaglandins, leukotrienes, and the platelet-activating factor. However, this ability of hGIIA to provide AA is not a complete explanation of its biological role in inflammation, as it has now been shown that it also exerts proinflammatory effects by a catalysis-independent mechanism. This mechanism is likely to be highly dependent on key specific molecular interactions, and the full mechanistic descriptions of this remain elusive. The current candidates for the protein partners that may mediate this catalysis-independent mechanism are also introduced in this review. A key discovery has been that selective inhibition of the catalysis-independent activity of hGIIA is achieved with cyclised derivatives of a pentapeptide, FLSYK, derived from the primary sequence of hGIIA. The effects of hGIIA on cell function appear to vary depending on the pathology studied, and so its mechanism of action is complex and context-dependent. This review is comprehensive and covers the most recent developments in the understanding of the many facets of hGIIA function and inhibition and the insight they provide into their clinical application for disease treatment. A cyclic analogue of FLSYK, c2, the most potent analogue known, has now been taken into clinical trials targeting advanced prostate cancer.
Collapse
Affiliation(s)
- Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Zheng Chen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
| | - Karine Bastard
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| |
Collapse
|
7
|
McNally CJ, Ruddock MW, Moore T, McKenna DJ. Biomarkers That Differentiate Benign Prostatic Hyperplasia from Prostate Cancer: A Literature Review. Cancer Manag Res 2020; 12:5225-5241. [PMID: 32669872 PMCID: PMC7335899 DOI: 10.2147/cmar.s250829] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Prediction of prostate cancer in primary care is typically based upon serum total prostate-specific antigen (tPSA) and digital rectal examination results. However, these tests lack sensitivity and specificity, leading to over-diagnosis of disease and unnecessary, invasive biopsies. Therefore, there is a clinical need for diagnostic tests that can differentiate between benign conditions and early-stage malignant disease in the prostate. In this review, we evaluate research papers published from 2009 to 2019 reporting biomarkers that identified or differentiated benign prostatic hyperplasia (BPH) from prostate cancer. Our review identifies hundreds of potential biomarkers in urine, serum, tissue, and semen proposed as useful targets for differentiating between prostate cancer and BPH patients. However, it is still not apparent which of these candidate biomarkers are most useful, and many will not progress beyond the discovery stage unless they are properly validated for clinical practice. We conclude that this validation will come through the use of multivariate panels which can assess the value of biomarker candidates in combination with clinical parameters as part of a risk prediction calculator. Implementation of such a model will help clinicians stratify patients with prostate cancer symptoms in primary care, with tangible benefits for both the patient and the health service.
Collapse
Affiliation(s)
- Christopher J McNally
- Randox Laboratories Ltd, Crumlin, Co. Antrim BT29 4QY, Northern Ireland.,Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland
| | - Mark W Ruddock
- Randox Laboratories Ltd, Crumlin, Co. Antrim BT29 4QY, Northern Ireland
| | - Tara Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland
| | - Declan J McKenna
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland
| |
Collapse
|
8
|
Ozturk K, Onal MS, Efiloglu O, Nikerel E, Yildirim A, Telci D. Association of 5'UTR polymorphism of secretory phospholipase A2 group IIA (PLA2G2A) gene with prostate cancer metastasis. Gene 2020; 742:144589. [PMID: 32179174 DOI: 10.1016/j.gene.2020.144589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/19/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
Abstract
Phospholipase A2 (PLA2) enzymes are small lipolytic hydrolases that can regulate immune responses through generation of Arachidonic Acid (AA), a precursor molecule of lipid mediators like prostaglandins, leukotrienes and thromboxanes. One of the family members of PLA2, secretory Phospholipase A2 Group IIA (PLA2G2A), was associated with different types of malignancies including prostate cancer. Elevated serum levels of PLA2G2A was found in prostate cancer (PCa) patients and associated with increased tumor grade in literature. 5'UTR regions have regulatory role in protein expression by controlling the accessibility of factors necessary for the translation initiation. Single nucleotide polymorphisms at 5'UTR regions have the potential to affect mRNA translation efficiency resulting in altered protein levels depending on structure and nucleotide content. Given that the 5'UTR polymorphism in PLA2G2A gene (rs11573156) is associated with increased serum levels of PLA2G2A, the association of this 5'UTR polymorphism with PCa susceptibility and metastasis was investigated in this study. Total of 261 PCa patients and 128 control individuals were genotyped with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Individuals with heterozygous CG genotype was found to have significantly reduced risk of PCa metastasis with an Odds Ratio (OR) of 0.405 (p = 0.028, 95%CI = 0.181-0.906), compared to the carriers of homozygous CC genotype (p > 0.05) suggesting an anti-metastatic effect for the G allele. No association was found between PCa susceptibility and Gleason score (p > 0.05) in Turkish population.
Collapse
Affiliation(s)
- Kaan Ozturk
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Meltem Selen Onal
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Ozgur Efiloglu
- Department of Urology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Asif Yildirim
- Department of Urology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
9
|
De Nunzio C, Presicce F, Tubaro A. Inflammatory mediators in the development and progression of benign prostatic hyperplasia. Nat Rev Urol 2018; 13:613-26. [PMID: 27686153 DOI: 10.1038/nrurol.2016.168] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Benign prostatic hyperplasia (BPH) is the most common urological disease in elderly men. Epidemiological data suggest a causal link between this condition and prostatic inflammation. The prostate is an immune-competent organ characterized by the presence of a complex immune system. Several stimuli, including infectious agents, urinary reflux, metabolic syndrome, the ageing process, and autoimmune response, have been described as triggers for the dysregulation of the prostatic immune system via different molecular pathways involving the development of inflammatory infiltrates. From a pathophysiological standpoint, subsequent tissue damage and chronic tissue healing could result in the development of BPH nodules.
Collapse
Affiliation(s)
- Cosimo De Nunzio
- Department of Urology, Sant'Andrea Hospital, 'Sapienza' University of Rome, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Fabrizio Presicce
- Department of Urology, Sant'Andrea Hospital, 'Sapienza' University of Rome, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Andrea Tubaro
- Department of Urology, Sant'Andrea Hospital, 'Sapienza' University of Rome, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| |
Collapse
|
10
|
Revisiting the use of sPLA 2 -sensitive liposomes in cancer therapy. J Control Release 2017; 261:163-173. [DOI: 10.1016/j.jconrel.2017.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 11/24/2022]
|
11
|
Østrem RG, Parhamifar L, Pourhassan H, Clergeaud G, Nielsen OL, Kjær A, Hansen AE, Andresen TL. Secretory phospholipase A 2 responsive liposomes exhibit a potent anti-neoplastic effect in vitro, but induce unforeseen severe toxicity in vivo. J Control Release 2017; 262:212-221. [PMID: 28754610 DOI: 10.1016/j.jconrel.2017.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 01/22/2023]
Abstract
The clinical use of liposomal drug delivery vehicles is often hindered by insufficient drug release. Here we present the rational design of liposomes optimized for secretory phospholipase A2 (sPLA2) triggered drug release, and test their utility in vitro and in vivo. We hypothesized that by adjusting the level of cholesterol in anionic, unsaturated liposomes we could tune the enzyme specificity based on membrane fluidity, thus obtaining liposomes with an improved therapeutic outcome and reduced side effects. Cholesterol is generally important as a component in the membranes of liposome drug delivery systems due to its stabilizing effects in vivo. The incorporation of cholesterol in sPLA2 sensitive liposomes has not previously been possible due to reduced sPLA2 activity. However, in the present work we solved this challenge by optimizing membrane fluidity. In vitro release studies revealed enzyme specific drug release. Treatment of two different cancer cell lines with liposomal oxaliplatin revealed efficient growth inhibition compared to that of clinically used stealth liposomes. The in vivo therapeutic effect was evaluated in nude NMRI mice using the sPLA2 secreting mammary carcinoma cell line MT-3. Three days after first treatment all mice having received the novel sPLA2 sensitive liposome formulation were euthanized due to severe systemic toxicity. Thus the present study demonstrates that great caution should be implemented when utilizing sPLA2 sensitive liposomes and that the real utility can only be disclosed in vivo. The present studies have clinical implications, as sPLA2 sensitive formulations are currently undergoing clinical trials (LiPlaCis®).
Collapse
Affiliation(s)
- Ragnhild Garborg Østrem
- Technical University of Denmark, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Produktionstorvet, 2800 Kgs. Lyngby, Denmark
| | - Ladan Parhamifar
- Technical University of Denmark, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Produktionstorvet, 2800 Kgs. Lyngby, Denmark
| | - Houman Pourhassan
- Technical University of Denmark, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Produktionstorvet, 2800 Kgs. Lyngby, Denmark
| | - Gael Clergeaud
- Technical University of Denmark, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Produktionstorvet, 2800 Kgs. Lyngby, Denmark
| | - Ole Lerberg Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, 1870 Frederiksberg C, Denmark
| | - Andreas Kjær
- Cluster for Molecular Imaging, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anders Elias Hansen
- Technical University of Denmark, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Produktionstorvet, 2800 Kgs. Lyngby, Denmark; Cluster for Molecular Imaging, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Thomas Lars Andresen
- Technical University of Denmark, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Produktionstorvet, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
12
|
Chapman R, Lin Y, Burnapp M, Bentham A, Hillier D, Zabron A, Khan S, Tyreman M, Stevens MM. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS NANO 2015; 9:2565-2573. [PMID: 25756526 PMCID: PMC5407437 DOI: 10.1021/nn5057595] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A rapid and highly sensitive point-of-care (PoC) lateral flow assay for phospholipase A2 (PLA2) is demonstrated in serum through the enzyme-triggered release of a new class of biotinylated multiarmed polymers from a liposome substrate. Signal from the enzyme activity is generated by the adhesion of polystreptavidin-coated gold nanoparticle networks to the lateral flow device, which leads to the appearance of a red test line due to the localized surface plasmon resonance effect of the gold. The use of a liposome as the enzyme substrate and multivalent linkers to link the nanoparticles leads to amplification of the signal, as the cleavage of a small amount of lipids is able to release a large amount of polymer linker and adhesion of an even larger amount of gold nanoparticles. By optimizing the molecular weight and multivalency of these biotinylated polymer linkers, the sensitivity of the device can be tuned to enable naked-eye detection of 1 nM human PLA2 in serum within 10 min. This high sensitivity enabled the correct diagnosis of pancreatitis in diseased clinical samples against a set of healthy controls using PLA2 activity in a point-of-care device for the first time.
Collapse
Affiliation(s)
- Robert Chapman
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Yiyang Lin
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mark Burnapp
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - Andrew Bentham
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - David Hillier
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Abigail Zabron
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Shahid Khan
- Hepatology and Gastroenterology Section, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, W2 1NY, UK
| | - Matthew Tyreman
- Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP, UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
13
|
Brglez V, Lambeau G, Petan T. Secreted phospholipases A2 in cancer: Diverse mechanisms of action. Biochimie 2014; 107 Pt A:114-23. [DOI: 10.1016/j.biochi.2014.09.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022]
|
14
|
Rodríguez-Blanco G, Burgers PC, Dekker LJM, Ijzermans JJN, Wildhagen MF, Schenk-Braat EAM, Bangma CH, Jenster G, Luider TM. Serum levels of arachidonic acid metabolites change during prostate cancer progression. Prostate 2014; 74:618-27. [PMID: 24435810 DOI: 10.1002/pros.22779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/27/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Arachidonic acid (AA) pathway has been shown to play a role in the development and progression of prostate cancer (PCa). In this study we aimed to assess the changes in concentrations of hydroxyeicosatetraenoic acids (HETEs) in serum samples from patients diagnosed with PCa compared to controls. METHODS HETEs were determined using ultrahigh pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). RESULTS Elevated concentrations of 5-HETE, 8-HETE, 11-HETE and 15-HETE were observed in 6 out of 20 patients diagnosed with PCa; no statistical differences with controls were observed for 12-HETE and AA in the discovery set. An independent validation set composed of 222 samples divided in five groups ranging from subjects with low PSA and no PCa, to patients with advanced PCa was included. In 30% of the patients in the advanced PCa group, up to ten times higher concentrations of the same set of HETEs were observed with a significant concomitant decrease of the concentration of AA. Logistic regression and Kaplan-Meier curves illustrate that a decreased concentration of AA is a predictor of PCa biochemical recurrence after radical prostatectomy (RP). CONCLUSIONS From the present study we conclude that a significant association between AA and AA metabolites in serum and PCa progression exists, although serum concentrations of HETEs exhibited low sensitivity toward the diagnosis of PCa.
Collapse
|
15
|
Bardan R, Dumache R, Dema A, Cumpanas A, Bucuras V. The role of prostatic inflammation biomarkers in the diagnosis of prostate diseases. Clin Biochem 2014; 47:909-15. [PMID: 24560954 DOI: 10.1016/j.clinbiochem.2014.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 11/27/2022]
Abstract
Benign prostatic hyperplasia (BPH) and prostate cancer (PCa) are chronic conditions, which are hormone-dependent and epidemiologically associated with prostate inflammation. As a large number of studies have demonstrated, the stimulation of T-cells at the level of prostatic chronic inflammatory infiltrates is followed by stromal and epithelial cell proliferation. The aim of this review is to present the actual level of knowledge in the field of prostatic immune response and chronic inflammation, and to analyze the relationships between chronic inflammation and BPH/PCa. The most studied prostatic inflammation biomarkers detected in biological fluids are also presented, together with their potential roles in the diagnosis and prognosis of prostatic disease.
Collapse
Affiliation(s)
- Razvan Bardan
- Department of Urology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.
| | - Raluca Dumache
- Department of Biochemistry, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alis Dema
- Department of Pathology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alin Cumpanas
- Department of Urology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Viorel Bucuras
- Department of Urology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
16
|
Menschikowski M, Hagelgans A, Fuessel S, Mareninova OA, Asatryan L, Wirth MP, Siegert G. Serum amyloid A, phospholipase A2-IIA and C-reactive protein as inflammatory biomarkers for prostate diseases. Inflamm Res 2013; 62:1063-72. [DOI: 10.1007/s00011-013-0665-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022] Open
|
17
|
Menschikowski M, Hagelgans A, Schuler U, Froeschke S, Rosner A, Siegert G. Plasma Levels of Phospholipase A2-IIA in Patients with Different Types of Malignancies: Prognosis and Association with Inflammatory and Coagulation Biomarkers. Pathol Oncol Res 2013; 19:839-46. [DOI: 10.1007/s12253-013-9652-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 05/05/2013] [Indexed: 12/13/2022]
|
18
|
Current World Literature. Curr Opin Urol 2013. [DOI: 10.1097/mou.0b013e3283605159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Todenhöfer T, Hennenlotter J, Schmiedel BJ, Hohneder A, Grimm S, Kühs U, Salih HR, Bühring HJ, Fehm T, Gakis G, Blumenstock G, Aufderklamm S, Schilling D, Stenzl A, Schwentner C. Alterations of the RANKL pathway in blood and bone marrow samples of prostate cancer patients without bone metastases. Prostate 2013; 73:162-8. [PMID: 22715006 DOI: 10.1002/pros.22551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/29/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The receptor activator of the NF-kB ligand (RANKL) pathway is a key mediator of prostate cancer (PC)-induced bone disease. However, little is known about this pathway in patients with non-metastatic PC. We aimed to investigate whether changes of RANKL, its inhibitor osteoprotegerin (OPG) and bone marrow-mesenchymal stromal cells (BM-MSCs) occur in PC patients without manifest bone metastases. PATIENTS AND METHODS We determined OPG and soluble RANKL (sRANKL) in serum and corresponding bone marrow (BM) samples of 140 patients before radical prostatectomy by enzyme-linked immunosorbent assay (ELISA). As control serum samples of 50 patients with benign prostate hyperplasia were analyzed. BM mononuclear cells (BMNCs) of 16 PC patients were analyzed for expression of RANKL and CD271 (as marker for MSCs) by flow cytometry. RESULTS PC patients had significantly lower serum levels of OPG compared to BPH patients (P = 0.007), whereas no differences were observed for serum sRANKL (P = 0.74). Both OPG and sRANKL concentrations of serum and corresponding BM samples correlated significantly (P < 0.0001 each). Interestingly, in PC patients, lower serum and BM OPG levels were associated with a higher proportion of BM-MSCs (P = 0.04 and 0.0016, respectively). No correlations were observed for sRANKL, OPG, BM-MSCs, and established risk parameters of PC. DISCUSSION The results of the study indicate that localized PC is associated with early specific changes of the RANKL pathway in serum and bone marrow (BM). These changes might be part of the pre-metastatic niche of PC and implicate a potential benefit of RANKL inhibition in patients with localized PC.
Collapse
Affiliation(s)
- Tilman Todenhöfer
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|