1
|
Qiao Y, Zhang Y, Ding X, Zhang Y, Su X, Zhang L, Ma H, Liang J, Zhou Q, Tan G. Sini decoction alleviates LPS-induced sepsis partly via restoration of metabolic impairments in the hypothalamic-pituitary-adrenal microenvironment. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119456. [PMID: 39922328 DOI: 10.1016/j.jep.2025.119456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The hypothalamic-pituitary-adrenal (HPA) axis plays a vital role in the protection against sepsis. Sini decoction (SND) could improve HPA axis function. AIM OF THE STUDY This work aimed to explore the effective mechanism of SND against lipopolysaccharide (LPS)-induced sepsis in rats from the metabolic regulation of the HPA axis microenvironment. MATERIALS AND METHODS We evaluated the multiorgan injury-associated enzymatic indicators and histopathological changes as well as the ultrastructural changes in the hypothalamus, pituitary gland, and adrenal gland associated with LPS-induced sepsis. Serum inflammatory cytokines, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were determined by ELISA. The target tissues metabolomics of the HPA axis (hypothalamus, pituitary gland, and adrenal gland), based on ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOFMS), were conducted to dissect the metabolic network regulated by SND. Western blotting was further used to validate the key metabolic pathways. In addition, the absorbed chemical constituents in serum and cerebrospinal fluid were identified by UHPLC-Q-TOFMS combined with solid-phase extraction. RESULTS Forty and twenty-three components of SND were absorbed into the serum and cerebrospinal fluid, respectively. SND could decrease multiorgan injury-associated indicators, including serum creatine kinase, urea nitrogen, creatinine, lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase, inhibit inflammatory cytokines IL-6 and TNF-α, regulate the serum levels of CRH, ACTH and CORT in LPS-induced septic rats, and alleviate the sepsis-induced morphological changes in the heart, liver, spleen, lung, and kidney and HPA tissues. SND had the ability to regulate the unbalanced glycerophospholipid metabolism, fatty acid β-oxidation, fatty acid amide metabolism, tryptophan metabolism and arachidonic acid metabolism to improve the LPS-induced sepsis. The results of western blotting analysis demonstrated that SND could decrease the expressions of LPCAT1 and IDO1 and increase the expressions of CPT1A and FAAH1 to regulate the above metabolic disorders. CONCLUSION SND could alleviate LPS-induced sepsis partly via restoration of metabolic impairments in the HPA axis microenvironment, which provided important insights to future work to ascertain the mechanisms undergoing the HPA axis response to SND against sepsis.
Collapse
Affiliation(s)
- Yan Qiao
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Zhang
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China; Department of Gastroenterology, 967th Hospital of the PLA Joint Logistic Support Force, Dalian, Liaoning, 116021, China
| | - Xin Ding
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China; Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Medical University, Xi'an 710032, China
| | - Ya Zhang
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xuemei Su
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Zhang
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongrui Ma
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Junli Liang
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Zhou
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Medical University, Xi'an 710032, China.
| | - Guangguo Tan
- School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Li J, Wu B, Fan G, Huang J, Li Z, Cao F. Lc-ms-based untargeted metabolomics reveals potential mechanisms of histologic chronic inflammation promoting prostate hyperplasia. PLoS One 2024; 19:e0314599. [PMID: 39715183 DOI: 10.1371/journal.pone.0314599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Chronic prostatitis may be a risk factor for developing proliferative changes in the prostate, although the underlying mechanisms are not entirely comprehended. MATERIALS AND METHODS Fifty individual prostate tissues were examined in this study, consisting of 25 patients diagnosed with prostatic hyperplasia combined with histologic chronic inflammation and 25 patients diagnosed with prostatic hyperplasia alone. We employed UPLC-Q-TOF-MS-based untargeted metabolomics using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to identify differential metabolites that can reveal the mechanisms that underlie the promotion of prostate hyperplasia by histologic chronic inflammation. Selected differential endogenous metabolites were analyzed using bioinformatics and subjected to metabolic pathway studies. RESULTS Nineteen differential metabolites, consisting of nine up-regulated and ten down-regulated, were identified between the two groups of patients. These groups included individuals with combined histologic chronic inflammation and those with prostatic hyperplasia alone. Glycerolipids, glycerophospholipids, and sphingolipids were primarily the components present. Metabolic pathway enrichment was conducted on the identified differentially expressed metabolites. Topological pathway analysis revealed the differential metabolites' predominant involvement in sphingolipid, ether lipid, and glycerophospholipid metabolism. The metabolites involved in sphingolipid metabolism were Sphingosine, Cer (d18:1/24:1), and Phytosphingosine. The metabolites involved in ether lipid metabolism were Glycerophosphocholine and LysoPC (O-18:0/0:0). The metabolites involved in glycerophospholipid metabolism were LysoPC (P-18:0/0:0) and Glycerophosphocholine. with Impact > 0. 1 and FDR < 0. 05, the most important metabolic pathway was sphingolipid metabolism. CONCLUSIONS In conclusion, our findings suggest that patients with prostate hyperplasia and combined histologic chronic inflammation possess distinctive metabolic profiles. These differential metabolites appear to play a significant role in the pathogenesis of histologic chronic inflammation-induced prostate hyperplasia, primarily through the regulation of sphingolipids and glycerophospholipids metabolic pathways. The mechanism by which histologic chronic inflammation promotes prostate hyperplasia was elucidated through the analysis of small molecule metabolites. These findings support the notion that chronic prostatitis may contribute to an increased risk of prostate hyperplasia.
Collapse
Affiliation(s)
- Jiale Li
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Beiwen Wu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Guorui Fan
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Jie Huang
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Fenghong Cao
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
3
|
Bian Z, Zha X, Chen Y, Chen X, Yin Z, Xu M, Zhang Z, Qian J. Metabolic biomarkers of neonatal sepsis: identification using metabolomics combined with machine learning. Front Cell Dev Biol 2024; 12:1491065. [PMID: 39498415 PMCID: PMC11532037 DOI: 10.3389/fcell.2024.1491065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Background Sepsis is a common disease associated with neonatal and infant mortality, and for diagnosis, blood culture is currently the gold standard method, but it has a low positivity rate and requires more than 2 days to develop. Meanwhile, unfortunately, the specific biomarkers for the early and timely diagnosis of sepsis in infants and for the determination of the severity of this disease are lacking in clinical practice. Methods Samples from 18 sepsis infants with comorbidities, 25 sepsis infants without comorbidities, and 25 infants with noninfectious diseases were evaluated using a serum metabolomics approach based on liquid chromatography‒mass spectrometry (LC‒MS) technology. Differentially abundant metabolites were screened via multivariate statistical analysis. In addition, least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) analyses were conducted to identify the key metabolites in infants with sepsis and without infections. The random forest algorithm was applied to determine key differentially abundant metabolites between sepsis infants with and without comorbidities. Receiver operating characteristic (ROC) curves were generated for biomarker value testing. Finally, a metabolic pathway analysis was conducted to explore the metabolic and signaling pathways associated with the identified differentially abundant metabolites. Results A total of 189 metabolites exhibited significant differences between infectious infants and noninfectious infants, while 137 distinct metabolites exhibited differences between septic infants with and without comorbidities. After screening for the key differentially abundant metabolites using LASSO and SVM-RFE analyses, hexylamine, psychosine sulfate, LysoPC (18:1 (9Z)/0:0), 2,4,6-tribromophenol, and 25-cinnamoyl-vulgaroside were retained for the diagnosis of infant sepsis. ROC curve analysis revealed that the area under the curve (AUC) was 0.9200 for hexylamine, 0.9749 for psychosine sulfate, 0.9684 for LysoPC (18:1 (9Z)/0:0), 0.7405 for 2,4,6-tribromophenol, 0.8893 for 25-cinnamoyl-vulgaroside, and 1.000 for the combination of all metabolites. When the septic infants with comorbidities were compared to those without comorbidities, four endogenous metabolites with the greatest importance were identified using the random forest algorithm, namely, 12-oxo-20-trihydroxy-leukotriene B4, dihydrovaltrate, PA (8:0/12:0), and 2-heptanethiol. The ROC curve analysis of these four key differentially abundant metabolites revealed that the AUC was 1 for all four metabolites. Pathway analysis indicated that phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism, and porphyrin metabolism play important roles in infant sepsis. Conclusion Serum metabolite profiles were identified, and machine learning was applied to identify the key differentially abundant metabolites in septic infants with comorbidities, septic infants without comorbidities, and infants without infectious diseases. The findings obtained are expected to facilitate the early diagnosis of sepsis in infants and determine the severity of the disease.
Collapse
Affiliation(s)
- Zhaonan Bian
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinyi Zha
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanru Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuting Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhanghua Yin
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jihong Qian
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Salihovic S, Eklund D, Kruse R, Wallgren U, Hyötyläinen T, Särndahl E, Kurland L. Exploring the circulating metabolome of sepsis: metabolomic and lipidomic profiles sampled in the ambulance. Metabolomics 2024; 20:111. [PMID: 39369060 PMCID: PMC11455889 DOI: 10.1007/s11306-024-02172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Sepsis is defined as a dysfunctional host response to infection. The diverse clinical presentations of sepsis pose diagnostic challenges and there is a demand for enhanced diagnostic markers for sepsis as well as an understanding of the underlying pathological mechanisms involved in sepsis. From this perspective, metabolomics has emerged as a potentially valuable tool for aiding in the early identification of sepsis that could highlight key metabolic pathways and underlying pathological mechanisms. OBJECTIVE The aim of this investigation is to explore the early metabolomic and lipidomic profiles in a prospective cohort where plasma samples (n = 138) were obtained during ambulance transport among patients with infection according to clinical judgement who subsequently developed sepsis, patients who developed non-septic infection, and symptomatic controls without an infection. METHODS Multiplatform metabolomics and lipidomics were performed using UHPLC-MS/MS and UHPLC-QTOFMS. Uni- and multivariable analysis were used to identify metabolite profiles in sepsis vs symptomatic control and sepsis vs non-septic infection. RESULTS Univariable analysis disclosed that out of the 457 annotated metabolites measured across three different platforms, 23 polar, 27 semipolar metabolites and 133 molecular lipids exhibited significant differences between patients who developed sepsis and symptomatic controls following correction for multiple testing. Furthermore, 84 metabolites remained significantly different between sepsis and symptomatic controls following adjustment for age, sex, and Charlson comorbidity score. Notably, no significant differences were identified in metabolites levels when comparing patients with sepsis and non-septic infection in univariable and multivariable analyses. CONCLUSION Overall, we found that the metabolome, including the lipidome, was decreased in patients experiencing infection and sepsis, with no significant differences between the two conditions. This finding indicates that the observed metabolic profiles are shared between both infection and sepsis, rather than being exclusive to sepsis alone.
Collapse
Affiliation(s)
- Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
| | - Robert Kruse
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ulrika Wallgren
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
| | - Lisa Kurland
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
5
|
Chouchane O, Schuurman AR, Reijnders TDY, Peters-Sengers H, Butler JM, Uhel F, Schultz MJ, Bonten MJ, Cremer OL, Calfee CS, Matthay MA, Langley RJ, Alipanah-Lechner N, Kingsmore SF, Rogers A, van Weeghel M, Vaz FM, van der Poll T. The Plasma Lipidomic Landscape in Patients with Sepsis due to Community-acquired Pneumonia. Am J Respir Crit Care Med 2024; 209:973-986. [PMID: 38240721 DOI: 10.1164/rccm.202308-1321oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/18/2024] [Indexed: 04/16/2024] Open
Abstract
Rationale: The plasma lipidome has the potential to reflect many facets of the host status during severe infection. Previous work is limited to specific lipid groups or was focused on lipids as prognosticators.Objectives: To map the plasma lipidome during sepsis due to community-acquired pneumonia (CAP) and determine the disease specificity and associations with clinical features.Methods: We analyzed 1,833 lipid species across 33 classes in 169 patients admitted to the ICU with sepsis due to CAP, 51 noninfected ICU patients, and 48 outpatient controls. In a paired analysis, we reanalyzed patients still in the ICU 4 days after admission (n = 82).Measurements and Main Results: A total of 58% of plasma lipids were significantly lower in patients with CAP-attributable sepsis compared with outpatient controls (6% higher, 36% not different). We found strong lipid class-specific associations with disease severity, validated across two external cohorts, and inflammatory biomarkers, in which triacylglycerols, cholesterol esters, and lysophospholipids exhibited the strongest associations. A total of 36% of lipids increased over time, and stratification by survival revealed diverging lipid recovery, which was confirmed in an external cohort; specifically, a 10% increase in cholesterol ester levels was related to a lower odds ratio (0.84; P = 0.006) for 30-day mortality (absolute mortality, 18 of 82). Comparison with noninfected ICU patients delineated a substantial common illness response (57.5%) and a distinct lipidomic signal for patients with CAP-attributable sepsis (37%).Conclusions: Patients with sepsis due to CAP exhibit a time-dependent and partially disease-specific shift in their plasma lipidome that correlates with disease severity and systemic inflammation and is associated with higher mortality.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabrice Uhel
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche S1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche S8253, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
- Médecine Intensive Réanimation, Assistance Publique-Hôpitaux de Paris, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| | - Marcus J Schultz
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Marc J Bonten
- Department of Medical Microbiology
- Julius Center for Health Sciences and Primary Care, and
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carolyn S Calfee
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Raymond J Langley
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama
| | | | - Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California
| | - Angela Rogers
- Division of Pulmonary and Critical Care, Department of Medicine, Stanford, California; and
| | - Michel van Weeghel
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital
- Core Facility Metabolomics, and
- Inborn Errors of Metabolism Program, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers-Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital
- Core Facility Metabolomics, and
- Inborn Errors of Metabolism Program, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers-Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine
- Division of Infectious Diseases
| |
Collapse
|
6
|
Yue B, Chen J, Bao T, Zhang Y, Yang L, Zhang Z, Wang Z, Zhu C. Chromosomal copy number amplification-driven Linc01711 contributes to gastric cancer progression through histone modification-mediated reprogramming of cholesterol metabolism. Gastric Cancer 2024; 27:308-323. [PMID: 38270815 DOI: 10.1007/s10120-023-01464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Chromosome gains or localized amplifications are frequently observed in human gastric cancer (GC) and are major causes of aberrant oncogene activation. However, the significance of long non-coding RNAs (LncRNAs) in the above process is largely unknown. METHODS The copy number aberrations (CNAs) data of GC samples were downloaded and analyzed from the TCGA database. qRT-PCR and fluorescence in situ hybridization were used to evaluate the expression of Linc01711 in GC. The effects of Linc01711 on GC progression were investigated through in vitro and in vivo assays. The mechanism of Linc01711 action was explored through transcriptome sequencing, chromatin immunoprecipitation sequencing, RNA immunoprecipitation, RNA pull-down and chromatin isolation by RNA purification (ChIRP) assays. RESULTS We report for the first time a novel DNA copy number amplification-driven LncRNA on chromosome 20q13, designated Linc01711 in human GC, which is highly associated with malignant features. Functionally, Linc01711 significantly accelerates the proliferation and metastasis of GC. Mechanistically, Linc01711 acts as a modular scaffold to promote the binding of histone acetyltransferase HBO1 and histone demethylase KDM9. By coordinating the localization of the HBO1/KDM9 complex, Linc01711 specifies the histone modification pattern on the target genes, such as LPCAT1, and consequently facilitates the cholesterol synthesis, thereby contributing to tumor progression. CONCLUSIONS Our findings suggest that copy number amplification-driven Linc01711 may serve as a promising prognostic predictor for GC patients and targeting Linc01711-related cholesterol metabolism pathway may be meaningful in anticancer strategies.
Collapse
Affiliation(s)
- Ben Yue
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jianjun Chen
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Tianshang Bao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuanruohan Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Linxi Yang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
7
|
Pei S, Xu C, Pei J, Bai R, Peng R, Li T, Zhang J, Cong X, Chun J, Wang F, Chen X. Lysophosphatidic Acid Receptor 3 Suppress Neutrophil Extracellular Traps Production and Thrombosis During Sepsis. Front Immunol 2022; 13:844781. [PMID: 35464399 PMCID: PMC9021375 DOI: 10.3389/fimmu.2022.844781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Sepsis consists of life-threatening organ dysfunction resulting from a dysregulated response to infection. Recent studies have found that excessive neutrophil extracellular traps (NETs) contribute to the pathogenesis of sepsis, thereby increasing morbidity and mortality. Lysophosphatidic acid (LPA) is a small glycerophospholipid molecule that exerts multiple functions by binding to its receptors. Although LPA has been functionally identified to induce NETs, whether and how LPA receptors, especially lysophosphatidic acid receptor 3 (LPA3), play a role in the development of sepsis has never been explored. A comprehensive understanding of the impact of LPA3 on sepsis is essential for the development of medical therapy. After intraperitoneal injection of lipopolysaccharide (LPS), Lpar3 -/-mice showed a substantially higher mortality, more severe injury, and more fibrinogen content in the lungs than wild-type (WT) mice. The values of blood coagulation markers, plasma prothrombin time (PT) and fibrinogen (FIB), indicated that the Lpar3 -/- mice underwent a severe coagulation process, which resulted in increased thrombosis. The levels of NETs in Lpar3 -/- mice were higher than those in WT mice after LPS injection. The mortality rate and degree of lung damage in Lpar3 -/- mice with sepsis were significantly reduced after the destruction of NETs by DNaseI treatment. Furthermore, in vitro experiments with co-cultured monocytes and neutrophils demonstrated that monocytes from Lpar3 -/- mice promoted the formation of NETs, suggesting that LPA3 acting on monocytes inhibits the formation of NETs and plays a protective role in sepsis. Mechanistically, we found that the amount of CD14, an LPS co-receptor, expressed by monocytes in Lpar3 -/-mice was significantly elevated after LPS administration, and the MyD88-p65-NFκB signaling axis, downstream of toll-like receptor 4 signaling, in monocytes was overactivated. Finally, after an injection of the LPA3 agonist (2S)-1-oleoyl-2-methylglycero-3-phosphothionate (OMPT), the survival rate of mice with sepsis was improved, organ damage was reduced, and the production of NETs was decreased. This suggested the possible translational value and application prospects of (2S)-OMPT in the treatment of sepsis. Our study confirms an important protective role of LPA3 in curbing the development of sepsis by suppressing NETs production and thrombosis and provides new ideas for sepsis treatment strategies.
Collapse
Affiliation(s)
- Shengqiang Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuansheng Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifeng Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Peng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiewei Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junjie Zhang
- The Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diagnostic Laboratory Service, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Clinical Laboratory, Fuwai Yunnan Cardiovascular Hospital, Kunming, China
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Diagnostic Laboratory Service, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Hussain H, Vutipongsatorn K, Jiménez B, Antcliffe DB. Patient Stratification in Sepsis: Using Metabolomics to Detect Clinical Phenotypes, Sub-Phenotypes and Therapeutic Response. Metabolites 2022; 12:metabo12050376. [PMID: 35629881 PMCID: PMC9145582 DOI: 10.3390/metabo12050376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Infections are common and need minimal treatment; however, occasionally, due to inappropriate immune response, they can develop into a life-threatening condition known as sepsis. Sepsis is a global concern with high morbidity and mortality. There has been little advancement in the treatment of sepsis, outside of antibiotics and supportive measures. Some of the difficulty in identifying novel therapies is the heterogeneity of the condition. Metabolic phenotyping has great potential for gaining understanding of this heterogeneity and how the metabolic fingerprints of patients with sepsis differ based on survival, organ dysfunction, disease severity, type of infection, treatment or causative organism. Moreover, metabolomics offers potential for patient stratification as metabolic profiles obtained from analytical platforms can reflect human individuality and phenotypic variation. This article reviews the most relevant metabolomic studies in sepsis and aims to provide an overview of the metabolic derangements in sepsis and how metabolic phenotyping has been used to identify sub-groups of patients with this condition. Finally, we consider the new avenues that metabolomics could open, exploring novel phenotypes and untangling the heterogeneity of sepsis, by looking at advances made in the field with other -omics technologies.
Collapse
Affiliation(s)
- Humma Hussain
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
| | - Kritchai Vutipongsatorn
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
| | - Beatriz Jiménez
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - David B. Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
- Correspondence:
| |
Collapse
|
9
|
Trongtrakul K, Thonusin C, Pothirat C, Chattipakorn SC, Chattipakorn N. Past Experiences for Future Applications of Metabolomics in Critically Ill Patients with Sepsis and Septic Shocks. Metabolites 2021; 12:metabo12010001. [PMID: 35050123 PMCID: PMC8779293 DOI: 10.3390/metabo12010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022] Open
Abstract
A disruption of several metabolic pathways in critically ill patients with sepsis indicates that metabolomics might be used as a more precise tool for sepsis and septic shock when compared with the conventional biomarkers. This article provides information regarding metabolomics studies in sepsis and septic shock patients. It has been shown that a variety of metabolomic pathways are altered in sepsis and septic shock, including amino acid metabolism, fatty acid oxidation, phospholipid metabolism, glycolysis, and tricarboxylic acid cycle. Based upon this comprehensive review, here, we demonstrate that metabolomics is about to change the world of sepsis biomarkers, not only for its utilization in sepsis diagnosis, but also for prognosticating and monitoring the therapeutic response. Additionally, the future direction regarding the establishment of studies integrating metabolomics with other molecular modalities and studies identifying the relationships between metabolomic profiles and clinical characteristics to address clinical application are discussed in this article. All of the information from this review indicates the important impact of metabolomics as a tool for diagnosis, monitoring therapeutic response, and prognostic assessment of sepsis and septic shock. These findings also encourage further clinical investigations to warrant its use in routine clinical settings.
Collapse
Affiliation(s)
- Konlawij Trongtrakul
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (C.P.)
| | - Chanisa Thonusin
- Metabolomics Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.T.); (N.C.)
| | - Chaicharn Pothirat
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (C.P.)
| | - Siriporn C. Chattipakorn
- Metabolomics Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Metabolomics Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.T.); (N.C.)
| |
Collapse
|
10
|
Kobayashi H, Amrein K, Lasky-Su JA, Christopher KB. Procalcitonin metabolomics in the critically ill reveal relationships between inflammation intensity and energy utilization pathways. Sci Rep 2021; 11:23194. [PMID: 34853395 PMCID: PMC8636627 DOI: 10.1038/s41598-021-02679-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Procalcitonin is a biomarker of systemic inflammation and may have importance in the immune response. The metabolic response to elevated procalcitonin in critical illness is not known. The response to inflammation is vitally important to understanding metabolism alterations during extreme stress. Our aim was to determine if patients with elevated procalcitonin have differences in the metabolomic response to early critical illness. We performed a metabolomics study of the VITdAL-ICU trial where subjects received high dose vitamin D3 or placebo. Mixed-effects modeling was used to study changes in metabolites over time relative to procalcitonin levels adjusted for age, Simplified Acute Physiology Score II, admission diagnosis, day 0 25-hydroxyvitamin D level, and the 25-hydroxyvitamin D response to intervention. With elevated procalcitonin, multiple members of the short and medium chain acylcarnitine, dicarboxylate fatty acid, branched-chain amino acid, and pentose phosphate pathway metabolite classes had significantly positive false discovery rate corrected associations. Further, multiple long chain acylcarnitines and lysophosphatidylcholines had significantly negative false discovery rate corrected associations with elevated procalcitonin. Gaussian graphical model analysis revealed functional modules specific to elevated procalcitonin. Our findings show that metabolite differences exist with increased procalcitonin indicating activation of branched chain amino acid dehydrogenase and a metabolic shift.
Collapse
Affiliation(s)
- Hirotada Kobayashi
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
| | - Kenneth B Christopher
- Division of Renal Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Amunugama K, Pike DP, Ford DA. The lipid biology of sepsis. J Lipid Res 2021; 62:100090. [PMID: 34087197 PMCID: PMC8243525 DOI: 10.1016/j.jlr.2021.100090] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Sepsis, defined as the dysregulated immune response to an infection leading to organ dysfunction, is one of the leading causes of mortality around the globe. Despite the significant progress in delineating the underlying mechanisms of sepsis pathogenesis, there are currently no effective treatments or specific diagnostic biomarkers in the clinical setting. The perturbation of cell signaling mechanisms, inadequate inflammation resolution, and energy imbalance, all of which are altered during sepsis, are also known to lead to defective lipid metabolism. The use of lipids as biomarkers with high specificity and sensitivity may aid in early diagnosis and guide clinical decision making. In addition, identifying the link between specific lipid signatures and their role in sepsis pathology may lead to novel therapeutics. In this review, we discuss the recent evidence on dysregulated lipid metabolism both in experimental and human sepsis focused on bioactive lipids, fatty acids, and cholesterol as well as the enzymes regulating their levels during sepsis. We highlight not only their potential roles in sepsis pathogenesis but also the possibility of using these respective lipid compounds as diagnostic and prognostic biomarkers of sepsis.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel P Pike
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Luo K, Zhao H, Bian B, Wei X, Si N, Brantner A, Fan X, Gu X, Zhou Y, Wang H. Huanglian Jiedu Decoction in the Treatment of the Traditional Chinese Medicine Syndrome "Shanghuo"-An Intervention Study. Front Pharmacol 2021; 12:616318. [PMID: 33995016 PMCID: PMC8120301 DOI: 10.3389/fphar.2021.616318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/05/2021] [Indexed: 01/16/2023] Open
Abstract
“Shanghuo” (“excessive internal heat”) is caused by exuberant endogenous fire, which does not have a comprehensive and systematic traditional Chinese medicine theory. In previous study, we had evaluated the therapeutic effect of Huanglian Jiedu Decoction (HLJDD) (granule) on patients with “Shanghuo”, however, the specific mechanism was not clear, which need further exploration. To explain its intervention mechanism, we select 57 patients with oral diseases caused by “Shanghuo” and 20 health volunteers to divide into oral disease group, HLJDD intervention group and healthy control group. Firstly, biochemical indicators before and after HLJDD intervention are detected, such as inflammatory factors, oxidative stress factors and energy metabolism factors. The results exhibit that HLJDD significantly decreases indicators succinic acid (p < 0.001); tumor necrosis factor-alpha, adenosine triphosphate, citric acid (p < 0.01); interleukin-8 (IL-8), 4-hydroxynonenal, pyruvic acid, lactate dehydrogenase (p < 0.05). The levels of glucocorticoid, adrenocorticotropic hormone (p < 0.01); lactic acid, IL-4, IL-10 (p < 0.05) significantly increase after HLJDD intervention. In addition, we adopt multi-omics analysis approach to investigate the potential biomarkers. Nontargeted metabolomics demonstrate that the levels of 7 differential metabolites approach that in the healthy control group after HLJDD intervention, which are correlated with histidine metabolism, beta-alanine metabolism and sphingolipid metabolism through metabolic pathway analysis. Targeted lipidomics results and receiver operating characteristic curve analysis show that 13 differential lipids are identified in the three groups mainly focuse on lysophosphatidylcholines, lysophosphatidylethanolamines. Finally, the network associations of those differential biomarkers reveal the regulation of adenosine triphosphate and tricarboxylic acid cycle play essential role in the therapeutic effect mechanism of HLJDD in “Shanghuo”. The study has laid the foundation for further revealing the mechanism and finding clinical biomarkers related to “Shanghuo”.
Collapse
Affiliation(s)
- Keke Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Adelheid Brantner
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Xiaorui Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinru Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Purandare N, Minchella P, Somayajulu M, Kramer KJ, Zhou J, Adekoya N, Welch RA, Grossman LI, Aras S, Recanati MA. Molecular mechanisms regulating lysophosphatidylcholine acyltransferase 1 (LPCAT1) in human pregnancy. Placenta 2021; 106:40-48. [PMID: 33618181 DOI: 10.1016/j.placenta.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Lysophosphatidylcholine Acyltransferase 1 (LPCAT1) is necessary for surfactant production in fetal lungs. Mechanisms responsible for its regulation during gestation remain to be elucidated. Our goal is to evaluate molecular mechanisms regulating LPCAT1 expression during gestation and after glucocorticoid administration. METHODS Placentas throughout gestation were assayed for LPCAT1 protein levels. A placental cell line, HTR-8/SVneo (HTR), was used as a model to test the effects of placental oxygen tension found during pregnancy as well as the effects of dexamethasone used therapeutically in the clinic. RESULTS LPCAT1 protein levels are maximal in late third trimester placental samples and are expressed strongly on the basal plate. LPCAT1 was maximally upregulated at 4% O2 (P < 0.01), corresponding to oxygen tension found in placenta at term. Mitochondrial nuclear retrograde regulator 1 (MNRR1), a bi-organellar (mitochondria and nucleus) regulator, transcriptionally activates LPCAT1. Antenatal corticosteroids (ACS) upregulate LPCAT1, at least in part, by an MNRR1-dependent pathway. HTR cells treated with 25 nM dexamethasone for 24 h exhibited a 2-fold increase in LPCAT1 levels compared to controls. In MNRR1 knockout cells, the response to ACS is significantly blunted. DISCUSSION LPCAT1 appears to be induced by MNRR1. Hypoxia and corticosteroids increase LPCAT1 expression through an MNRR1 dependent pathway. LPCAT1 protein levels can be measured in maternal plasma and rise throughout gestation and in response to ACS.
Collapse
Affiliation(s)
- Neeraja Purandare
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Paige Minchella
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Katherine J Kramer
- Department of Obstetrics and Gynecology, St. Vincent's Medical Centers Manhattan, New York, NY, 10011, USA
| | - Jordan Zhou
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Nellena Adekoya
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Robert A Welch
- Department of Obstetrics and Gynecology, School of Human Medicine, Michigan State University, Hurley Medical Center, Flint, MI, 48503, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Maurice-Andre Recanati
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
14
|
Zhao LK, Zhao YB, Zhang PX. High-throughput metabolomics discovers metabolite biomarkers and insights the protective mechanism of schisandrin B on myocardial injury rats. J Sep Sci 2020; 44:717-725. [PMID: 33247873 DOI: 10.1002/jssc.202000875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Schisandrin B has been proved to possess anti-inflammatory and anti-endoplasmic effects, could improve cardiac function, inhibit apoptosis, and reduce inflammation after ischemic injury. However, the detailed metabolic mechanism and potential pathways of Schisandrin B effects on myocardial injury are unclear. Metabolomics could yield in-depth mechanistic insights and explore the potential therapeutic effect of natural products. In this study, the preparation of doxorubicin-induced myocardial injury rat model for evaluation of Schisandrin B on viral myocarditis sequelae related pathological changes and its mechanism. The metabolite profiling of myocardial injury rats was performed through ultra-high performance liquid chromatography combined with mass spectrometry combined with pattern recognition approaches and pathway analysis. A total of 15 metabolites (nine in positive ion mode and six in negative ion mode) were considered as potential biomarkers of myocardial injury, and these metabolites may correlate with the regulation of Schisandrin B treatment. A total of six metabolic pathways are closely related to Schisandrin B treatment, including glycerophospholipid metabolism, sphingolipid metabolism, purine metabolism, etc. This study revealed the potential biomarkers and metabolic network pathways of myocardial injury, and illuminated the protective mechanism of Schisandrin B on myocardial injury.
Collapse
Affiliation(s)
- Ling-Kun Zhao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, P. R. China
| | - Yun-Bo Zhao
- First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, P. R. China
| | - Peng-Xia Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, P. R. China
| |
Collapse
|
15
|
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 2020; 247:117443. [DOI: 10.1016/j.lfs.2020.117443] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
|
16
|
Nowill AE, Fornazin MC, Spago MC, Dorgan Neto V, Pinheiro VRP, Alexandre SSS, Moraes EO, Souza GHMF, Eberlin MN, Marques LA, Meurer EC, Franchi GC, de Campos-Lima PO. Immune Response Resetting in Ongoing Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1298-1312. [PMID: 31358659 PMCID: PMC6697741 DOI: 10.4049/jimmunol.1900104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/28/2019] [Indexed: 01/03/2023]
Abstract
Cure of severe infections, sepsis, and septic shock with antimicrobial drugs is a challenge because morbidity and mortality in these conditions are essentially caused by improper immune response. We have tested the hypothesis that repeated reactivation of established memory to pathogens may reset unfavorable immune responses. We have chosen for this purpose a highly stringent mouse model of polymicrobial sepsis by cecum ligation and puncture. Five weeks after priming with a diverse Ag pool, high-grade sepsis was induced in C57BL/6j mice that was lethal in 24 h if left untreated. Antimicrobial drug (imipenem) alone rescued 9.7% of the animals from death, but >5-fold higher cure rate could be achieved by combining imipenem and two rechallenges with the Ag pool (p < 0.0001). Antigenic stimulation fine-tuned the immune response in sepsis by contracting the total CD3+ T cell compartment in the spleen and disengaging the hyperactivation state in the memory T subsets, most notably CD8+ T cells, while preserving the recovery of naive subsets. Quantitative proteomics/lipidomics analyses revealed that the combined treatment reverted the molecular signature of sepsis for cytokine storm, and deregulated inflammatory reaction and proapoptotic environment, as well as the lysophosphatidylcholine/phosphatidylcholine ratio. Our results showed the feasibility of resetting uncontrolled hyperinflammatory reactions into ordered hypoinflammatory responses by memory reactivation, thereby reducing morbidity and mortality in antibiotic-treated sepsis. This beneficial effect was not dependent on the generation of a pathogen-driven immune response itself but rather on the reactivation of memory to a diverse Ag pool that modulates the ongoing response.
Collapse
Affiliation(s)
- Alexandre E Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil;
| | - Márcia C Fornazin
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | - Maria C Spago
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | - Vicente Dorgan Neto
- Surgery Department, Santa Casa School of Medical Sciences, São Paulo 01221-020, Brazil
| | - Vitória R P Pinheiro
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | - Simônia S S Alexandre
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil;
| | - Edgar O Moraes
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
| | - Gustavo H M F Souza
- Mass Spectrometry Research and Development Laboratory, Health Sciences Department, Waters Corporation, Barueri 06455-020, Brazil
| | - Marcos N Eberlin
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
| | - Lygia A Marques
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, Campinas 13083-859, Brazil; and
| | - Eduardo C Meurer
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, Campinas 13083-859, Brazil; and
| | - Gilberto C Franchi
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | | |
Collapse
|
17
|
Ferrario M, Brunelli L, Su F, Herpain A, Pastorelli R. The Systemic Alterations of Lipids, Alanine-Glucose Cycle and Inter-Organ Amino Acid Metabolism in Swine Model Confirms the Role of Liver in Early Phase of Septic Shock. Front Physiol 2019; 10:11. [PMID: 30745875 PMCID: PMC6360162 DOI: 10.3389/fphys.2019.00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Septic shock is a medical emergency and is one of the main causes of mortality in critically ill patients. Given the pathophysiological complexity of sepsis spectrum and progression in clinical settings, animal models become essential tools to improve patient care, and to understand key mechanisms that may remain masked from the heterogeneity of clinical practice. Our aim was to verify whether the metabolic constellations we previously reported for septic shock patients appear also in our septic shock swine model as systemic markers of early disturbances in energy metabolism and hepatic homeostasis. Septic shock was induced in anesthetized, instrumented, and ventilated adult swines by polymicrobial peritonitis. Hemodynamic and serial measurements of arterial and mixed venous blood gasses were made. Laboratory measurements and mass spectrometry-based targeted quantitative plasma metabolomics were performed in blood samples collected at baseline, at shock and at fully resuscitation after fluids and vasopressors administration. Data elaboration was performed by multilevel and multivariate analysis. Changes in hemodynamic, blood chemistry, and inflammatory markers were in line with a septic shock phenotype. Time course alteration of systemic metabolites were characterized by marked decreased in phosphatidylcholines and lysophosphatidylcholines species, altered alanine-glucose cycle and inter-organ amino acid metabolism, pointing toward an early hepatic impairment similarly to what we previously reported for septic shock. This is the first study in which an experimental swine model of septic shock recapitulates the main metabolic derangements reported in a clinical setting of shock. These events occur within hours from infections and may act as early metabolic features to assist in evaluating subclinical hepatic alterations and pave the way to improve the management of septic shock.
Collapse
Affiliation(s)
- Manuela Ferrario
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Laura Brunelli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fuhong Su
- Experimental Laboratory of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Roberta Pastorelli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
18
|
De Benedetto F, Pastorelli R, Ferrario M, de Blasio F, Marinari S, Brunelli L, Wouters EFM, Polverino F, Celli BR. Supplementation with Qter ® and Creatine improves functional performance in COPD patients on long term oxygen therapy. Respir Med 2018; 142:86-93. [PMID: 30170808 DOI: 10.1016/j.rmed.2018.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Skeletal muscle dysfunction and poor functional capacity are important extra-pulmonary manifestations of chronic obstructive pulmonary disease (COPD), especially in COPD patients on long-term O2 therapy (LTOT). Beside the role of pulmonary rehabilitation, the effect of nutritional interventions is still controversial, and there are knowledge gaps on the effective role of nutraceutical supplementation on hard endpoints. The aim of this study was to investigate the effects of nutritional supplementation with Coenzyme Q10 (QTer®) - a powerful antioxidant with the potential to reduce oxidative stress and improve mitochondrial function - and Creatine on functional, nutritional, and metabolomic profile in COPD patients on long-term O2 therapy. METHODS One-hundred and eight patients with COPD from 9 Italian hospitals were enrolled in this double-blinded randomized placebo-controlled clinical study. At baseline and after 2 months of therapy, the patients underwent spirometry, 6-minute walk test (6MWT), bioelectrical impedance analysis, and activities of daily living questionnaire (ADL). Also, dyspnea scores and BODE index were calculated. At both time points, plasma concentration of CoQ10 and metabolomic profiling were measured. FINDINGS Ninety patients, who randomly received supplementation with QTer® and Creatine or placebo, completed the study. Compared with placebo, supplemented patients showed improvements in 6MWT (51 ± 69 versus 15 ± 91 m, p < 0.05), body cell mass and phase angle, sodium/potassium ratio, dyspnea indices and ADL score. The CoQ10 plasma concentration increased in the supplementation group whereas it did not change in the placebo group. The metabolomics profile also differed between groups. Adverse events were similar in both groups. INTERPRETATION These results show that in patients with COPD, dietary supplementation with CoQ10 and Creatine improves functional performance, body composition and perception of dyspnea. A systemic increase in some anti-inflammatory metabolites supports a pathobiological mechanism as a reason for these benefits. Further trials should help clarifying the role of QTer® and Creatine supplementation in patients with COPD.
Collapse
Affiliation(s)
| | - Roberta Pastorelli
- Department of Environmental Health Science, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Manuela Ferrario
- Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | | | | | - Laura Brunelli
- Department of Environmental Health Science, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Bartolome R Celli
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
19
|
Ahn WG, Jung JS, Song DK. Lipidomic analysis of plasma lipids composition changes in septic mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:399-408. [PMID: 29962854 PMCID: PMC6019871 DOI: 10.4196/kjpp.2018.22.4.399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 01/16/2023]
Abstract
A lipidomic study on extensive plasma lipids in bacterial peritonitis (cecal ligation and puncture, CLP)-induced sepsis in mice was done at 24 h post-CLP. The effects of administration of lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), compounds known to have beneficial effects in CLP, on the sepsis-induced plasma lipid changes were also examined. Among the 147 plasma lipid species from 13 lipid subgroups (fatty acid [FA], LPA, LPC, lysophosphatidylethanolamine [LPE], phosphatidic acid [PA], phosphatidylcholine [PC], phosphatidylethanolamine [PE], phosphatidylinositol [PI], monoacylglyceride [MG], diacylglyceride [DG], triacylglyceride [TG], sphingomyelin [SM], and ceramide [Cer]) analyzed in this study, 40 and 70 species were increased, and decreased, respectively, in the CLP mice. Treatments with LPC and LPA affected 14 species from 7 subgroups, and 25 species from 9 subgroups, respectively. These results could contribute to finding the much needed reliable biomarkers of sepsis.
Collapse
Affiliation(s)
- Won-Gyun Ahn
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jun-Sub Jung
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
20
|
Mathews JA, Kasahara DI, Cho Y, Bell LN, Gunst PR, Karoly ED, Shore SA. Effect of acute ozone exposure on the lung metabolomes of obese and lean mice. PLoS One 2017; 12:e0181017. [PMID: 28704544 PMCID: PMC5509247 DOI: 10.1371/journal.pone.0181017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022] Open
Abstract
Pulmonary responses to the air pollutant, ozone, are increased in obesity. Both obesity and ozone cause changes in systemic metabolism. Consequently, we examined the impact of ozone on the lung metabolomes of obese and lean mice. Lean wildtype and obese db/db mice were exposed to acute ozone (2 ppm for 3 h) or air. 24 hours later, the lungs were excised, flushed with PBS to remove blood and analyzed via liquid-chromatography or gas-chromatography coupled to mass spectrometry for metabolites. Both obesity and ozone caused changes in the lung metabolome. Of 321 compounds identified, 101 were significantly impacted by obesity in air-exposed mice. These included biochemicals related to carbohydrate and lipid metabolism, which were each increased in lungs of obese versus lean mice. These metabolite changes may be of functional importance given the signaling capacity of these moieties. Ozone differentially affected the lung metabolome in obese versus lean mice. For example, almost all phosphocholine-containing lysolipids were significantly reduced in lean mice, but this effect was attenuated in obese mice. Glutathione metabolism was also differentially affected by ozone in obese and lean mice. Finally, the lung metabolome indicated a role for the microbiome in the effects of both obesity and ozone: all measured bacterial/mammalian co-metabolites were significantly affected by obesity and/or ozone. Thus, metabolic derangements in obesity appear to impact the response to ozone.
Collapse
Affiliation(s)
- Joel Andrew Mathews
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - David Itiro Kasahara
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Youngji Cho
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lauren Nicole Bell
- Metabolon Incorporated, Research Triangle Park, North Carolina, United States of America
| | - Philip Ross Gunst
- Metabolon Incorporated, Research Triangle Park, North Carolina, United States of America
| | - Edward D. Karoly
- Metabolon Incorporated, Research Triangle Park, North Carolina, United States of America
| | - Stephanie Ann Shore
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|