1
|
Kyun ML, Park T, Jung H, Kim I, Kwon JI, Jeong SY, Choi M, Park D, Lee YB, Moon KS. Development of an In Vitro Model for Inflammation Mediated Renal Toxicity Using 3D Renal Tubules and Co-Cultured Human Immune Cells. Tissue Eng Regen Med 2023; 20:1173-1190. [PMID: 37843784 PMCID: PMC10645777 DOI: 10.1007/s13770-023-00602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND The emergence of various infectious diseases and the toxic effects of hyperinflammation by biotherapeutics have highlighted the need for in vitro preclinical models mimicking the human immune system. In vitro models studying the relationship between hyperinflammation and acute renal injury mainly rely on 2D culture systems, which have shown limitations in recapitulating kidney function. Herein, we developed an in vitro kidney toxicity model by co-culturing 3D engineered kidney proximal tubules cells (RPTEC/TERT1) with human peripheral blood mononuclear cells (PBMC). METHODS RPTEC/TERT1 were sandwich cultured to form 3D renal tubules for 16 days. The tubules were then co-cultured with PBMC using transwell (0.4 μm pores) for 24 h. Hyperinflammation of PBMC was induced during co-culture using polyinosinic-polycytidylic acid (polyI:C) and lipopolysaccharide (LPS) to investigate the effects of the induced hyperinflammation on the renal tubules. RESULTS Encapsulated RPTEC/TERT1 cells in Matrigel exhibited elevated renal function markers compared to 2D culture. The coexistence of PBMC and polyI:C induced a strong inflammatory response in the kidney cells. This hyperinflammation significantly reduced primary cilia formation and upregulated kidney injury markers along the 3D tubules. Similarly, treating co-cultured PBMC with LPS to induce hyperinflammation resulted in comparable inflammatory responses and potential kidney injury. CONCLUSION The model demonstrated similar changes in kidney injury markers following polyI:C and LPS treatment, indicating its suitability for detecting immune-associated kidney damage resulting from infections and biopharmaceutical applications.
Collapse
Affiliation(s)
- Mi-Lang Kyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyewon Jung
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Inhye Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ji-In Kwon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seo Yule Jeong
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Myeongjin Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
2
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Immunomodulatory effects of fish peptides on cardiometabolic syndrome associated risk factors: A review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2014861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
3
|
Antipseudomonal and Immunomodulatory Properties of Esc Peptides: Promising Features for Treatment of Chronic Infectious Diseases and Inflammation. Int J Mol Sci 2021; 22:ijms22020557. [PMID: 33429882 PMCID: PMC7826692 DOI: 10.3390/ijms22020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/04/2022] Open
Abstract
Persistent infections, such as those provoked by the Gram-negative bacterium Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients, can induce inflammation with lung tissue damage and progressive alteration of respiratory function. Therefore, compounds having both antimicrobial and immunomodulatory activities are certainly of great advantage in fighting infectious diseases and chronic inflammation. We recently demonstrated the potent antipseudomonal efficacy of the antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c, namely Esc peptides. Here, we confirmed this antimicrobial activity by reporting on the peptides’ ability to kill P. aeruginosa once internalized into alveolar epithelial cells. Furthermore, by means of enzyme-linked immunosorbent assay and Western blot analyses, we investigated the peptides’ ability to detoxify the bacterial lipopolysaccharide (LPS) by studying their effects on the secretion of the pro-inflammatory cytokine IL-6 as well as on the expression of cyclooxygenase-2 from macrophages activated by P. aeruginosa LPS. In addition, by a modified scratch assay we showed that both AMPs are able to stimulate the closure of a gap produced in alveolar epithelial cells when cell migration is inhibited by concentrations of Pseudomonas LPS that mimic lung infection conditions, suggesting a peptide-induced airway wound repair. Overall, these results have highlighted the two Esc peptides as valuable candidates for the development of new multifunctional therapeutics for treatment of chronic infectious disease and inflammation, as found in CF patients.
Collapse
|
4
|
Brunetti J, Carnicelli V, Ponzi A, Di Giulio A, Lizzi AR, Cristiano L, Cresti L, Cappello G, Pollini S, Mosconi L, Rossolini GM, Bracci L, Falciani C, Pini A. Antibacterial and Anti-Inflammatory Activity of an Antimicrobial Peptide Synthesized with D Amino Acids. Antibiotics (Basel) 2020; 9:antibiotics9120840. [PMID: 33255172 PMCID: PMC7760307 DOI: 10.3390/antibiotics9120840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
The peptide SET-M33 is a molecule synthesized in tetra-branched form which is being developed as a new antibiotic against Gram-negative bacteria. Its isomeric form with D amino acids instead of the L version (SET-M33D) is also able to kill Gram-positive bacteria because of its higher resistance to bacterial proteases (Falciani et al., PLoS ONE, 2012, 7, e46259). Here we report the strong in vitro activity of SET-M33D (MIC range 0.7-6.0 µM) against multiresistant pathogens of clinical interest, including Gram-positives Staphylococcus aureus, Staphylococcus saprophyticus, and Enterococcus faecalis, and various Gram-negative enterobacteriaceae. SET-M33D antibacterial activity is also confirmed in vivo against a MRSA strain of S. aureus with doses perfectly compatible with clinical use (5 and 2.5 mg/Kg). Moreover, SET-M33D strongly neutralized lipopolysaccharide (LPS) and lipoteichoic acid (LTA), thus exerting a strong anti-inflammatory effect, reducing expression of cytokines, enzymes, and transcription factors (TNF-α, IL6, COX-2, KC, MIP-1, IP10, iNOS, NF-κB) involved in the onset and evolution of the inflammatory process. These results, along with in vitro and in vivo toxicity data and the low frequency of resistance selection reported here, make SET-M33D a strong candidate for the development of a new broad spectrum antibiotic.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
- Correspondence:
| | - Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Alessia Ponzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Antonio Di Giulio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Laura Cresti
- SetLance srl, Toscana Life Sciences, 53100 Siena, Italy;
| | - Giovanni Cappello
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (L.M.); (G.M.R.)
- Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Lara Mosconi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (L.M.); (G.M.R.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (L.M.); (G.M.R.)
- Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
- Laboratory of Clinical Pathology, Santa Maria alle Scotte Hospital, 53100 Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
- Laboratory of Clinical Pathology, Santa Maria alle Scotte Hospital, 53100 Siena, Italy
| |
Collapse
|
5
|
Ye J, Chen D, Ye Z, Huang Y, Zhang N, Lui EMK, Xue C, Xiao M. Fucoidan Isolated from Saccharina japonica Inhibits LPS-Induced Inflammation in Macrophages via Blocking NF-κB, MAPK and JAK-STAT Pathways. Mar Drugs 2020; 18:E328. [PMID: 32599714 PMCID: PMC7345355 DOI: 10.3390/md18060328] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fucoidan has been reported to have a variety of biological activities. However, different algae species, extraction methods, harvesting seasons, and growth regions lead to the structural variation of fucoidan, which would affect the bioactivities of fucoidan. To date, the anti-inflammatory properties and the underlying mechanism of fucoidan from brown alga Saccharina japonica (S. japonica) remain limited. The aims of the present study were to investigate the structure, the anti-inflammatory properties, and the potential molecular mechanisms of fucoidan isolated from S. japonica (SF6) against lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. SF6 was characterized using high performance liquid gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR), and observed to be rich in fucose, galactose, and sulfate. Additionally, results showed that SF6 remarkably inhibited LPS-induced production of various inflammatory mediators and pro-inflammation cytokines, including nitric oxide (NO), NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-β (IL-β), and interleukin-6 (IL-6). A mechanism study showed that SF6 could effectively inhibit inflammatory responses through blocking LPS-induced inflammation pathways, including nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and Janus kinase (JAK)-2 and signal transducer and activator of transcription (STAT)-1/3 pathways. These results suggested that SF6 has the potential to be developed as an anti-inflammatory agent applied in functional food.
Collapse
Affiliation(s)
- Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (D.C.); (Z.Y.); (Y.H.); (N.Z.); (M.X.)
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Donghui Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (D.C.); (Z.Y.); (Y.H.); (N.Z.); (M.X.)
| | - Zhicheng Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (D.C.); (Z.Y.); (Y.H.); (N.Z.); (M.X.)
| | - Yayan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (D.C.); (Z.Y.); (Y.H.); (N.Z.); (M.X.)
| | - Na Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (D.C.); (Z.Y.); (Y.H.); (N.Z.); (M.X.)
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Edmund M. K. Lui
- Physiology and Pharmacology, Western University, London, ON N6A 5B9, Canada;
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (D.C.); (Z.Y.); (Y.H.); (N.Z.); (M.X.)
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| |
Collapse
|
6
|
Ye J, Ye C, Huang Y, Zhang N, Zhang X, Xiao M. Ginkgo biloba sarcotesta polysaccharide inhibits inflammatory responses through suppressing both NF-κB and MAPK signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2329-2339. [PMID: 30338529 DOI: 10.1002/jsfa.9431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Polysaccharides, common components of natural products extensively studied as dietary supplements and functional foods, have been found to have various activities. In the present study, a water-soluble polysaccharide, namely GBSP3a, was isolated and purified from G. biloba sarcotesta. The anti-inflammatory activity of GBSP3a in lipopolysaccharide (LPS)-induced RAW264.7 macrophages and the potential underlying molecular mechanisms were then assessed. RESULTS GBSP3a exerted its anti-inflammatory effect by remarkably inhibiting the secretion of pro-inflammatory mediators and cytokines, including nitric oxide (NO), prostaglandin E2 (PGE2 ), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in LPS-stimulated RAW264.7 macrophages. Excessive mRNA and protein expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were dose-dependently inhibited by GBSP3a in LPS-stimulated RAW264.7 cells. Further research suggested that the anti-inflammatory effect of GBSP3a can be attributed to the modulation of the NF-κB and MAPK signaling pathways. CONCLUSION GBSP3a exhibits anti-inflammatory activity and exerts its anti-inflammatory effect probably through suppressing both NF-κB and MAPK signaling pathway, indicating that GBSP3a could be used for the development of anti-inflammatory agent or nutraceuticals. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Ye
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| | - Changqing Ye
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Yayan Huang
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Na Zhang
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| | - Xueqin Zhang
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| | - Meitian Xiao
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
- Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, China
| |
Collapse
|