1
|
Yang Z, Xia H, Lai J, Qiu L, Lin J. Artesunate alleviates sepsis-induced liver injury by regulating macrophage polarization via the lncRNA MALAT1/PTBP1/IFIH1 axis. Diagn Microbiol Infect Dis 2024; 110:116383. [PMID: 38889486 DOI: 10.1016/j.diagmicrobio.2024.116383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The present study aimed to explore the regulatory effects of artesunate on macrophage polarization in sepsis. METHODS Cell models and mice models were established using lipopolysaccharide (LPS), followed by treatment with various concentrations of artesunate. The phenotype of the macrophages was determined by flow cytometry. RNA immunoprecipitation was used to confirm the binding between MALAT1 and polypyrimidine tract-binding protein 1 (PTBP1), as well as between PTBP1 and interferon-induced helicase C domain-containing protein 1 (IFIH1). RESULTS Treatment with artesunate inhibited M1 macrophage polarization in Kupffer cells subjected to LPS stimulation by downregulating MALAT1. Furthermore, MALAT1 abolished the inhibitory effect of artesunate on M1 macrophage polarization by recruiting PTBP1 to promote IFIH. In vivo experiments confirmed that artesunate alleviated septic liver injury by affecting macrophage polarization via MALAT1. CONCLUSION The present study showed that artesunate alleviates LPS-induced sepsis in Kupffer cells by regulating macrophage polarization via the lncRNA MALAT1/PTBP1/IFIH1 axis.
Collapse
Affiliation(s)
- Zhaobin Yang
- Department of Medical Intensive Care Unit, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou City, Fujian Province, China
| | - Hao Xia
- Department of Medical Intensive Care Unit, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou City, Fujian Province, China
| | - Jiawei Lai
- Department of Medical Intensive Care Unit, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou City, Fujian Province, China
| | - Luzhen Qiu
- Department of Medical Intensive Care Unit, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou City, Fujian Province, China.
| | - Jiandong Lin
- Department of Intensive Care Unit, The First Affiliated Hospital of Fujian Medical University, Fuzhou City, Fujian Province, China.
| |
Collapse
|
2
|
Zhu M, Wang Y, Han J, Sun Y, Wang S, Yang B, Wang Q, Kuang H. Artesunate Exerts Organ- and Tissue-Protective Effects by Regulating Oxidative Stress, Inflammation, Autophagy, Apoptosis, and Fibrosis: A Review of Evidence and Mechanisms. Antioxidants (Basel) 2024; 13:686. [PMID: 38929125 PMCID: PMC11200509 DOI: 10.3390/antiox13060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The human body comprises numerous organs and tissues operating in synchrony, it facilitates metabolism, circulation, and overall organismal function. Consequently, the well-being of our organs and tissues significantly influences our overall health. In recent years, research on the protective effects of artesunate (AS) on various organ functions, including the heart, liver, brain, lungs, kidneys, gastrointestinal tract, bones, and others has witnessed significant advancements. Findings from in vivo and in vitro studies suggest that AS may emerge as a newfound guardian against organ damage. Its protective mechanisms primarily entail the inhibition of inflammatory factors and affect anti-fibrotic, anti-aging, immune-enhancing, modulation of stem cells, apoptosis, metabolic homeostasis, and autophagy properties. Moreover, AS is attracting a high level of interest because of its obvious antioxidant activities, including the activation of Nrf2 and HO-1 signaling pathways, inhibiting the release of reactive oxygen species, and interfering with the expression of genes and proteins associated with oxidative stress. This review comprehensively outlines the recent strides made by AS in alleviating organismal injuries stemming from various causes and protecting organs, aiming to serve as a reference for further in-depth research and utilization of AS.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510024, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| |
Collapse
|
3
|
Ji T, Chen M, Liu Y, Jiang H, Li N, He X. Artesunate alleviates intestinal ischemia/reperfusion induced acute lung injury via up-regulating AKT and HO-1 signal pathway in mice. Int Immunopharmacol 2023; 122:110571. [PMID: 37441813 DOI: 10.1016/j.intimp.2023.110571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Acute Lung injury (ALI) is a common complication following intestinal ischemia/reperfusion (II/R) injury that can lead to acute respiratory distress syndrome (ARDS) a fatal illness for there is no specific therapy. The semisynthetic artemisinin Artesunate (Art) extracted from Artemisia annua has been found lots of pharmaceutical effects such as anti-malaria, anti-inflammatory, and anti-apoptosis. This study aimed to investigate the effect of Artesunate on intestinal ischemia/reperfusion and the mechanism of how Artesunate works in mice. To establish the II/R model, the C57BL/c mice were subjected to occlude superior mesenteric artery (SMA) for 45 min and 120 min reperfusion, and the lung tissue was collected for examination. Severe lung injury occurred during the II/R, meanwhile Art pretreatment decreased the lung injury score, wet/dry ratio, the level of MDA, MPO, IL-1β, TNFα, CXCL1, MCP-1, the TUNEL-positive cells, Bax and Cleaved-Caspase3 protein expression obviously, and increased the activity of SOD and the expression of Bcl-2. In addition, the protein of P-AKT and HO-1 were upregulated during the Art pretreatment. Then the AKT inhibitor Triciribin and HO-1 inhibitor Tin-protoporphyrin IX were administered which reversed the protein expression of apoptosis, AKT and HO-1. Our study suggests that Art mitigated the II/R induced acute lung injury by targeting the oxidative stress, inflammatory response and apoptosis which is associated with the activating of AKT and HO-1, providing novel insights into the therapeutic candidate for the treatment of II/R induced acute lung injury.
Collapse
Affiliation(s)
- Tuo Ji
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, Hubei 430071, China; Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Meng Chen
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, Hubei 430070, China.
| | - Yinyin Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, Hubei 430071, China.
| | - Haixing Jiang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, Hubei 430071, China.
| | - Na Li
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, Hubei 430070, China.
| | - Xianghu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuhan, Hubei 430071, China.
| |
Collapse
|
4
|
Meng T, Ding J, Shen S, Xu Y, Wang P, Song X, Li Y, Li S, Xu M, Tian Z, He Q. Xuanfei Baidu decoction in the treatment of coronavirus disease 2019 (COVID-19): Efficacy and potential mechanisms. Heliyon 2023; 9:e19163. [PMID: 37809901 PMCID: PMC10558324 DOI: 10.1016/j.heliyon.2023.e19163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and become a major global public health concern. Although novel investigational COVID-19 antiviral candidates such as the Pfizer agent PAXLOVID™, molnupiravir, baricitinib, remdesivir, and favipiravir are currently used to treat patients with COVID-19, there is still a critical need for the development of additional treatments, as the recommended therapeutic options are frequently ineffective against SARS-CoV-2. The efficacy and safety of vaccines remain uncertain, particularly with the emergence of several variants. All 10 versions of the National Health Commission's diagnosis and treatment guidelines for COVID-19 recommend using traditional Chinese medicine. Xuanfei Baidu Decoction (XFBD) is one of the "three Chinese medicines and three Chinese prescriptions" recommended for COVID-19. This review summarizes the clinical evidence and potential mechanisms of action of XFBD for COVID-19 treatment. With XFBD, patients with COVID-19 experience improved clinical symptoms, shorter hospital stay, prevention of the progression of their symptoms from mild to moderate and severe symptoms, and reduced mortality in critically ill patients. The mechanisms of action may be associated with its direct antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antimicrobial properties. High-quality clinical and experimental studies are needed to further explore the clinical efficacy and underlying mechanisms of XFBD in COVID-19 treatment.
Collapse
Affiliation(s)
- Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Shujie Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100089, China
| | - Yingzhi Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Peng Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
- Department of Traditional Chinese Medicine, Beijing Jiangong Hospital, Beijing, 100032, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yixiang Li
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shangjin Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Ziyu Tian
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| |
Collapse
|
5
|
Jochims F, Strohm R, von Montfort C, Wenzel CK, Klahm N, Kondadi AK, Stahl W, Reichert AS, Brenneisen P. The Antimalarial Drug Artesunate Mediates Selective Cytotoxicity by Upregulating HO-1 in Melanoma Cells. Biomedicines 2023; 11:2393. [PMID: 37760834 PMCID: PMC10525565 DOI: 10.3390/biomedicines11092393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Despite great efforts to develop new therapeutic strategies to combat melanoma, the prognosis remains rather poor. Artesunate (ART) is an antimalarial drug displaying anti-cancer effects in vitro and in vivo. In this in vitro study, we investigated the selectivity of ART on melanoma cells. Furthermore, we aimed to further elucidate the mechanism of the drug with a focus on the role of iron, the induction of oxidative stress and the implication of the enzyme heme oxygenase 1 (HO-1). ART treatment decreased the cell viability of A375 melanoma cells while it did not affect the viability of normal human dermal fibroblasts, used as a model for normal (healthy) cells. ART's toxicity was shown to be dependent on intracellular iron and the drug induced high levels of oxidative stress as well as upregulation of HO-1. Melanoma cells deficient in HO-1 or treated with a HO-1 inhibitor were less sensitive towards ART. Taken together, our study demonstrates that ART induces oxidative stress resulting in the upregulation of HO-1 in melanoma cells, which subsequently triggers the effect of ART's own toxicity. This new finding that HO-1 is involved in ART-mediated toxicity may open up new perspectives in cancer therapy.
Collapse
Affiliation(s)
- Finn Jochims
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (R.S.); (C.-K.W.); (N.K.); (A.K.K.); (W.S.); (A.S.R.)
| | | | | | | | | | | | | | | | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (R.S.); (C.-K.W.); (N.K.); (A.K.K.); (W.S.); (A.S.R.)
| |
Collapse
|
6
|
Jia HJ, Rui Bai S, Xia J, Yue He S, Dai QL, Zhou M, Wang XB. Artesunate ameliorates irinotecan-induced intestinal injury by suppressing cellular senescence and significantly enhances anti-tumor activity. Int Immunopharmacol 2023; 119:110205. [PMID: 37104917 DOI: 10.1016/j.intimp.2023.110205] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Irinotecan (CPT-11) is a topoisomerase I inhibitor that was approved for cancer treatment in 1994. To date, this natural product derivative remains the world's leading antitumor drug. However, the clinical application of irinotecan is limited due to its side effects, the most troubling of which is intestinal toxicity. In addition, irinotecan has certain toxicity to cells and even causes cellular senescence. Committed to developing alternatives to prevent these adverse reactions, we evaluated the activity of artesunate, which has never been tested in this regard despite its biological potential. Irinotecan accelerated the process of aging in vivo and in vitro, and we found that this was mainly caused by activating mTOR signaling targets. Artesunate inhibited the activity of mTOR, thereby alleviating the aging process. Our study found that artesunate treatment improved irinotecan-induced intestinal inflammation by reducing the levels of TNF-α, IL1, and IL6; reducing inflammatory infiltration of the colonic ileum in mice; and preventing irinotecan-induced intestinal damage by reducing weight loss and improving intestinal length. In addition, in mouse xenograft tumor models, artesunate and irinotecan significantly inhibited tumor growth in mice.
Collapse
Affiliation(s)
- Hui Jie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China
| | - Shi Rui Bai
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China
| | - Jing Xia
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China
| | - Si Yue He
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China
| | - Qian-Long Dai
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China.
| | - Xiao Bo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China.
| |
Collapse
|
7
|
Zhang Y, Zhou J, Hua L, Li P, Wu J, Shang S, Deng F, Luo J, Liao M, Wang N, Pan X, Yuan Y, Zheng Y, Lu Y, Huang Y, Zheng J, Liu X, Li X, Zhou H. Vitamin D receptor (VDR) on the cell membrane of mouse macrophages participates in the formation of lipopolysaccharide tolerance: mVDR is related to the effect of artesunate to reverse LPS tolerance. Cell Commun Signal 2023; 21:124. [PMID: 37248534 DOI: 10.1186/s12964-023-01137-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/22/2023] [Indexed: 05/31/2023] Open
Abstract
It is unclear whether membrane vitamin D receptor (mVDR) exists on the macrophage membrane or whether mVDR is associated with lipopolysaccharide (LPS) tolerance. Herein, we report that interfering with caveolae and caveolae-dependent lipid rafts inhibited the formation of LPS tolerance. VDR was detected as co-localized with membrane molecular markers. VDR was detected on the cell membrane and its level was higher in LPS-tolerant cells than that in only LPS treatment cells. Anti-VDR antibodies could abolish the effect of artesunate (AS) to reverse LPS tolerance, and the wild-type peptides (H397 and H305) of VDR, but not the mutant peptide (H397D and H305A), led to the loss of AS's effect. AS decreased the mVDR level in LPS-tolerant cells. In vivo, AS significantly reduced VDR level in the lung tissue of LPS-tolerant mice. In summary, mVDR exists on the cell membrane of macrophages and is closely associated with the formation of LPS tolerance and the effects of AS. Video Abstract.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jun Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Ling Hua
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Pan Li
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Jiaqi Wu
- Medical Research Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Shenglan Shang
- Medical Research Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Fei Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jing Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Mengling Liao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Nuoyan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xichun Pan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Yue Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yue Zheng
- Medical Research Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yonglin Lu
- Medical Research Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yasi Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jiang Zheng
- Medical Research Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Xin Liu
- Medical Research Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, 400016, China.
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
8
|
Liu Z, Meng Y, Miao Y, Yu L, Yu Q. Artesunate reduces sepsis-mediated acute lung injury in a SIRT1-dependent manner. BIOIMPACTS : BI 2023; 13:219-228. [PMID: 37431481 PMCID: PMC10329753 DOI: 10.34172/bi.2023.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 07/12/2023]
Abstract
Introduction Sepsis-mediated acute lung injury (ALI) is a critical clinical condition. Artesunate (AS) is a sesquiterpene lactone endoperoxide that was discovered in Artemisia annua, which is a traditional Chinese herb. AS has a broad set of biological and pharmacological actions; however, its protective effect on lipopolysaccharide (LPS)-induced ALI remains unclear. Methods LPS-mediated ALI was induced in rats through bronchial LPS inhalation. Then NR8383 cells were treated with LPS to establish an in vitro model. Further, we administered different AS doses in vivo and in vitro. Results AS administration significantly decreased LPS-mediated pulmonary cell death and inhibited pulmonary neutrophil infiltration. Additionally, AS administration increased SIRT1 expression in pulmonary sections. Administration of a biological antagonist or shRNA-induced reduction of SIRT1 expression significantly inhibited the protective effect of AS against LPS-induced cellular injury, pulmonary dysfunction, neutrophil infiltration, and apoptosis. This demonstrates that enhanced SIRT1 expression is crucially involved in the observed protective effects. Conclusion Our findings could suggest the use of AS for treating lung disorders through a mechanism involving SIRT1 expression.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanli Meng
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yu Miao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qiannan Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
9
|
Artesunate Alleviates Hyperoxia-Induced Lung Injury in Neonatal Mice by Inhibiting NLRP3 Inflammasome Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:7603943. [PMID: 36785753 PMCID: PMC9922194 DOI: 10.1155/2023/7603943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 11/24/2022] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease in preterm infants that may cause persistent lung injury. Artesunate exhibits excellent anti-inflammatory in lung injury caused by various factors. This study aimed to investigate the effect of the artesunate on hyperoxia-induced lung injury in neonatal mice and its mechanism. A BPD model of hyperoxic lung injury in neonatal mice was established after hyperoxia (75% oxygen) exposure for 14 days, and part of the mice received intraperitoneal injections of the artesunate. H&E staining was used to observe the pathology of lung tissue, and the degree of oxidative stress in the lung tissue was determined by commercial kits. The levels of inflammatory cytokines in the serum and lung tissues of neonatal mice were detected by an enzyme-linked immunosorbent assay. Immunohistochemical experiments were performed to further evaluate the expression of IL-1β. The real-time quantitative polymerase chain reaction was used to determine the mRNA level of the NLRP3 inflammasome. The western blot assay was used to measure the levels of NLRP3 inflammasome and NF-κB pathway-related proteins. Artesunate ameliorated weight loss and lung tissue injury in neonatal mice induced by hyperoxia. The level of malondialdehyde was decreased, while the activity of superoxide dismutase and the level of glutathione increased after artesunate treatment. Artesunate reduced the level of inflammation cytokines TNF-α, IL-6, and IL-1β in the serum and lung. Moreover, artesunate inhibited the mRNA expression and protein levels of NLRP3, ASC, and caspase-1, as well as the phosphorylation of the NF-κB and IκBα. Our findings suggest that artesunate treatment can attenuate hyperoxia-induced lung injury in BPD neonatal mice by inhibiting the activation of NLRP3 inflammasome and the phosphorylation of the NF-κB pathway.
Collapse
|
10
|
Du Y, Li C, Zhang Y, Xiong W, Wang F, Wang J, Zhang Y, Deng L, Li X, Chen W, Cui W. In Situ-Activated Phospholipid-Mimic Artemisinin Prodrug via Injectable Hydrogel Nano/Microsphere for Rheumatoid Arthritis Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0003. [PMID: 39290968 PMCID: PMC11407526 DOI: 10.34133/research.0003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 09/19/2024]
Abstract
In situ-activated therapy is a decent option for localized diseases with improved efficacies and reduced side effects, which is heavily dependent on the local conversion or activation of bioinert components. In this work, we applied a phospholipid-mimic artemisinin prodrug (ARP) for preparing an injectable nano/microsphere to first realize an in situ-activated therapy of the typical systemically administrated artemisinin-based medicines for a localized rheumatoid arthritis (RA) lesion. ARP is simultaneously an alternative of phospholipids and an enzyme-independent activable prodrug, which can formulate "drug-in-drug" co-delivery liposomes with cargo of partner drugs (e.g., methotrexate). To further stabilize ARP/methotrexate "drug-in-drug" liposomes (MTX/ARPL) for a long-term intra-articular retention, a liposome-embedded hydrogel nano/microsphere (MTX/ARPL@MS) was prepared. After the local injection, the MTX/ARPL could be slowly released because of imine hydrolysis and targeted to RA synovial macrophages and fibroblasts simultaneously. ARP assembly is relatively stable before cellular internalization but disassembled ARP after lysosomal escape and converted into dihydroartemisinin rapidly to realize the effective in situ activation. Taken together, phospholipid-mimic ARP was applied for the firstly localized in situ-activated RA therapy of artemisinin-based drugs, which also provided a brand-new phospholipid-mimic strategy for other systemically administrated prodrugs to realize a remodeling therapeutic schedule for localized diseases.
Collapse
Affiliation(s)
- Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Chao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Yu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Wei Xiong
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Wei Chen
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
11
|
Tong X, Chen L, He SJ, Zuo JP. Artemisinin derivative SM934 in the treatment of autoimmune and inflammatory diseases: therapeutic effects and molecular mechanisms. Acta Pharmacol Sin 2022; 43:3055-3061. [PMID: 36050518 PMCID: PMC9712343 DOI: 10.1038/s41401-022-00978-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2022] [Indexed: 11/09/2022] Open
Abstract
Artemisinin and its derivatives are the well-known anti-malarial drugs derived from a traditional Chinese medicine. In addition to antimalarial, artemisinin and its derivatives possess distinguished anti-cancer, anti-oxidant, anti-inflammatory and anti-viral activities, but the poor solubility and low bioavailability hinder their clinical application. In the last decades a series of new water-soluble and oil-soluble derivatives were synthesized. Among them, we have found a water-soluble derivative β-aminoarteether maleate (SM934) that exhibits outstanding suppression on lymphocytes proliferation in immunosuppressive capacity and cytotoxicity screening assays with 35-fold higher potency than dihydroartemisinin. SM934 displays significant therapeutic effects on various autoimmune and inflammatory diseases, including systemic lupus erythematosus, antiphospholipid syndrome nephropathy, membranous nephropathy, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and dry eye disease. Here, we summarize the immunomodulatory effects, anti-inflammatory, anti-oxidative and anti-fibrosis activities of SM934 in disease-relevant animal models and present the probable pharmacological mechanisms involved in its therapeutic efficacy. This review also delineates a typical example of natural product-based drug discovery, which might further vitalize natural product exploration and development in pharmacotherapy.
Collapse
Affiliation(s)
- Xiao Tong
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Jun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Zhang J, Li Y, Wan J, Zhang M, Li C, Lin J. Artesunate: A review of its therapeutic insights in respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154259. [PMID: 35849970 DOI: 10.1016/j.phymed.2022.154259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Artesunate, as a semi-synthetic artemisinin derivative of sesquiterpene lactone, is widely used in clinical antimalarial treatment due to its endoperoxide group. Recent studies have found that artesunate may have multiple pharmacological effects, indicating its significant therapeutic potential in multiple respiratory diseases. PURPOSE This review aims to summarize proven and potential therapeutic effects of artesunate in common respiratory disorders. STUDY DESIGN This review summarizes the pharmacological properties of artesunate and then interprets the function of artesunate in various respiratory diseases in detail, such as bronchial asthma, chronic obstructive pulmonary disease, lung injury, lung cancer, pulmonary fibrosis, coronavirus disease 2019, etc., on different target cells and receptors according to completed and ongoing in silico, in vitro, and in vivo studies (including clinical trials). METHODS Literature was searched in electronic databases, including Pubmed, Web of Science and CNKI with the primary keywords of 'artesunate', 'pharmacology', 'pharmacokinetics', 'respiratory disorders', 'lung', 'pulmonary', and secondary search terms of 'Artemisia annua L.', 'artemisinin', 'asthma', 'chronic obstructive lung disease', 'lung injury', 'lung cancer', 'pulmonary fibrosis', 'COVID-19' and 'virus' in English and Chinese. All experiments were included. Reviews and irrelevant studies to the therapeutic effects of artesunate on respiratory diseases were excluded. Information was sort out according to study design, subject, intervention, and outcome. RESULTS Artesunate is promising to treat multiple common respiratory disorders via various mechanisms, such as anti-inflammation, anti-oxidative stress, anti-hyperresponsiveness, anti-proliferation, airway remodeling reverse, induction of cell death, cell cycle arrest, etc. CONCLUSION: Artesunate has great potential to treat various respiratory diseases.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China
| | - Yun Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China; Beijing University of Chinese Medicine, Beijing 100-029, China
| | - Jingxuan Wan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China
| | - Mengyuan Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China
| | - Chunxiao Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China; Peking University China‑Japan Friendship School of Clinical Medicine, Beijing 100-029, China
| | - Jiangtao Lin
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China.
| |
Collapse
|
13
|
The Protective Effect of Artesunate on LPS-Induced Acute Respiratory Distress Syndrome through Inhibiting NLRP3 Inflammasome Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7655033. [PMID: 36051498 PMCID: PMC9427245 DOI: 10.1155/2022/7655033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022]
Abstract
Background Artesunate (AS) is a derivative of artemisinin that can exert anti-inflammatory effects. This study aims to explore the effect of AS on lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS). Methods The newborn mice were used for experimental ARDS model establishment by intraperitoneal injection of LPS (10 mg/kg) into mice with or without AS (20 mg/kg) pretreatment. After that, the pathological morphology of mouse lung tissue was observed by H&E staining. The content of inflammatory factors in serum was measured by ELISA and mRNA expression and lung tissue was determined by qRT-PCR. The expression of NLRP3 inflammasome and related proteins in lung tissue was confirmed by immunohistochemistry and Western blot. Results AS treatment effectively alleviated the LPS-induced lung injury and pulmonary edema, and reduced the expression of IL-1β, IL-18, IL-6, IL-8, MCP-1, and TNF-α in serum and lung tissues of experimental ARDS mice. In addition, AS treatment reduced the expression of NLRP3, ASC, and caspase-1 in lung tissues of experimental ARDS mice. Conclusion AS alleviated LPS-induced lung injury in ARDS mice by inhibiting the activation of NLRP3 inflammasome.
Collapse
|
14
|
Hao DL, Wang YJ, Yang JY, Xie R, Jia LY, Cheng JT, Ma H, Tian JX, Guo SS, Liu T, Sui F, Zhao Y, Chen YJ, Zhao QH. The Alleviation of LPS-Induced Murine Acute Lung Injury by GSH-Mediated PEGylated Artesunate Prodrugs. Front Pharmacol 2022; 13:860492. [PMID: 35668945 PMCID: PMC9163345 DOI: 10.3389/fphar.2022.860492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Acute lung injury (ALI) or its aggravated stage acute respiratory distress syndrome (ARDS) is a common severe clinical syndrome in intensive care unit, may lead to a life-threatening form of respiratory failure, resulting in high mortality up to 30–40% in most studies. Nanotechnology-mediated anti-inflammatory therapy is an emerging novel strategy for the treatment of ALI, has been demonstrated with unique advantages in solving the dilemma of ALI drug therapy. Artesunate (ART), a derivative of artemisinin, has been reported to have anti-inflammatory effects. Therefore, in the present study, we designed and synthesized PEGylated ART prodrugs and assessed whether ART prodrugs could attenuate lipopolysaccharide (LPS) induced ALI in vitro and in vivo. All treatment groups were conditioned with ART prodrugs 1 h before challenge with LPS. Significant increased inflammatory cytokines production and decreased GSH levels were observed in the LPS stimulated mouse macrophage cell line RAW264.7. Lung histopathological changes, lung W/D ratio, MPO activity and total neutrophil counts were increased in the LPS-induced murine model of ALI via nasal administration. However, these results can be reversed to some extent by treatment of ART prodrugs. The effectiveness of mPEG2k-SS-ART in inhibition of ALI induced by LPS was confirmed. In conclusion, our results demonstrated that the ART prodrugs could attenuate LPS-induced ALI effectively, and mPEG2k-SS-ART may serve as a novel strategy for treatment of inflammation induced lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yu Zhao
- *Correspondence: Yu Zhao, ; Yan-Jun Chen, ; Qing-He Zhao,
| | - Yan-Jun Chen
- *Correspondence: Yu Zhao, ; Yan-Jun Chen, ; Qing-He Zhao,
| | - Qing-He Zhao
- *Correspondence: Yu Zhao, ; Yan-Jun Chen, ; Qing-He Zhao,
| |
Collapse
|
15
|
Saurin S, Meineck M, Erkel G, Opatz T, Weinmann-Menke J, Pautz A. Drug Candidates for Autoimmune Diseases. Pharmaceuticals (Basel) 2022; 15:503. [PMID: 35631330 PMCID: PMC9143092 DOI: 10.3390/ph15050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Most of the immunosuppressive drugs used in the clinic to prevent organ rejection or to treat autoimmune disorders were originally isolated from fungi or bacteria. Therefore, in addition to plants, these are valuable sources for identification of new potent drugs. Many side effects of established drugs limit their usage and make the identification of new immunosuppressants necessary. In this review, we present a comprehensive overview of natural products with potent anti-inflammatory activities that have been tested successfully in different models of chronic inflammatory autoimmune diseases. Some of these candidates already have passed first clinical trials. The anti-inflammatory potency of these natural products was often comparable to those of established drugs, and they could be used at least in addition to standard therapy to reduce their dose to minimize unwanted side effects. A frequent mode of action is the inhibition of classical inflammatory signaling pathways, such as NF-κB, in combination with downregulation of oxidative stress. A drawback for the therapeutic use of those natural products is their moderate bioavailability, which can be optimized by chemical modifications and, in addition, further safety studies are necessary. Altogether, very interesting candidate compounds exist which have the potential to serve as starting points for the development of new immunosuppressive drugs.
Collapse
Affiliation(s)
- Sabrina Saurin
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Myriam Meineck
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, Technical University, 67663 Kaiserslautern, Germany;
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany;
| | - Julia Weinmann-Menke
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
16
|
He D, Wang S, Fang G, Zhu Q, Wu J, Li J, Shi D, Lian X. LXRs/ABCA1 activation contribute to the anti-inflammatory role of phytosterols on LPS-induced acute lung injury. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
17
|
Zhu L, Wu H, Ma Z, Dong D, Yang Z, Tian J. Astaxanthin ameliorates lipopolysaccharide-induced acute lung injury via inhibition of inflammatory reactions and modulation of the SOCS3/JAK2/STAT3 signaling pathways in mice. Food Funct 2022; 13:11638-11651. [DOI: 10.1039/d2fo02182j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results showed that astaxanthin had a protective effect on LPS-induced acute lung injury in mice, and its protective mechanism was through activating the SOCS3/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Li Zhu
- The Department of Blood Transfusion, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Huihui Wu
- The Department of Blood Transfusion, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Zhenbo Ma
- Medical Imaging Center, Taian City Central Hospital, No. 29, Longtan Road, Taian 271000, China
| | - Decheng Dong
- The Department of Blood Transfusion, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Ze Yang
- The Department of Blood Transfusion, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Jing Tian
- The Department of Blood Transfusion, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| |
Collapse
|
18
|
Filho MCB, Dos Santos Haupenthal DP, Zaccaron RP, de Bem Silveira G, de Roch Casagrande L, Lupselo FS, Alves N, de Sousa Mariano S, do Bomfim FRC, de Andrade TAM, Machado-de-Ávila RA, Silveira PCL. Intra-articular treatment with hyaluronic acid associated with gold nanoparticles in a mechanical osteoarthritis model in Wistar rats. J Orthop Res 2021; 39:2546-2555. [PMID: 33580538 DOI: 10.1002/jor.25008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
This study aimed to evaluate the effects of intra-articular treatment with hyaluronic acid (HA) associated with GNPs in a mechanical model of osteoarthritis induced by median meniscectomy (MM). Fifty Wistar rats (2 months weighing between 250 and 300 g) were used, divided into five groups of 10 animals each: Sham, osteoarthritis (OA), OA + HA, OA + gold nanoparticles (GNPs), and OA + HA + GNPs. Intra-articular treatment was started 30 days after the model was induced, with a frequency of 2 weeks for 60 days. Fifteen days after the last application, the animals were euthanized with the removal of the joint tissue for biochemical and histological analysis. The model used was able to mimic osteoarthritis, characterized by the presence of high levels of proinflammatory cytokines, oxidative stress, and degeneration of joint surfaces (Grade III, according to SCORE OARSI). The isolated use of HA or GNPs provided beneficial results to the joint; however, only the group subjected to the association between HA and GNPs showed the attenuation of oxidative stress and reduced proinflammatory markers, with a simultaneous increase in levels of anti-inflammatory cytokines and growth factors. Upon histological analysis, only the OA + HA + GNPs group achieved the restoration of the thickness of the joint cartilage with reduced damage and return to the intact joint surface. The results found demonstrated that the association of GNPs with HA was able to reverse the deleterious effects caused by the model by inhibiting the progressive degeneration of joint surfaces, representing a promising treatment for osteoarthritis.
Collapse
Affiliation(s)
- Mario Cesar Búrigo Filho
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Fernando Silva Lupselo
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Naiara Alves
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Samara de Sousa Mariano
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | | | | | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
19
|
The Antimalaria Drug Artesunate Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication via Activating AMPK and Nrf2/HO-1 Signaling Pathways. J Virol 2021; 96:e0148721. [PMID: 34787456 DOI: 10.1128/jvi.01487-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome virus (PRRSV) causes significant economic losses to the pork industry worldwide. Currently, vaccine strategies provide limited protection against PRRSV transmission, and no effective drug is commercially available. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV pandemics. This study showed that artesunate (AS), one of the antimalarial drugs, potently suppressed PRRSV replication in Marc-145 cells and ex vivo primary porcine alveolar macrophages (PAMs) at micromolar concentrations. Furthermore, we demonstrated that this suppression was closely associated with AS-activated AMPK (energy homeostasis) and Nrf2/HO-1 (inflammation) signaling pathways. AS treatment promoted p-AMPK, Nrf2 and HO-1 expression, and thus inhibited PRRSV replication in Marc-145 and PAM cells in a time- and dose-dependent manner. These effects of AS were reversed when AMPK or HO-1 gene was silenced by siRNA. In addition, we demonstrated that AMPK works upstream of Nrf2/HO-1 as its activation by AS is AMPK-dependent. Adenosine phosphate analysis showed that AS activates AMPK via improving AMP/ADP:ATP ratio rather than direct interaction with AMPK. Altogether, our findings indicate that AS could be a promising novel therapeutics for controlling PRRSV and that its anti-PRRSV mechanism, which involves the functional link between energy homeostasis and inflammation suppression pathways, may provide opportunities for developing novel antiviral agents. Importance Porcine reproductive and respiratory syndrome virus (PRRSV) infections have been continuously threatened the pork industry worldwide. Vaccination strategies provide very limited protection against PRRSV infection, and no effective drug is commercially available. We show that artesunate (AS), one of the antimalarial drugs, is a potent inhibitor against PRRSV replication in Marc-145 cells and ex vivo primary porcine alveolar macrophages (PAMs). Furthermore, we demonstrate that AS inhibits PRRSV replication via activation of AMPK-dependent Nrf2/HO-1 signaling pathways, revealing a novel link between energy homeostasis (AMPK) and inflammation suppression (Nrf2/HO-1) during viral infection. Therefore, we believe that AS may be a promising novel therapeutics for controlling PRRSV, and its anti-PRRSV mechanism may provide a potential strategy to develop novel antiviral agents.
Collapse
|
20
|
Efferth T, Oesch F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med Res Rev 2021; 41:3023-3061. [PMID: 34288018 DOI: 10.1002/med.21842] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
The sesquiterpene lactone artemisinin from Artemisia annua L. is well established for malaria therapy, but its bioactivity spectrum is much broader. In this review, we give a comprehensive and timely overview of the literature regarding the immunosuppressive activity of artemisinin-type compounds toward inflammatory and autoimmune diseases. Numerous receptor-coupled signaling pathways are inhibited by artemisinins, including the receptors for interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), β3-integrin, or RANKL, toll-like receptors and growth factor receptors. Among the receptor-coupled signal transducers are extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), AKT serine/threonine kinase (AKT), mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) kinase (MEK), phospholipase C γ1 (PLCγ), and others. All these receptors and signal transduction molecules are known to contribute to the inhibition of the transcription factor nuclear factor κ B (NF-κB). Artemisinins may inhibit NF-κB by silencing these upstream pathways and/or by direct binding to NF-κB. Numerous NF-κB-regulated downstream genes are downregulated by artemisinin and its derivatives, for example, cytokines, chemokines, and immune receptors, which regulate immune cell differentiation, apoptosis genes, proliferation-regulating genes, signal transducers, and genes involved in antioxidant stress response. In addition to the prominent role of NF-κB, other transcription factors are also inhibited by artemisinins (mammalian target of rapamycin [mTOR], activating protein 1 [AP1]/FBJ murine osteosarcoma viral oncogene homologue [FOS]/JUN oncogenic transcription factor [JUN]), hypoxia-induced factor 1α (HIF-1α), nuclear factor of activated T cells c1 (NF-ATC1), Signal transducers and activators of transcription (STAT), NF E2-related factor-2 (NRF-2), retinoic-acid-receptor-related orphan nuclear receptor γ (ROR-γt), and forkhead box P-3 (FOXP-3). Many in vivo experiments in disease-relevant animal models demonstrate therapeutic efficacy of artemisinin-type drugs against rheumatic diseases (rheumatoid arthritis, osteoarthritis, lupus erythematosus, arthrosis, and gout), lung diseases (asthma, acute lung injury, and pulmonary fibrosis), neurological diseases (autoimmune encephalitis, Alzheimer's disease, and myasthenia gravis), skin diseases (dermatitis, rosacea, and psoriasis), inflammatory bowel disease, and other inflammatory and autoimmune diseases. Randomized clinical trials should be conducted in the future to translate the plethora of preclinical results into clinical practice.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Franz Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions, Ingelheim, Germany and Institute of Toxicology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
21
|
Wang Z, Yang L. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113869. [PMID: 33485973 PMCID: PMC7825841 DOI: 10.1016/j.jep.2021.113869] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), a highly pathogenic virus that has spread rapidly across the entire world. There is a critical need to develop safe and effective drugs, especially broad-spectrum antiviral and organ protection agents in order to treat and prevent this dangerous disease. It is possible that Chinese herbal medicine may play an essential role in the treatment of patients with SARS-CoV-2 infection. AIM OF THE REVIEW We aim to review the use of Chinese herbal medicine in the treatment of COVID-19 both in vitro and in clinical practice. Our goal was to provide a better understanding of the potential therapeutic effects of Chinese herbal medicine and to establish a "Chinese protocol" for the treatment of COVID-19. MATERIALS AND METHODS We systematically reviewed published research relating to traditional Chinese herbal medicines and the treatment of SARS-CoV-2 from inception to the 6th January 2021 by screening a range of digital databases (Web of Science, bioRxiv, medRxiv, China National Knowledge Infrastructure, X-MOL, Wanfang Data, Google Scholar, PubMed, Elsevier, and other resources) and public platforms relating to the management of clinical trials. We included the active ingredients of Chinese herbal medicines, monomer preparations, crude extracts, and formulas for the treatment of COVID-19. RESULTS In mainland China, a range of Chinese herbal medicines have been recognized as very promising anti-SARS-CoV-2 agents, including active ingredients (quercetagetin, osajin, tetrandrine, proscillaridin A, and dihydromyricetin), monomer preparations (xiyanping injection, matrine-sodium chloride injection, diammonium glycyrrhizinate enteric-coated capsules, and sodium aescinate injection), crude extracts (Scutellariae Radix extract and garlic essential oil), and formulas (Qingfei Paidu decoction, Lianhuaqingwen capsules, and Pudilan Xiaoyan oral liquid). All these agents have potential activity against SARS-CoV-2 and have attracted significant attention due to their activities both in vitro and in clinical practice. CONCLUSIONS As a key component of the COVID-19 treatment regimen, Chinese herbal medicines have played an irreplaceable role in the treatment of SARS-CoV-2 infection. The "Chinese protocol" has already demonstrated clear clinical importance. The use of Chinese herbal medicines that are capable of inhibiting SARS-Cov-2 infection may help to address this immediate unmet clinical need and may be attractive to other countries that are also seeking new options for effective COVID-19 treatment. Our analyses suggest that countries outside of China should also consider protocols involving Chinese herbal medicines combat this fast-spreading viral infection.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
22
|
Pan K, Lu J, Song Y. Artesunate ameliorates cigarette smoke-induced airway remodelling via PPAR-γ/TGF-β1/Smad2/3 signalling pathway. Respir Res 2021; 22:91. [PMID: 33757521 PMCID: PMC7989207 DOI: 10.1186/s12931-021-01687-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Airway remodelling is the major pathological feature of chronic obstructive pulmonary disease (COPD), and leads to poorly reversible airway obstruction. Current pharmacological interventions are ineffective in controlling airway remodelling. In the present study, we investigated the potential role of artesunate in preventing and treating airway remodelling and the underlying molecular mechanisms in vitro and in vivo. METHODS A COPD rat model was established by cigarette smoke (CS) exposure. After 12 weeks of artesunate treatment, pathological changes in the lung tissues of COPD rats were examined by ELISA and histochemical and immunohistochemical staining. A lung functional experiment was also carried out to elucidate the effects of artesunate. Human bronchial smooth muscle (HBSM) cells were used to clarify the underlying molecular mechanisms. RESULTS Artesunate treatment inhibited CS-induced airway inflammation and oxidative stress in a dose-dependent manner and significantly reduced airway remodelling by inhibiting α-smooth muscle actin (α-SMA) and cyclin D1 expression. PPAR-γ was upregulated and TGF-β1/Smad2/3 signalling was inactivated by artesunate treatment in vivo and in vitro. Furthermore, PPAR-γ knockdown by siRNA transfection abolished artesunate-mediated inhibition of HBSM cell proliferation by activiting the TGF-β1/Smad2/3 signalling pathway and downregulating the expression of α-SMA and cyclin D1 in HBSM cells. CONCLUSIONS These findings suggest that artesunate could be used to treat airway remodelling by regulating PPAR-γ/TGF-β1/Smad signalling in the context of COPD.
Collapse
Affiliation(s)
- Kunming Pan
- Department of Pharmacy, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Juanjuan Lu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital Fudan University, Shanghai, 200040, China.
| |
Collapse
|
23
|
Su X, Guo W, Yuan B, Wang D, Liu L, Wu X, Zhang Y, Kong X, Lin N. Artesunate attenuates bone erosion in rheumatoid arthritis by suppressing reactive oxygen species via activating p62/Nrf2 signaling. Biomed Pharmacother 2021; 137:111382. [PMID: 33761603 DOI: 10.1016/j.biopha.2021.111382] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulating studies have indicated that reactive oxygen species (ROS) may be implicated into the destructive pathological events of rheumatoid arthritis (RA). As an effective antioxidant, artesunate (ARS) was reported to exert antiarthritic effects. However, whether ARS attenuates the bone erosion during RA progression by regulating ROS production remains to be defined. To address this problem, the inhibitive effects of ARS on osteoclastogenesis were observed in vitro. Mechanically, ARS significantly inhibited the NFATc1 signaling accompanied by markedly suppressing ROS production, which was abnormally enhanced during the pathological process of bone erosion. In addition, ARS may function as a potent ROS scavenger and significantly elevate the expression of HO-1 and NQO1 by activating Nrf2. Moreover, p62 accumulation induced by ARS was responsible for the activation of Nrf2, while the knockdown of p62 in osteoclast precursor cells diminished the suppressive effect of ARS on ROS production during osteoclastogenesis. Consistently, we also demonstrated that ARS effectively suppressed ROS production, leading to the inhibition of arthritic bone destruction by activating antioxidant enzyme and Nrf2/p62 signaling in the knee and ankle tissues of CIA rats. Collectively, our data offer the convincing evidence that ARS may inhibit osteoclastogenesis and ameliorate arthritic bone erosion through suppressing the generation of ROS via activating the p62/Nrf2 signaling.
Collapse
Affiliation(s)
- Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wanyi Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; International Institute for Translational Research of Traditional Chinese Medicine of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bei Yuan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Dong Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
24
|
Wen L, Lv G, Zhao J, Lu S, Gong Y, Li Y, Zheng H, Chen B, Gao H, Tian C, Wang J. In vitro and in vivo Effects of Artesunate on Echinococcus granulosus Protoscoleces and Metacestodes. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4685-4694. [PMID: 33173278 PMCID: PMC7646440 DOI: 10.2147/dddt.s254166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/19/2020] [Indexed: 01/23/2023]
Abstract
Background In this study, we aim to investigate the efficiency of artesunate (AS) on Echinococcus granulosus protoscoleces and metacestodes. Methods For the in vitro assay, the eosin dye exclusion test and transmission electron microscope (TEM) were utilized to evaluate the effects of AS against protoscoleces (PSCs) from Echinococcus granulosus. In addition, mortality, ultrastructure change, reactive oxygen species (ROS) content and DNA damage were measured in order to explore the anti-echinococcosis mechanism of AS. For the in vivo assay, CE-infected mice were divided into model group, albendazole (ABZ) group (200 mg/kg), low AS (AS-L) group (50 mg/kg), moderate AS (AS-M) group (100 mg/kg), and high AS (AS-H) group (200 mg/kg). Upon 6 weeks oral administration, wet weight of cysts and the ultrastructural changes of cystic wall were utilized to evaluate the effects of AS on metacestodes. In addition, the liver biochemical parameters, tumor necrosis factor-α (TNF-α), glutathione/glutathione oxidized (GSH/GSSG) ratio in serum, and H2O2, total superoxide dismutase (T-SOD) in cyst fluid were detected. Results Both in vivo and in vitro experiments showed that AS showed anti-parasitic effects on CE. The AS could elevate the ROS level in the PSCs, which then resulted in obvious DNA damages. AS could significantly improve the liver biochemical parameters in infected mice compared with the model group (P < 0.05). Compared with the model group, AS-M and AS-H decrease the TNF-α content (P < 0.05); AS-H group significantly decrease in the serum GSH/GSSG ratio (P < 0.05). The content of H2O2 in hydatid fluid treated by AS showed significant decrease compared with the model group (P < 0.01), while the T-SOD level showed significant elevation compared with model group (P < 0.01). Conclusion In this study, we confirmed that the effects of AS on Echinococcus granulosus protoscoleces and metacestodes may be related to the DNA damages induced by oxidative stress, which provided solid information for the research and development of drugs for cystic echinococcosis.
Collapse
Affiliation(s)
- Limei Wen
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,College of Pharmacy, Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Guodong Lv
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, People's Republic of China.,Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Jun Zhao
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Shuai Lu
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Yuehong Gong
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Yafen Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Haiya Zheng
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Bei Chen
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Huijing Gao
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Chunyan Tian
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Jianhua Wang
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| |
Collapse
|
25
|
Ghoneim MES, Abdallah DM, Shebl AM, El-Abhar HS. The interrupted cross-talk of inflammatory and oxidative stress trajectories signifies the effect of artesunate against hepatic ischemia/reperfusion-induced inflammasomopathy. Toxicol Appl Pharmacol 2020; 409:115309. [PMID: 33130049 DOI: 10.1016/j.taap.2020.115309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
The antimalarial drug artesunate (Art) has proven its beneficial effects against ischemia/reperfusion (I/R) injury in diverse organs, but its potential role against hepatic I/R is still obscure. This study, hence, examined whether treatment with Art alone or in combination with rapamycin (Rapa), an mTOR inhibitor, can ameliorate hepatic I/R injury via targeting the NLRP3 inflammasome signaling pathway. Rats were divided into hepatic sham- and I/R-operated rats. The latter were either left untreated (I/R group) or treated with Art, Rapa, or their combination. On the molecular level, all treatment regimens succeeded to hinder inflammasome assembly and activation, assessed as NLRP3, ASC, cleaved caspase-1, caspase-11, N-terminal cleaved gasdermin-D (GSDMD-N), IL-1β, and IL-18. This effect was associated by the inhibition in the harmful signaling pathways HMGB1/RAGE and TLR4/MyD88/TRAF6 to inactivate the transcription factor NF-κB and the production of its pro-inflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α. Additionally, this effect entailed the inhibition of ICAM-1/MPO/ROS cascade, which in turn hampered cell demise induced by apoptosis, manifested as correction of the imbalanced Bcl2/Bax, as well as pyroptosis (LDH, cleaved caspase-1, caspase-11, GSDMD-N, IL-1β, and IL-18), and necrosis. The corrected pathways were reflected on the improved liver function (serum ALT, AST, and LDH) and microscopical hepatic architecture. Noteworthy, the effect of Art on all parameters exceeded significantly that of Rapa and even improved the effect of the latter in the combination group. In conclusion, our results suggest novel roles for Art in abating functional and structural I/R-induced hepatic abnormalities via several traversing cross-talking pathways that succeeded to abate NLRP3 inflammasome and cell death.
Collapse
Affiliation(s)
- Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt.
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562 Cairo, Egypt.
| | | | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), 11835 Cairo, Egypt
| |
Collapse
|
26
|
Krishna S, Augustin Y, Wang J, Xu C, Staines HM, Platteeuw H, Kamarulzaman A, Sall A, Kremsner P. Repurposing Antimalarials to Tackle the COVID-19 Pandemic. Trends Parasitol 2020; 37:8-11. [PMID: 33153922 PMCID: PMC7572038 DOI: 10.1016/j.pt.2020.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/11/2022]
Abstract
Artemisinin-based combination therapies (ACTs) have demonstrated in vitro inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Artemisinins have also shown anti-inflammatory effects, including inhibition of interleukin-6 (IL-6) that plays a key role in the development of severe coronavirus disease 2019 (COVID-19). There is now sufficient evidence for the effectiveness of ACTs, and in particular artesunate/pyronaridine, to support clinical studies for COVID-19 infections.
Collapse
Affiliation(s)
- Sanjeev Krishna
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection and Immunity, St George's University of London, London, UK; Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.
| | - Yolanda Augustin
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Jigang Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Chengchao Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Henry M Staines
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection and Immunity, St George's University of London, London, UK
| | | | | | - Amadou Sall
- Institut Pasteur de Dakar, 36 Avenue Pasteur, B.P. 220 Dakar, Senegal
| | - Peter Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| |
Collapse
|
27
|
Augustin Y, Staines HM, Krishna S. Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing. Pharmacol Ther 2020; 216:107706. [PMID: 33075360 PMCID: PMC7564301 DOI: 10.1016/j.pharmthera.2020.107706] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Artemisinins are a unique class of antimalarial drugs with significant potential for drug repurposing for a wide range of diseases including cancer. Cancer is a leading cause of death globally and the majority of cancer related deaths occur in Low and Middle Income Countries (LMICs) where conventional treatment options are often limited by financial cost. Drug repurposing can significantly shorten new therapeutic discovery pathways, ensuring greater accessibility and affordability globally. Artemisinins have an excellent safety and tolerability profile as well as being affordable for deployment in Low and Middle Class Income Countries at around USD1 per daily dose. Robust, well designed clinical trials of artemisinin drug repurposing are indicated for a variety of different cancers and treatment settings.
Collapse
Affiliation(s)
- Yolanda Augustin
- Institute of Infection & Immunity, St George's University of London, United Kingdom
| | - Henry M Staines
- Institute of Infection & Immunity, St George's University of London, United Kingdom
| | - Sanjeev Krishna
- Institute of Infection & Immunity, St George's University of London, United Kingdom.
| |
Collapse
|
28
|
Zhang E, Wang J, Chen Q, Wang Z, Li D, Jiang N, Ju X. Artesunate ameliorates sepsis-induced acute lung injury by activating the mTOR/AKT/PI3K axis. Gene 2020; 759:144969. [DOI: 10.1016/j.gene.2020.144969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
|
29
|
Artemisinin protects motoneurons against axotomy-induced apoptosis through activation of the PKA-Akt signaling pathway and promotes neural stem/progenitor cells differentiation into NeuN + neurons. Pharmacol Res 2020; 159:105049. [PMID: 32598944 DOI: 10.1016/j.phrs.2020.105049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 01/21/2023]
Abstract
Brachial plexus axotomy is a common peripheral nerve trauma. Artemisinin, an FDA-approved antimalarial drug, has been described to possess neuroprotective properties. However, the specific mechanisms by which artemisinin protects neurons from axotomy-induced neurotoxicity remain to be elucidated. In this study, we assessed the neuroprotective effects of artemisinin on an experimental animal model of brachial plexus injury and explored the possible mechanisms involved. Artemisinin treatment restored both athletic ability and sensation of the affected upper limb, rescued motoneurons and attenuated the inflammatory response in the ventral horn of the spinal cord. Additionally, artemisinin inhibited the molecular signals of apoptosis, activated signaling pathways related to cell survival and induced NSCPs differentiation into NeuN-positive neurons. Further validation of the involved key signaling molecules, using an in vitro model of hydrogen peroxide-induced neurotoxicity, revealed that both the inhibition of PKA signaling pathway or the silencing of Akt reversed the neuroprotective action of artemisinin on motoneurons. Our results indicate that artemisinin provides neuroprotection against axotomy and hydrogen peroxide-induced neurotoxicity, an effect that might be mediated by the PKA-Akt signaling pathway.
Collapse
|
30
|
Cheong DHJ, Tan DWS, Wong FWS, Tran T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol Res 2020; 158:104901. [PMID: 32405226 PMCID: PMC7217791 DOI: 10.1016/j.phrs.2020.104901] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Artemisinins are sesquiterpene lactones with a peroxide moiety that are isolated from the herb Artemisia annua. It has been used for centuries for the treatment of fever and chills, and has been recently approved for the treatment of malaria due to its endoperoxidase properties. Progressively, research has found that artemisinins displayed multiple pharmacological actions against inflammation, viral infections, and cell and tumour proliferation, making it effective against diseases. Moreover, it has displayed a relatively safe toxicity profile. The use of artemisinins against different respiratory diseases has been investigated in lung cancer models and inflammatory-driven respiratory disorders. These studies revealed the ability of artemisinins in attenuating proliferation, inflammation, invasion, and metastasis, and in inducing apoptosis. Artemisinins can regulate the expression of pro-inflammatory cytokines, nuclear factor-kappa B (NF-κB), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), promote cell cycle arrest, drive reactive oxygen species (ROS) production and induce Bak or Bax-dependent or independent apoptosis. In this review, we aim to provide a comprehensive update of the current knowledge of the effects of artemisinins in relation to respiratory diseases to identify gaps that need to be filled in the course of repurposing artemisinins for the treatment of respiratory diseases. In addition, we postulate whether artemisinins can also be repurposed for the treatment of COVID-19 given its anti-viral and anti-inflammatory properties.
Collapse
Affiliation(s)
- Dorothy H J Cheong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Daniel W S Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Fred W S Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Immunology Program, Life Science Institute, National University of Singapore, 117456, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, 138602, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore.
| |
Collapse
|
31
|
Dimeric artesunate phospholipid-conjugated liposomes as promising anti-inflammatory therapy for rheumatoid arthritis. Int J Pharm 2020; 579:119178. [DOI: 10.1016/j.ijpharm.2020.119178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
|
32
|
Huang XT, Liu W, Zhou Y, Hao CX, Zhou Y, Zhang CY, Sun CC, Luo ZQ, Tang SY. Dihydroartemisinin attenuates lipopolysaccharide‑induced acute lung injury in mice by suppressing NF‑κB signaling in an Nrf2‑dependent manner. Int J Mol Med 2019; 44:2213-2222. [PMID: 31661121 PMCID: PMC6844637 DOI: 10.3892/ijmm.2019.4387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Acute lung injury (ALI) is a severe health issue with significant morbidity and mortality. Artemisinin is used for the treatment of fever and malaria in clinical practice. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, plays a role in anti‑organizational fibrosis and anti‑neuronal cell death. However, whether DHA can attenuate ALI remains unclear. The current study thus examined the effects of DHA on ALI and primary macrophages. The results revealed that DHA attenuated lipopolysaccharide (LPS)‑induced pulmonary pathological damage. DHA suppressed the LPS‑induced infiltration of inflammatory cells, the elevation of myeloperoxidase activity, oxidative stress and the production of pro‑inflammatory cytokines, including interleukin (IL)‑1β, tumor necrosis factor‑α, and IL‑6. Furthermore, DHA reduced the LPS‑induced inflammatory response by suppressing the degradation of I‑κB and the nuclear translocation of nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB)/p65 in vivo and in vitro. DHA activated the nuclear factor‑erythroid 2 related factor 2 (Nrf2) pathway, which was suppressed by LPS treatment. The Nrf2 inhibitor, ML385, diminished the protective effects of DHA against LPS‑induced inflammation in macrophages. On the whole, the findings of this study demonstrate that DHA exerts therapeutic effects against LPS‑induced ALI by inhibiting the Nrf2‑mediated NF‑κB activation in macrophages. The present study also confirmed the therapeutic effects of DHA in mice with LPS‑induced ALI. Thus, these findings demonstrate that DHA exhibits anti‑inflammatory activities and may be a therapeutic candidate for the treatment of ALI.
Collapse
Affiliation(s)
- Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Cai-Xia Hao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Chen-Chen Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zi-Qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
33
|
Dos Santos Haupenthal DP, Mendes C, de Bem Silveira G, Zaccaron RP, Corrêa MEAB, Nesi RT, Pinho RA, da Silva Paula MM, Silveira PCL. Effects of treatment with gold nanoparticles in a model of acute pulmonary inflammation induced by lipopolysaccharide. J Biomed Mater Res A 2019; 108:103-115. [PMID: 31502356 DOI: 10.1002/jbm.a.36796] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The bacterial lipopolysaccharide (LPS) is a highly toxic molecule derived from the outer membrane of gram-negative bacteria. LPS endotoxin affects the lungs and is used as a model of acute pulmonary inflammation affecting the cellular morphology of the organ. Previously, gold nanoparticles (GNPs) have been shown to demonstrate anti-inflammatory and antioxidative activity in muscle and epithelial injury models. The objective of this study was to investigate the effect of the intraperitoneal treatment using GNPs on the inflammatory response and pulmonary oxidative stress induced by LPS. Wistar rats were divided into four groups (N = 10): Sham; Sham + GNPs 2.5 mg/kg; LPS; and LPS + GNPs 2.5 mg/kg. Treatment with LPS upregulated the levels of markers of cellular and hepatic damage (CK, LDH, AST, and alanine aminotransferase); however, the group treated with only GNPs exhibited no toxicity. Treatment with GNPs reversed LPS-induced changes with respect to total peritoneal leukocyte count and the pulmonary levels of pro-inflammatory cytokines (IFN-γ and IL-6). Histological analysis revealed that treatment with GNPs reversed the increase in alveolar septum thickness due to LPS-induced fibrosis. In addition, treatment with GNPs decreased production of oxidants (nitrite and DCFH), reduced oxidative damage (carbonyl and sulfhydryl), and downregulated activities of superoxide dismutase and catalase. Treatment with GNPs did not showed toxicity; however, it exhibited anti-inflammatory and antioxidative activity that reversed morphological alterations induced by LPS.
Collapse
Affiliation(s)
- Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Maria Eduarda Anastácio Borges Corrêa
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Renata Tiscoski Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
34
|
Pseudoginsenoside-F11 Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Suppressing Neutrophil Infiltration and Accelerating Neutrophil Clearance. Inflammation 2019; 42:1857-1868. [DOI: 10.1007/s10753-019-01047-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Li YN, Fan ML, Liu HQ, Ma B, Dai WL, Yu BY, Liu JH. Dihydroartemisinin derivative DC32 inhibits inflammatory response in osteoarthritic synovium through regulating Nrf2/NF-κB pathway. Int Immunopharmacol 2019; 74:105701. [PMID: 31228817 DOI: 10.1016/j.intimp.2019.105701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
Synovitis is an aseptic inflammation that leads to joint effusion, pain and swelling. As one of the main drivers of pathogenesis in osteoarthritis (OA), the presence of synovitis contributes to pain, incidence and progression of OA. In our previous study, DC32 [(9α,12α-dihydroartemisinyl) bis(2'-chlorocinnmate)], a dihydroartemisinin derivative, was found to have an antirheumatic ability via immunosuppression, but the effect of DC32 on synovitis has not been fully illuminated. In this study, we chose to evaluate the effect and mechanism of DC32 on attenuating synovial inflammation. Fibroblast-like synoviocytes (FLSs) of papain-induced OA rats were isolated and cultured. And DC32 significantly inhibited the invasion and migration of cultured OA-FLSs, as well as the transcription of IL-6, IL-1β, CXCL12 and CX3CL1 in cultured OA-FLSs measured by qPCR. DC32 remarkably inhibited the activation of ERK and NF-κB pathway, increased the expression of Nrf2 and HO-1 in cultured OA-FLSs detected by western blot. DC32 inhibited the degradation and phosphorylation of IκBα which further prevented the phosphorylation of NF-κB p65 and the effect of DC32 could be relieved by siRNA for Nrf2. In papain-induced OA mice, DC32 significantly alleviated papain-induced mechanical allodynia, knee joint swelling and infiltration of inflammatory cell in synovium. DC32 upregulated the mRNA expression of Type II collagen and aggrecan, and downregulated the mRNA expression of MMP2, MMP3, MMP13 and ADAMTS-5 in the knee joints of papain-induced OA mice measured by qPCR. The level of TNF-α in the serum and secretion of TNF-α in the knee joints were also reduced by DC32 in papain-induced OA mice. In conclusion, DC32 inhibited the inflammatory response in osteoarthritic synovium through regulating Nrf2/NF-κB pathway and attenuated OA. In this way, DC32 may be a potential agent in the treatment of OA.
Collapse
Affiliation(s)
- Ya-Nan Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng-Lin Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Han-Qing Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bin Ma
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Huang X, Zhu J, Jiang Y, Xu C, Lv Q, Yu D, Shi K, Ruan Z, Wang Y. SU5416 attenuated lipopolysaccharide-induced acute lung injury in mice by modulating properties of vascular endothelial cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1763-1772. [PMID: 31213766 PMCID: PMC6536715 DOI: 10.2147/dddt.s188858] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Background and aim: A potent and selective vascular endothelial growth factor receptor (VEGFR) inhibitor SU5416, has been developed for the treatment of solid human tumors. The binding of VEGF to VEGFR plays a crucial role in the pathophysiology of respiratory disorders. However, the impact of SU5416 on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains unclear. Thus, this study aimed to illuminate the biofunction of SU5416 in the mouse model of ALI. Methods: Wild-type (WT) and toll-like receptor 4 (TLR4)-deficient (TLR4−/-) C57BL/6 mice were used to establish LPS-induced ALI model. The primary pulmonary microvascular endothelial cell (PMVEC) was extracted for detection of endothelial barrier function. Results: LPS significantly increased the number of inflammatory cells and inflammatory cytokines in bronchoalveolar lavage fluid (BALF). In addition, LPS increased alveolar epithelial cells injury, inflammation infiltration and vascular permeability of PMVEC in WT and TLR4−/- mice. Western blotting experiment indicated VEGF/VEGFR and TLR4/NF-κB pathways were involved in the progression of LPS-stimulated ALI. Consistent with previous research, dexamethasone treatment appeared to be an effective therapeutic for mice with ALI. Moreover, treatment with SU5416 dramatically attenuated LPS-induced immune responses in mice lung tissues via inhibiting VEGF/VEGFR and TLR4/NF-κB pathways. Finally, SU5416 also decreased vascular permeability of PMVEC in vitro. Conclusion: SU5416 ameliorated alveolar epithelial cells injury and histopathological changes in mice lung via inhibiting VEGF/VEGFR and TLR4/NF-κB signaling pathways. We also confirmed that SU5416 could restrain vascular permeability in PMVEC through improving the integrity of endothelial cell. These findings suggested that SU5416 may serve as a potential agent for the treatment of patients with ALI.
Collapse
Affiliation(s)
- Xuqing Huang
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Junqi Zhu
- Department of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuyue Jiang
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Changqing Xu
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Qun Lv
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Dongwei Yu
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Kai Shi
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhaoyang Ruan
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yan Wang
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
37
|
Artemisinin and its derivatives: a potential therapeutic approach for oral lichen planus. Inflamm Res 2019; 68:297-310. [DOI: 10.1007/s00011-019-01216-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
|
38
|
Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother 2018; 109:2043-2053. [PMID: 30551460 DOI: 10.1016/j.biopha.2018.11.030] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a progression of chronic liver disease, which lacks effective therapies in the world. Attractively, more and more evidences show that natural products are safe and effective in the prevention and treatment of hepatic fibrosis. Artesunate, a water-soluble hemisuccinate derivative of artemisinin, exerts various pharmacological activities such as anti-inflammatory, anti-tumor and immunomodulating abilities. However, the effects of artesunate on hepatic fibrosis are little-known. Here our study was performed to investigate the effect of artesunate on carbon tetrachloride (CCl4)-induced mouse liver fibrosis and elucidate whether artesunate could alleviate liver fibrosis by regulating ferritinophagy- mediated ferroptosis in hepatic stellate cells (HSCs). Firstly, our results demonstrated that artesunate treatment could induce activated HSC ferroptosis in fibrotic livers. Moreover, primary HSCs isolated from different animal groups were cultured to detect biomarkers of ferroptosis including iron, lipid peroxidation, glutathione (GSH) and prostaglandin endoperoxide synthase 2 (ptgs2) levels. The results revealed that artesunate remarkably promoted ferroptosis of activated HSCs. Furthermore, consistent with the experimental results in vivo, the data in vitro still indicated that artesunate treatment markedly induced ferroptosis in activated HSCs, which mainly embodied as declined cell vitality, increased cell death rate, accumulated iron, elevated lipid peroxides and reduced antioxidant capacity. Conversely, inhibition of ferroptosis by deferoxamine (DFO) completely abolished artesunate-induced anti-fibrosis effect. Surprisingly, artesunate also evidently triggered ferritinophagy accompanied by up-regulation of LC3 (microtubule-associated protein light chain 3), Atg3, Atg5, Atg6/beclin1, Atg12 (autophagy related genes) and down-regulation of p62, FTH1 (ferritin heavy chain), NCOA4 (nuclear receptor co-activator 4) in activated HSCs. Nevertheless, depletion of ferritinophagy by specific inhibitor lysosomal lumen alkalizer-chloroquine (CQ) inhibited artesunate-induced ferroptosis and anti-fibrosis function. These results suggested that ferritinophagy-mediated HSC ferroptosis was responsible for artesunate-induced anti-fibrosis efficacy, which provided new clues for further pharmacological study of artesunate.
Collapse
|
39
|
Fan M, Li Y, Yao C, Liu X, Liu X, Liu J. Dihydroartemisinin derivative DC32 attenuates collagen-induced arthritis in mice by restoring the Treg/Th17 balance and inhibiting synovitis through down-regulation of IL-6. Int Immunopharmacol 2018; 65:233-243. [PMID: 30336338 DOI: 10.1016/j.intimp.2018.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
Imbalance of Treg/Th17 and chronic synovitis characterized by the recruitment and infiltration of inflammatory cells are the typical features of rheumatoid arthritis (RA). IL-6 promotes the differentiation and function of Th17 cells, which contributes to the imbalance of Treg/Th17 and aggravates lymphocytic infiltration in joints. DC32, a dihydroartemisinin derivative, was found to have anti-inflammatory and immunosuppressive activities in previous study. The aim of this study is to evaluate the effects and mechanisms of DC32 in immunodeficiency and inflammatory infiltration of RA. In vivo, the antirheumatic effect of DC32 was evaluated in a collagen-induced arthritis (CIA) mouse model in DBA/1 mice. The percentages of Treg and Th17 and transcription of IL-6 in the spleen were assayed. In vitro, a coculture system of ConA-activated lymphocytes and fibroblast-like synoviocytes (FLSs) from rat with adjuvant arthritis (AA) was established. The effects and mechanisms of DC32 on synovitis were investigated. It was shown that DC32 inhibited footpad swelling and lymphocytic infiltration in mice with CIA and significantly restored the Treg/Th17 balance by reducing the transcription of IL-6 in splenocytes. DC32 significantly inhibited the lymphocyte-induced invasion and migration of FLSs by decreasing the secretion of MMPs (MMP-2, MMP-3) in vitro. DC32 also reduced the transcription of chemokines (CXCL12, CX3CL1) and IL-6 in FLSs, as well as IL-6 levels in the supernatant. These results demonstrated that DC32 may attenuate RA by restoring Treg/Th17 balance and inhibiting lymphocytic infiltration through downregulation of the expression and transcription of IL-6. This study supports the potential of DC32 to down-regulate IL-6 for the treatment of RA and other related autoimmune diseases.
Collapse
Affiliation(s)
- Menglin Fan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanan Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhua Yao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiufeng Liu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuming Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jihua Liu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
40
|
Sun Z, Ma Y, Chen F, Wang S, Chen B, Shi J. Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway. Chem Biol Interact 2018; 293:11-19. [PMID: 30031708 DOI: 10.1016/j.cbi.2018.07.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Inflammatory response is important for the development and progression of diabetic nephropathy (DN). Artesunate (ART), an antimalarial drug, possesses anti-inflammatory effect and exhibits protective effect on chronic kidney diseases. However, the effect of ART on DN is unknown. The aim of the present study was to evaluate the effect and the molecular mechanism of ART on DN in an in vitro model. The rat mesangial cell line, HBZY-1, was induced by high glucose (HG; 30 mM d-glucose) in the presence or absence of ART (15 and 30 μg/ml) and incubated for 24 h. We found that HG induced the proliferation of HBZY-1 cells, while treatment with ART inhibited the cell proliferation. Treatment with ART inhibited HG-induced inflammatory cytokines production and expression of extracellular matrix (ECM). Besides, HG induced reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and inhibited the superoxide dismutase (SOD) activity of HBZY-1 cells, and the effects were attenuated by ART treatment. ART decreased HG-induced the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88), nuclear factor κB (NF-κB) p-p65, and nod-like receptor protein 3 (NLRP3). Inhibition of the TLR4/NF-κB pathway suppressed NLRP3 inflammasome in HBZY-1 cells. In conclusion, ART exhibited protective effect on HG-induced HBZY-1 cells by inhibiting the inflammatory response, oxidative stress and ECM accumulation. The TLR4/NF-κB/NLRP3 inflammasome pathway was involved in the protective effect of ART. The results suggested that ART might be a potential therapy agent for the DN treatment.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Yali Ma
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Fang Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Shiying Wang
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Baoping Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Jun Shi
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China.
| |
Collapse
|
41
|
Liu Z, Qu M, Yu L, Song P, Chang Y. Artesunate Inhibits Renal Ischemia-Reperfusion-Mediated Remote Lung Inflammation Through Attenuating ROS-Induced Activation of NLRP3 Inflammasome. Inflammation 2018; 41:1546-1556. [DOI: 10.1007/s10753-018-0801-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Yuan DS, Chen YP, Tan LL, Huang SQ, Li CQ, Wang Q, Zeng QP. Artemisinin: A Panacea Eligible for Unrestrictive Use? Front Pharmacol 2017; 8:737. [PMID: 29089893 PMCID: PMC5651041 DOI: 10.3389/fphar.2017.00737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
Although artemisinin has been used as anti-malarial drug, accumulating evidence on the extended therapeutic potential of artemisinin emerges. Apart from anti-malaria and anti-tumor, artemisinin can also exert beneficial effects on some metabolic disorders, such as obesity, diabetes, and aging-related diseases. However, whether artemisinin should be applied to treatment of the wide-spectrum diseases is debating. Here, we discuss the predisposition of a raised risk of malarial resistance to artemisinin from consideration of the multi-target and non-specific features of artemisinin.
Collapse
Affiliation(s)
- Dong-Sheng Yuan
- Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Ping Chen
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Tan
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shui-Qing Huang
- Basic Medical Science College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Qing Li
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Ping Zeng
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
43
|
Liu Z, Zhang J, Li S, Jiang J. Artesunate Inhibits Renal Ischemia Reperfusion-Stimulated Lung Inflammation in Rats by Activating HO-1 Pathway. Inflammation 2017; 41:114-121. [DOI: 10.1007/s10753-017-0669-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Yang H, Jiang C, Chen X, He K, Hu Y. Protective effects of sinomenine against LPS-induced inflammation in piglets. Microb Pathog 2017; 110:573-577. [DOI: 10.1016/j.micpath.2017.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022]
|
45
|
Effects of alliin on LPS-induced acute lung injury by activating PPARγ. Microb Pathog 2017; 110:375-379. [PMID: 28711511 DOI: 10.1016/j.micpath.2017.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 01/07/2023]
Abstract
Alliin is a garlic organosulfur compound that possesses various pharmacological properties. In the present study, the protective effects and molecular mechanism of alliin on Lipopolysaccharides (LPS)-induced acute lung injury (ALI) were analyzed. LPS-induced ALI was induced in BALB/c mice by intranasal instillation of LPS. Alliin was administered intraperitoneally to mice 1 h after LPS treatment. The results showed that alliin markedly inhibited lung myeloperoxidase (MPO) activity and wet/dry (W/D) ratio induced by LPS. Alliin also inhibited TNF-α and IL-1β in the bronchoalveolar lavage fluid (BALF) induced by LPS. Furthermore, LPS-induced lung pathological injury was attenuated by treatment of alliin. LPS-induced NF-κB activation was significantly inhibited by alliin. In addition, the expression of peroxisome proliferator-activated receptor γ (PPARγ) was up-regulated by treatment of alliin. Taken together, these results suggested that alliin protected against LPS-induced ALI by activating PPARγ, which subsequently inhibited LPS-induced NF-κB activation and inflammatory response. Alliin might be used as an anti-inflammatory agent in the treatment of ALI.
Collapse
|