1
|
Zhang X, Li X, Ma W, Liu F, Huang P, Wei L, Li L, Qian Y. Astragaloside IV restores Th17/Treg balance via inhibiting CXCR4 to improve chronic obstructive pulmonary disease. Immunopharmacol Immunotoxicol 2023; 45:682-691. [PMID: 37417915 DOI: 10.1080/08923973.2023.2228479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2022] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has a high fatality rate and poses a great threat to human health. Astragaloside IV (AS-IV) is proven to attenuate cigarette smoke (CS)-induced pulmonary inflammation, based on which this research focuses on the mechanism of AS-IV in COPD. METHODS To evaluate the effects of AS-IV, CD4+ T cells received different concentrations of AS-IV. CD4+ T cell viability, T helper 17 (Th17)/regulatory T (Treg) markers and CXCR4 expressions in CD4+ T cells or spleen/lung tissues were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, quantitative real-time polymerase chain reaction and Western blot. The proportions of Treg and Th17 cells were assessed by flow cytometry. Enzyme-linked immune sorbent assay was employed to determine cytokine contents in serum and lung tissues. RESULTS AS-IV with concentration exceeding 40 µM inhibited CD4+ T cell viability. In vitro, AS-IV suppressed the expressions of CXCR4, retinoid-related orphan receptor γt (RORγt), and interleukin (IL)-17A as well as Th17 cells but promoted the expressions of forkhead box p3 (Foxp3) and IL-10 as well as Treg cells, while CXCR4 overexpression reversed the effects of AS-IV. In vivo, AS-IV alleviated COPD, and CS-induced Th17/Treg imbalance in mice and reduced CS-induced down-regulation of IL-10 in serum and lung tissues and Foxp3 and up-regulation of IL-1β, tumor necrosis factor alpha (TNF-α), IL-6, and IL-17A in serum and lung tissues and RORγt. AS-IV mitigated CS-induced CXCR4 up-regulation. Above effects of AS-IV on mice were offset by CXCR4 overexpression. CONCLUSIONS AS-IV restores Th17/Treg balance via impeding CXCR4 to ameliorate COPD.
Collapse
Affiliation(s)
- Xiulian Zhang
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueliang Li
- Department of Internal Medicine of Traditional Chinese Medicine, Baoshan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Ma
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangying Liu
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pinxian Huang
- School of Basic Medical, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wei
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yechang Qian
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Li L, Guan J, Lin R, Wang F, Ma H, Mao C, Guo X, Qu Z, Guan R. Astragaloside IV alleviates lung inflammation in Klebsiella pneumonia rats by suppressing TGF-β1/Smad pathway. Braz J Med Biol Res 2023; 56:e12203. [PMID: 37493767 PMCID: PMC10361639 DOI: 10.1590/1414-431x2023e12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 07/27/2023] Open
Abstract
Astragaloside IV is a biologically active substance derived from the traditional Chinese medicine Astragalus mambranaceus Bunge, and has antioxidant, anti-inflammatory, and anti-apoptotic properties. In this study, we aimed to investigate the effects of astragaloside IV on Klebsiella pneumonia rats and the underlying mechanisms. Klebsiella pneumoniae (K. pneumoniae) rats were treated with different dosages of astragaloside IV (5, 10, and 20 mg/kg) by intragastric administration. The levels of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) were determined. Pathological changes of lung tissue were inspected by HE staining. The expression of transforming growth factor (TGF)-β1 in lung tissue was determined with immunohistochemistry, and the expression levels of TGF-β1, p-Smad2/Smad2, p-Smad3/Smad3, IκBα/p-IκBα, and p65/p-p65 in lung tissue were determined by western blot. The mechanism was further investigated with TGF-β1 inhibitor SB-431542. Astragaloside IV reduced the elevated levels of pro-inflammatory cytokines caused by K. pneumoniae and improved lung tissue damage in a dose-dependent manner. Astragaloside IV also decreased the expression of TGF-β1/Smad signaling pathway-related proteins and decreased the protein levels of inflammation-related p-IκBα and p65 in lung tissues induced by K. pneumoniae. Additionally, it was found that the effects of 20 mg/kg astragaloside IV were similar to SB-431542, which could improve pulmonary fibrosis induced by K. pneumoniae, decrease the levels of TGF-β1/Smad signaling pathway-related proteins in lung, and reduce inflammation at the same time. Astragaloside IV could alleviate the inflammation of rat pneumonia induced by K. pneumoniae through suppressing the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Lei Li
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Guan
- Department of Neurology, Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Rongjun Lin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fang Wang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Ma
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenggang Mao
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingqing Guo
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenghai Qu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Renzheng Guan
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|
4
|
Purohit M, Gupta G, Afzal O, Altamimi ASA, Alzarea SI, Kazmi I, Almalki WH, Gulati M, Kaur IP, Singh SK, Dua K. Janus kinase/signal transducers and activator of transcription (JAK/STAT) and its role in Lung inflammatory disease. Chem Biol Interact 2023; 371:110334. [PMID: 36610610 DOI: 10.1016/j.cbi.2023.110334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
A key signaling channel for the signal transduction of several crucial cytokines implicated in sepsis is the JAK/STAT system. Once cytokines attach to the proper receptors, JAK kinases linked to them are activated and can selectively phosphorylate STATs. Activated STATs subsequently go to the nucleus, where they play a key role in the transcription of the target genes. Various biological activities use the JAK/STAT pathway, including hematopoiesis, immunological modulation, cell differentiation, and apoptosis. Inflammatory lung illnesses affect people worldwide and are a serious public health concern. Numerous common respiratory conditions, such as asthma, bronchiectasis, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome, are strongly influenced by inflammation. Microorganism infections or the destruction or demise of host cells are the causes of inflammation and the factors that perpetuate it. This review discusses the main elements of severe lung inflammation and how the JAK/STAT signaling pathway is essential for lung inflammation.
Collapse
Affiliation(s)
- Manish Purohit
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
5
|
Astragaloside IV in Hypoxic Pulmonary Hypertension: an In Vivo and In Vitro Experiments. Appl Biochem Biotechnol 2022; 194:6319-6334. [PMID: 35917100 DOI: 10.1007/s12010-022-04027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 06/24/2022] [Indexed: 01/20/2023]
Abstract
The objective of study was to find the actions of astragaloside IV (ASIV) on PAH due to monocrotaline (MCT) in rats. Intraperitoneal injection of 60 mg/ kg MCT was injected to rats, come after by ASIV treatment with doses of 10 mg/kg daily once or 30 mg/kg of dose for twenty one days once daily. RVSP, serum inflammatory cytokines, RVH, and the other pathological parameters of the pulmonary arteries were evaluated. ASIV attenuated the increased pulmonary artery pressure and its structure in rat modification due to MCT. Additionally, ASIV avoided the rise in tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in the blood serum, and their expression of gene in the pleural parts, which was caused by MCT. ASIV promoted apoptotic resistance of HPASMCs and weakened the hypoxia-induced proliferation. ASIV shows over expression of caspase-3, caspase-9, p21, p27, and Bax, while ASIV downregulated Bcl-2, phospho-ERK, HIF-1α, and protein appearance in HPASMCs. These findings of the in vitro and the in vivo experiment indicate that astragaloside IV exerts protective effects against pulmonary arterial pressure, and may have action to be improved into pharmacological drug for pulmonary arterial pressure treatment.
Collapse
|
6
|
Hsieh HL, Liu SH, Chen YL, Huang CY, Wu SJ. Astragaloside IV suppresses inflammatory response via suppression of NF-κB, and MAPK signalling in human bronchial epithelial cells. Arch Physiol Biochem 2022; 128:757-766. [PMID: 32057253 DOI: 10.1080/13813455.2020.1727525] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Astragaloside IV isolated from Astragalus membranaceus (Fisch.), which was reported to have anti-tumor, anti-asthma, and suppressed cigarette smoke-induced lung inflammation in mice. OBJECTIVES This study investigated whether astragaloside IV reduced the expression of inflammatory mediators and oxidative stress in BEAS-2B cells. METHODS BEAS-2B cells treated with astragaloside IV, and then stimulated with TNF-α or TNF-α/IL-4. The levels of cytokine and chemokine were analysed with ELISA and real-time PCR. RESULTS Astragaloside IV significantly inhibited the levels of CCL5, MCP-1, IL-6 and IL-8. Astragaloside IV also reduced ICAM-1 expression for blocked THP-1 monocyte adhesion to BEAS-2B cells. Furthermore, astragaloside IV attenuated the phosphorylation of MAPK, and reduced the translocation of p65 into the nucleus. Astragaloside IV could increase the expression of HO-1 and Nrf2 for promoting the oxidant protective effect. CONCLUSION Aastragaloside IV has an anti-inflammatory and oxidative effect via regulated NF-κB, MAPK and HO-1/Nrf2 signalling pathways in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Shih-Hai Liu
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yi Huang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
7
|
Li LY, Zhang CT, Zhu FY, Zheng G, Liu YF, Liu K, Zhang CH, Zhang H. Potential Natural Small Molecular Compounds for the Treatment of Chronic Obstructive Pulmonary Disease: An Overview. Front Pharmacol 2022; 13:821941. [PMID: 35401201 PMCID: PMC8988065 DOI: 10.3389/fphar.2022.821941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the major diseases threatening human life and health. According to the report released by the World Health Organization (WHO) in 2020, COPD has become the third leading cause of death in the world, featuring a sustainable growth of incidence rate as well as population age. The purpose of this review focuses on the advancement of bioactive natural compounds, such as baicalin, quercetin, resveratrol, and curcumin, which demonstrate promising therapeutic/interventional effects on CODP in vitro and in vivo. Information emphasizing on COPD was systematically collected from several authoritative internet databases including Web of Science, PubMed, Elsevier, Wiley Online Library, and Europe PMC, with a combination of keywords containing “COPD” and “natural small molecular compounds”. The new evidence indicated that these valuable molecules featured unique functions in the treatment of COPD through various biological processes such as anti-inflammatory, anti-oxidant, anti-apoptosis, and anti-airway fibrosis. Moreover, we found that the promising effects of these natural compounds on COPD were mainly achieved through JAK3/STAT3/NF-κB and MAPK inflammatory signaling pathways, Nrf2 oxidative stress signaling pathway, and TGF-β1/Smad 2/3 fibrosis signaling pathway, which referenced to multiple targets like TNF-α, IL-6, IL-8, TIMP-1, MMP, AKT, JAK3, IKK, PI3K, HO-1, MAPK, P38, ERK, etc. Current challenges and future directions in this promising field are also discussed at the end of this review. For the convenience of the readers, this review is divided into ten parts according to the structures of potential natural small molecular compounds. We hope that this review brings a quick look and provides some inspiration for the research of COPD.
Collapse
Affiliation(s)
- Liu-Ying Li
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chuan-Tao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ya Zhu
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Gang Zheng
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Yu-Fei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chen-Hui Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| | - Hong Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| |
Collapse
|
8
|
Zhang Y, Du M, Wang J, Liu P. Astragaloside IV Relieves Atherosclerosis and Hepatic Steatosis via MAPK/NF-κB Signaling Pathway in LDLR−/− Mice. Front Pharmacol 2022; 13:828161. [PMID: 35264962 PMCID: PMC8899310 DOI: 10.3389/fphar.2022.828161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 01/22/2023] Open
Abstract
Astragaloside IV (AS-IV) is the main active compound of Astragalus membranaceus. In this study, we investigated whether AS-IV could attenuate atherosclerosis and hepatic steatosis in LDLR−/−mice and its potential mechanisms. After 12 weeks of high fat diet, the LDLR−/−mice were randomly divided into four groups. Then, the mice were administrated with 0.9% saline or AS-IV (10 mg/kg) or atorvastatin (1.3 mg/kg) for 12 weeks. Serum lipid profiles and inflammatory cytokines were detected by ELISA, hepatic TC and TG by colorimetric enzymatic kits, gene expression by RT-qPCR, plaque sizes by H&E staining, Oil Red O, liver pathology by H&E staining, collagen content by Masson, α-SMA, caspase-3 and NF-κB p65 production by immunofluorescence staining. MAPK/NF-κB pathway and inflammation related proteins were detected by Western Blot. The results showed that AS-IV decreased the levels of serum lipids, reduced plaque area and increased plaque stability in HFD-induced LDLR−/− mice. AS-IV also decreased the levels of inflammatory cytokines in the serum, aortas and liver tissue, and NF-κB p65 in aortic roots. The phosphorylation of JNK, ERK1/2, p38 and NF-κB, and inflammatory proteins (iNOS, VCAM-1and IL-6) was inhibited in AS-IV-treated group. In summary, AS-IV inhibited inflammation to attenuate atherosclerosis and hepatic steatosis via MAPK/NF-κB signaling pathway in LDLR−/− mice.
Collapse
|
9
|
Efficacy and safety of modified Bushen Yiqi formulas (MBYF) as an add-on to formoterol and budesonide in the management of COPD: study protocol for a multicentre, double-blind, placebo-controlled, parallel-group, randomized clinical trial: FB-MBYF Trial. Trials 2022; 23:143. [PMID: 35164853 PMCID: PMC8842909 DOI: 10.1186/s13063-022-06057-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Inhaled glucocorticoid corticosteroid (ICS), long-acting β2-adrenoceptor agonist (LABA), and other drugs have limited therapeutic effects on COPD with significant individual differences. Traditional Chinese medicine (TCM)-modified Bushen Yiqi formula (MBYF) demonstrates advantages in COPD management in China. This study aims to evaluate the efficacy and safety of MBYF as an add-on to budesonide/formoterol in COPD patients and confirm the related genes affecting the therapeutic effect in the treatment of COPD. Methods In this multicentre, randomised, double-blind, placebo-controlled, parallel-group study, eligible patients with COPD will randomly receive a 360-day placebo or MBYF as an adjuvant to budesonide/formoterol in a 1:1 ratio and be followed up with every 2 months. The primary outcomes will be the frequency, times, and severity of acute exacerbation of COPD (AECOPD), COPD assessment test (CAT) score, and pulmonary function tests (PFTs). The secondary outcomes will include the modified Medical Research Council (mMRC) dyspnoea scale, 6-min walking test (6MWT), BODE index, quantitative scores of syndromes classified in TCM, inflammation indices, and hypothalamic-pituitary-adrenaline (HPA) axis function. We will also test the genotype to determine the relationship between drugs and efficacy. All the data will be recorded in case report forms (CRFs) and analysed by SPSS V.20.0. Discussion A randomized clinical trial design to evaluate the efficacy and safety of MBYF in COPD is described. The results will provide evidence for the combination therapy of modern medicine and TCM medicine, and individual therapy for COPD.Trial registration. Trial registration ID: ChiCTR1900026124, Prospective registration. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06057-7.
Collapse
|
10
|
Wang J, Ke J, Wu X, Yan Y. Astragaloside prevents UV-induced keratinocyte injury by regulating TLR4/NF-κB pathway. J Cosmet Dermatol 2021; 21:1163-1170. [PMID: 33894036 DOI: 10.1111/jocd.14174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2020] [Revised: 12/31/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ultraviolet (UV) radiation is a key risk factor of environment to contribute photoaging and skin cancer through production of reactive oxygen species (ROS) and inflammatory responses. Astragaloside IV (AS-IV) is an active component from Astragalus membranaceus, and shows various pharmacological effects on inflammation, oxidative stress and apoptosis. However, whether AS-IV shows protective effect on UVB-induced injury in epidermal keratinocytes remain unknown. AIMS To explored the effects of AS-IV on UVB-induced oxidative injury and inflammatory response in human epidermal keratinocytes. METHODS HaCaT keratinocytes were exposed to UVB irradiation, followed by AS-IV incubation. The cell viability, intracellular ROS level, oxidative stress, and apoptosis were determined. The regulatory effects of AS-IV on toll-like receptor 4 (TLR4) pathway in UVB-exposed HaCaT cells were also investigated. RESULTS Astragaloside IV pretreatment (10, 25, 50, 100 and 150 μM) increased cell viability in UVB-exposed HaCaT cells. AS-IV (50 μM) significantly reduced intracellular ROS level and lipid oxidation product malondialdehyde(MDA) content, and increased a ROS-scavenging enzyme superoxide dismutase (SOD) in HaCaT cells with UVB irradiation. In addition, AS-IV pretreatment suppressed apoptosis, increased Bax protein, caspase-3 and 9, and decreased BCL-2 protein in contrast to HaCaT cells with UVB-irradiation. AS-IV suppressed proinflammatory cytokine production, inhibited TLR4 and its downstream signaling molecules NF-κB, iNOS and cyclooxygenase-2 (COX-2) protein expression. We also found that the effects of AS-IV on cell viability and TLR4 expression was reversed by NAC. The protective of AS-IV on UVB-induced damage and TLR4 expression was dependent on ROS, as the increase in viability and decrease in TLR4 protein by AS-IV was significantly attenuated by ROS scavenger NAC (1 mM). CONCLUSION Astragaloside IV prevent UVB-induced oxidative damage and inflammation by inhibiting TLR4 expression.
Collapse
Affiliation(s)
- Jie Wang
- Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jin Ke
- Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xing Wu
- Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yuehua Yan
- Department of Dermatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
11
|
Wu Y, Xiao W, Pei C, Wang M, Wang X, Huang D, Wang F, Wang Z. Astragaloside IV alleviates PM2.5-induced lung injury in rats by modulating TLR4/MyD88/NF-κB signalling pathway. Int Immunopharmacol 2021; 91:107290. [PMID: 33383446 DOI: 10.1016/j.intimp.2020.107290] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Astragaloside IV (AS IV) is antioxidant and anti-inflammatory product, which is extracted from the Chinese herb Astragalus membranaceus. It is widely used in a variety of inflammatory diseases. The research was to explored the protective effects of AS IV against lung injury induced by particulate matter 2.5 (PM2.5) in vivo. SUBJECTS AND METHODS Thirty-five male Sprague-Dawley rats were randomly divided into five groups (n=7 per group). (1) Normal saline group (NS), (2) AS IV group (AS) (100 mg/kg), (3) PM2.5 group (PM2.5), (4) PM2.5 + AS IV group (ASL) (50 mg/kg), and (5) PM2.5 + AS IVgroup (ASH) (100 mg/kg). Rats were pre-treated with AS IV intraperitoneally (50 and 100 mg/kg/day) for three days. Then, PM2.5 (7.5 mg/kg) was given by intratracheal instillation to induce lung injury. Six hours after PM2.5 stimulation, the rats were euthanized. Bronchoalveolar lavage fluid (BALF) was collected for assay of cytokines. Lung tissue was collected for oxidative stress, histology, immunohistochemistry, transmission electron microscope, and western blot analyses. RESULTS AS IV alleviated PM2.5-induced lung injury by decreasing lung dry-wet ratio, reducing the level of interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), and C-reactive protein (CRP) in BALF, and reduced oxidative stress response in lung tissue. Western blot results revealed that AS-IV regulated the expression of TLR4/MyD88/NF-κB pathway proteins in lung tissues. CONCLUSION AS IV mitigated PM2.5 induced lung injury by regulating the activity of TLR4/MyD88/NF-κB signalling pathway, reducing inflammatory and oxidative stress responses.
Collapse
Affiliation(s)
- Yongcan Wu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China
| | - Wei Xiao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China
| | - Caixia Pei
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China
| | - Mingjie Wang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China
| | - Xiaomin Wang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China
| | - Demei Huang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China
| | - Fei Wang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China
| | - Zhenxing Wang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
12
|
Jin H, Jiao Y, Guo L, Ma Y, Zhao R, Li X, Shen L, Zhou Z, Kim SC, Liu J. Astragaloside IV blocks monocrotaline‑induced pulmonary arterial hypertension by improving inflammation and pulmonary artery remodeling. Int J Mol Med 2020; 47:595-606. [PMID: 33416126 PMCID: PMC7797426 DOI: 10.3892/ijmm.2020.4813] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with increased inflammation and abnormal vascular remodeling. Astragaloside IV (ASIV), a purified small molecular saponin contained in the well-know herb, Astragalus membranaceus, is known to exert anti-inflammatory and anti-proliferation effects. Thus, the present study investigated the possible therapeutic effects of ASIV on monocrotaline (MCT)-induced PAH. Rats were administered a single intraperitoneal injection of MCT (60 mg/kg), followed by treatment with ASIV at doses of 10 and 30 mg/kg once daily for 21 days. Subsequently, right ventricle systolic pressure, right ventricular hypertrophy and serum inflammatory cytokines, as well as pathological changes of the pulmonary arteries, were examined. The effects of ASIV on the hypoxia-induced proliferation and apoptotic resistance of human pulmonary artery smooth muscle cells (HPASMCs) and the dysfunction of human pulmonary artery endothelial cells (HPAECs) were evaluated. MCT elevated pulmonary artery pressure and promoted pulmonary artery structural remodeling and right ventricular hypertrophy in the rats, which were all attenuated by both doses of ASIV used. Additionally, ASIV prevented the increase in the TNF-α and IL-1β concentrations in serum, as well as their gene expression in lung tissues induced by MCT. In in vitro experiments, ASIV attenuated the hypoxia-induced proliferation and apoptotic resistance of HPASMCs. In addition, ASIV upregulated the protein expression of p27, p21, Bax, caspase-9 and caspase-3, whereas it downregulated HIF-1α, phospho-ERK and Bcl-2 protein expression in HPASMCs. Furthermore, in HPAECs, ASIV normalized the increased release of inflammatory cytokines and the increased protein levels of HIF-1α and VEGF induced by hypoxia. On the whole, these results indicate that ASIV attenuates MCT-induced PAH by improving inflammation, pulmonary artery endothelial cell dysfunction, pulmonary artery smooth muscle cell proliferation and resistance to apoptosis.
Collapse
Affiliation(s)
- Haifeng Jin
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yu Jiao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Linna Guo
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yong Ma
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Rongjie Zhao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xuemei Li
- Experiment and Practice Training Center, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhongguang Zhou
- Basic Discipline of Chinese and Western Integrative Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, P.R. China
| | - Sang Chan Kim
- MRC‑GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsang 38610, Republic of Korea
| | - Jicheng Liu
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
13
|
Immunomodulatory Effects of Hydrolyzed Seawater Pearl Tablet (HSPT) on Th1/Th2 Functionality in a Mice Model of Chronic Obstructive Pulmonary Disease (COPD) Induced by Cigarette Smoke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5931652. [PMID: 33281913 PMCID: PMC7688355 DOI: 10.1155/2020/5931652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/19/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is predicted to become the third leading cause of death around the world. The present study is designed to investigate whether hydrolyzed seawater pearl tablet (HSPT) has immunoregulatory effects on the Th1/Th2 functionality in cigarette smoke-induced COPD model mice. The determination of the amino acid composition of HSPT was carried out by high-performance liquid chromatography (HPLC) with precolumn phenylisothiocyanate (PITC) derivatization. COPD model mice were constructed by cigarette smoking (CS) treatment and HSPT was administered. HSPT inhibited the infiltration of inflammation in the airway of the lung, reduced influx of eosinophils (EOSs), lymphocytes (LYMs), neutrophils (NEUs), and macrophages (MACs) in the bronchoalveolar lavage fluid (BALF), decreased the levels of IFN-γ, IL-2, IL-4, and IL-10 in the serum and lung, and decreased the expression of aforementioned cytokines in the spleen and lung in CS-treated mice. Besides, HSPT also had the ability to reduce the amount of CD3+CD4+ T cells and modulate the Th1/Th2 balance. Taken together, this study supports the consensus that CS is a critical factor to induce and aggravate COPD. HSPT could regulate the balance of Th1/Th2 in CS-induced COPD model mice, indicating its effects on inhibiting the development of COPD.
Collapse
|
14
|
Mechanism of Action of Bu-Fei-Yi-Shen Formula in Treating Chronic Obstructive Pulmonary Disease Based on Network Pharmacology Analysis and Molecular Docking Validation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9105972. [PMID: 33313323 PMCID: PMC7718855 DOI: 10.1155/2020/9105972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/15/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Objective To explore the mechanism of action of Bu-Fei-Yi-Shen formula (BFYSF) in treating chronic obstructive pulmonary disease (COPD) based on network pharmacology analysis and molecular docking validation. Methods First of all, the pharmacologically active ingredients and corresponding targets in BFYSF were mined by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the analysis platform, and literature review. Subsequently, the COPD-related targets (including the pathogenic targets and known therapeutic targets) were identified through the TTD, CTD, DisGeNet, and GeneCards databases. Thereafter, Cytoscape was employed to construct the candidate component-target network of BFYSF in the treatment of COPD. Moreover, the cytoHubba plug-in was utilized to calculate the topological parameters of nodes in the network; then, the core components and core targets of BFYSF in the treatment of COPD were extracted according to the degree value (greater than or equal to the median degree values for all nodes in the network) to construct the core network. Further, the Autodock vina software was adopted for molecular docking study on the core active ingredients and core targets, so as to verify the above-mentioned network pharmacology analysis results. Finally, the Omicshare database was applied in enrichment analysis of the biological functions of core targets and the involved signaling pathways. Results In the core component-target network of BFYSF in treating COPD, there were 30 active ingredients and 37 core targets. Enrichment analysis suggested that these 37 core targets were mainly involved in the regulation of biological functions, such as response to biological and chemical stimuli, multiple cellular life processes, immunity, and metabolism. Besides, multiple pathways, including IL-17, Toll-like receptor (TLR), TNF, and HIF-1, played certain roles in the effect of BFYSF on treating COPD. Conclusion BFYSF can treat COPD through the multicomponent, multitarget, and multipathway synergistic network, which provides basic data for intensively exploring the mechanism of action of BFYSF in treating COPD.
Collapse
|
15
|
Zhang J, Wu C, Gao L, Du G, Qin X. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 87:89-112. [PMID: 32089240 DOI: 10.1016/bs.apha.2019.08.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Decoctions prepared from the roots of Astragali Radix are known as "Huangqi" and are widely used in traditional Chinese medicine for treatment of viral and bacterial infections, inflammation, as well as cancer. Astragaloside IV (AS-IV), one of the major compounds from the aqueous extract of Astragalus membranaceus, is a cycloartane-type triterpene glycoside chemical. To date, many studies in cellular and animal models have demonstrated that AS-IV possesses potent protective effects in cardiovascular, lung, kidney and brain. Based on studies over the past several decades, this review systematically summarizes the pharmacological effects, pharmacokinetics and the toxicity of AS-IV. We analyze in detail the pharmacological effects of AS-IV on neuroprotection, liver protection, anti-cancer and anti-diabetes, attributable to its antioxidant, anti-inflammatory, anti-apoptotic properties, and the roles in enhancement of immunity, attenuation of the migration and invasion of cancer cells and improvement of chemosensitivity of chemotherapy drugs. In addition, the latest developments in the combination of AS-IV and other active ingredients of traditional Chinese medicine or chemical drugs are detailed. These pharmacological effects are associated with multiple signaling pathways, including the Raf-MEK-ERK pathway, EGFR-Nrf2 signaling pathway, Akt/PDE3B signaling pathway, AMPK signaling pathway, NF-κB signaling pathway, Nrf2 antioxidant signaling pathways, PI3K/Akt/mTOR signaling pathway, PKC-α-ERK1/2-NF-κB pathway, IL-11/STAT3 signaling pathway, Akt/GSK-3β/β-catenin pathway, JNK/c-Jun/AP-1 signaling pathway, PI3K/Akt/NF-κB pathway, miRNA-34a/LDHA pathway, Nox4/Smad2 pathway, JNK pathway and NF-kB/PPARγ pathway. This review will provide an overall understanding of the pharmacological functions of astragaloside IV on neuroprotection, liver protection, anti-cancer and anti-diabetes. In light of this, AS-IV will be a potent alternative therapeutic agent for treatment of the above mentioned diseases.
Collapse
Affiliation(s)
- Jianqin Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Chuxuan Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P. R. China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
| |
Collapse
|
16
|
Xu L, Li X, Wang H, Xie F, Liu H, Xie J. Cigarette smoke triggers inflammation mediated by autophagy in BEAS-2B cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109617. [PMID: 31476449 DOI: 10.1016/j.ecoenv.2019.109617] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Cigarette smoking, as an individual consumption habit, is associated with a variety of related diseases. Exposure of cigarette smoke was reported to induce autophagy and inflammation in experimental animals and humans. However, the toxicity mechanism of cigarette smoke in organisms has not been entirely investigated. In this present study, we studied the role of autophagy played in the inflammation caused by cigarette smoke in human bronchial epithelial cells (BEAS-2B), as well as the role of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathways underlying autophagy and inflammation. We found that cigarette smoke induced autophagy and inflammation in BEAS-2B, and the blockage of autophagy significantly reduced the release levels of IL-1β, IL-6 and IL-8 in BEAS-2B exposed to cigarette smoke for 24 h. Cigarette smoke downregulated the activity of PI3K/Akt/mTOR pathway and elevated the activity of MAPK pathways. Pretreatment of autophagic inhibitor could inhibit autophagy and the activity of JNK and p38 pathways. These results suggested that cigarette smoke-induced autophagy triggered inflammation through the activation of JNK and p38 pathways, which might contribute to understanding the adverse outcome pathways induced by cigarette smoke exposure and provide the information about the risk assessment of tobacco products.
Collapse
Affiliation(s)
- Liangtao Xu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China.
| | - Huiting Wang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Huimin Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China.
| |
Collapse
|
17
|
Lee JW, Ryu HW, Lee SU, Kim MG, Kwon OK, Kim MO, Oh TK, Lee JK, Kim TY, Lee SW, Choi S, Li WY, Ahn KS, Oh SR. Pistacia weinmannifolia ameliorates cigarette smoke and lipopolysaccharide‑induced pulmonary inflammation by inhibiting interleukin‑8 production and NF‑κB activation. Int J Mol Med 2019; 44:949-959. [PMID: 31257455 PMCID: PMC6657956 DOI: 10.3892/ijmm.2019.4247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2018] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Pistacia weinmannifolia (PW) has been used in traditional Chinese medicine to treat headaches, dysentery, enteritis and influenza. However, PW has not been known for treating respiratory inflammatory diseases, including chronic obstructive pulmonary disease (COPD). The present in vitro analysis confirmed that PW root extract (PWRE) exerts anti-inflammatory effects in phorbol myristate acetate- or tumor necrosis factor α (TNF-α)-stimulated human lung epithelial NCI-H292 cells by attenuating the expression of interleukin (IL)-8, IL-6 and Mucin A5 (MUC5AC), which are closely associated with the pulmonary inflammatory response in the pathogenesis of COPD. Thus, the aim of the present study was to evaluate the protective effect of PWRE on pulmonary inflammation induced by cigarette smoke (CS) and lipopoly-saccharide (LPS). Treatment with PWRE significantly reduced the quantity of neutrophils and the levels of inflammatory molecules and toxic molecules, including tumor TNF-α, IL-6, IL-8, monocyte chemoattractant protein-1, neutrophil elastase and reactive oxygen species, in the bronchoalveolar lavage fluid of mice with CS- and LPS-induced pulmonary inflammation. PWRE also attenuated the influx of inflammatory cells in the lung tissues. Furthermore, PWRE downregulated the activation of nuclear factor-κB and the expression of phosphodiesterase 4 in the lung tissues. Therefore, these findings suggest that PWRE may be a valuable adjuvant treatment for COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Min-Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Mun Ok Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Tae Kyu Oh
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Jae Kyoung Lee
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Tae Young Kim
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Wan-Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200, P.R. China
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| |
Collapse
|