1
|
Li H, Cao W, Chen S, Chen J, Xing Y, Yang H. Comparative interleukins and chemokines analysis of mice mesenchymal stromal cells infected with Mycobacterium tuberculosis H37Rv and H37Ra. Arch Biochem Biophys 2023:109673. [PMID: 37392994 DOI: 10.1016/j.abb.2023.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/03/2023]
Abstract
Inflammatory pathways involving Mesenchymal stromal cells (MSCs) play an important role in Mycobacterium tuberculosis (Mtb) infection. H37Rv (Rv) is a standard virulent strain, however, H37Ra (Ra) is a strain with reduced virulence. Interleukins and chemokines production are known to promote inflammation resistance in mammalian cells and is recently reported to regulate mycobacterial immunopathogenesis via inflammatory responses. MSCs are very important cells during Mtb infection. However, the different expressions of interleukins and chemokines in the process of Mtb-infected MSCs between Ra and Rv remain unclear. We used the techniques of RNA-Seq, Q-RT-PCR, ELISA, and Western Blotting. We have shown that Rv infection significantly increased mRNA expressions of Mndal, Gdap10, Bmp2, and Lif, thereby increasing more differentiation of MSCs compared with Ra infection in MSCs. Further investigation into the possible mechanisms, we found that Rv infection enhanced more inflammatory response (Mmp10, Mmp3, and Ptgs2) through more activation of the TLR2-MAP3K1-JNK pathway than did Ra infection in MSCs. Further action showed that Rv infection enhanced more Il1α, Il6, Il33, Cxcl2, Ccl3, and Ackr3 production than did Ra infection. Rv infection showed more expressions of Mmp10, Mmp3, Ptgs2, Il1α, Il6, Il33, Cxcl2, Ccl3, and Ackr3 possibly through more active TLR2-MAP3K1-JNK pathway than did Ra infection in MSCs. MSCs may therefore be a new candidate for the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Heng Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wei Cao
- Institute of health, Shanghai Institute of life Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shichao Chen
- College of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jianxia Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yanchun Xing
- Department of Medicine, Anhui Huangshan Vocational and Technical College, Huangshan, Anhui, 245000, China.
| | - Hong Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; TB Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Rezaie J, Aboulhassani A, Keyhanmanesh R, Rahbarghazi R, Delkhosh A, Salimi L, Zamani AN, Rahbarghazi A, Ahmadi M, Ghiasi F. Effect of voluntary wheel running on autophagy status in lung tissue of high-fat diet-fed rats. COMPARATIVE EXERCISE PHYSIOLOGY 2023. [DOI: 10.3920/cep210022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Here, we aimed to explore the therapeutic effect of voluntary wheel running (VWR) in high-fat diet-fed rats on pulmonary tissue injury via the modulation of autophagic response. Thirty-two rats were allocated into four groups; normal diet (Control); VWR; high-fat-diet (HFD), and HFD + VWR. After three months, pathological effect of HFD on pulmonary tissue was investigated. The levels of tumour necrosis factor (TNF)-α were detected in the bronchoalveolar lavage fluid (BALF). We monitored the expression of interleukin (IL)-6 and autophagy-related genes in lung tissues. H&E staining showed pathological changes in HFD group coincided with the increase of TNF-α levels in the bronchoalveolar fluid compared to the normal rats. Our results showed the up-regulation of IL-6, becline-1, LC3 and P62 in the HFD group compared to the Control group. VWR inhibited HFD-induced changes and could decrease HFD-induced changes via the regulation of autophagy status.
Collapse
Affiliation(s)
- J. Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, 5714783734 Urmia, Iran
| | - A. Aboulhassani
- Student Research Committee, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - R. Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - R. Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - A. Delkhosh
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - L. Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - A.R. Nezhad Zamani
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - A. Rahbarghazi
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabil, 56199-11367 Ardabil, Iran
| | - M. Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - F. Ghiasi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Zhang L, Jiang F, Xie Y, Mo Y, Zhang X, Liu C. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne) 2023; 14:1073878. [PMID: 37025413 PMCID: PMC10071002 DOI: 10.3389/fendo.2023.1073878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/17/2023] [Indexed: 04/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a widespread metabolic condition with a high global morbidity and mortality rate that affects the whole body. Their primary consequences are mostly caused by the macrovascular and microvascular bed degradation brought on by metabolic, hemodynamic, and inflammatory variables. However, research in recent years has expanded the target organ in T2DM to include the lung. Inflammatory lung diseases also impose a severe financial burden on global healthcare. T2DM has long been recognized as a significant comorbidity that influences the course of various respiratory disorders and their disease progress. The pathogenesis of the glycemic metabolic problem and endothelial microangiopathy of the respiratory disorders have garnered more attention lately, indicating that the two ailments have a shared history. This review aims to outline the connection between T2DM related endothelial cell dysfunction and concomitant respiratory diseases, including Coronavirus disease 2019 (COVID-19), asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| | - Faming Jiang
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Xie
- Department of Nephrology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Mo
- Department of Neurology Medicine, The Aviation Industry Corporation of China (AVIC) 363 Hospital, Chengdu, China
| | - Xin Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| |
Collapse
|
4
|
Bayazidi MG, Rahbarghazi R, Rezabakhsh A, Rezaie J, Hassanpour M, Ahmadi M. Type 2 diabetes mellitus induced autophagic response within pulmonary tissue in the rat model. BIOIMPACTS : BI 2023; 13:43-50. [PMID: 36817001 PMCID: PMC9923816 DOI: 10.34172/bi.2022.22183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/06/2022]
Abstract
Introduction: The current experiment aimed to address the impact of type 2 diabetes mellitus on autophagy status in the rat pulmonary tissue. Methods: In this study, 20 male Wistar rats were randomly allocated into two groups as follows: control and diabetic groups. To induce type 2 diabetes mellitus, rats received a combination of streptozotocin (STZ) and a high-fat diet. After confirmation of diabetic condition, rats were maintained for 8 weeks and euthanized for further analyses. The pathological changes were assessed using H&E staining. We also measured transforming growth factor-β (TGF-β), bronchoalveolar lavage fluid (BALF), and tumor necrosis factor-α (TNF-α) in the lungs using ELISA and real-time PCR analyses, respectively. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were monitored in diabetic lungs to assess oxidative status. We also measured the expression of becline-1, LC3, and P62 to show autophagic response under diabetic conditions. Using immunofluorescence staining, protein levels of LC3 was also monitored. Results: H&E staining showed pathological changes in diabetic rats coincided with the increase of TNF-α (~1.4-fold) and TGF-β (~1.3-fold) compared to those in the normal rats (P<0.05). The levels of MDA (5.6 ± 0.4 versus 6.4 ± 0.27 nM/mg protein) were increased while SOD (4.2 ± 0.28 versus 3.8 ± 0.13 U/mL) activity decreased in the diabetic rats (P<0.05). Real-time polymerase chain reaction (PCR) analysis showed the up-regulation of Becline-1 (~1.35-fold) and LC3 (~2-fold) and down-regulation of P62 (~0.8-fold) (P<0.05), showing incomplete autophagic flux. We noted the increase of LC3+ cells in diabetic condition compared to that in the control samples. Conclusion: The prolonged diabetic condition could inhibit the normal activity of autophagy flux, thereby increasing pathological outcomes.
Collapse
Affiliation(s)
- Mohammad Ghader Bayazidi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding author: Mahdi Ahmadi,
| |
Collapse
|
5
|
Gu W, Lei J, Zhu H, Xiao Y, Zhang Z, Zhao L. Effect of the BMPR-II-SMAD3/MRTF pathway on proliferation and migration of ASMCs and the mechanism in asthma. Mol Biol Rep 2022; 49:9283-9296. [PMID: 36008606 PMCID: PMC9515032 DOI: 10.1007/s11033-022-07764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
Background A variety of smooth muscle-specific genes and proteins, including SMAD3, BMPR-II, and MRTF, are involved in airway remodeling in asthma. As a receptor of bone morphogenetic protein (BMP) signaling, BMPR-II has important roles in airway remodeling in asthma. However, the underlying mechanism of BMPR-II in airway smooth muscle cells (ASMCs) in asthma remains incomplete. Methods Wistar rats were intraperitoneally injected with ovalbumin antigen suspension and aluminium hydroxide and, stimulated with ovalbumin nebulized inhalation to constructed asthma model. Primary ASMCs were isolated with collagenase I and identified by testing the α-SMA expression. Quantitative polymerase chain reaction (qPCR) and western blot assay were employed to detect the gene expression. CCK8, Transwell and Fluo-4 A assays were introduced to measure the cell viability, migration and intracellular Ca2+. Co-Immunoprecipitation (Co-IP) assay was applied to test the interaction among proteins. Results First, we observed significant increases in BMPR-II in asthmatic rat model and ASMCs at both the mRNA and protein levels. Second, we observed that silencing of siBMPR-II inhibited proliferation, migratory capacity and intracellular Ca2+ concentration in ASMCs. Furthermore, our study demonstrated that siBMPR-II inhibited the Smad3 expression and overexpression promoted the bioactivity of ASMCs. In addition, this study showed that p-Smad3 could interacted with MRTF and siMRTF inhibits the bioactivity of ASMCs. Finally, our results revealed BMPR-II-SMAD3/MRTF pathway affected the bioactivity of ASMCs. Conclusions This study indicates that the BMPR-II-SMAD3/MRTF signaling pathway is involved in the process of ASMCs remodeling, providing novel avenues for the identification of new therapeutic modalities.
Collapse
Affiliation(s)
- Wenbo Gu
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiahui Lei
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - He Zhu
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yali Xiao
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zhenping Zhang
- People's Hospital of Zhongmu, Zhengzhou, China.,Henan Provincial People's Hospital, Zhengzhou, China
| | - Limin Zhao
- Zhengzhou University People's Hospital, Zhengzhou, China. .,Henan Provincial People's Hospital, Zhengzhou, China. .,Henan Univerity People's Hospital, Zhengzhou, China. .,Department of Respiratory Medicine, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), No. 7 Weiwu Road, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Solaiman A, Mehanna RA, Meheissen GA, Elatrebi S, Said R, Elsokkary NH. Potential effect of amniotic fluid-derived stem cells on hyperoxia-induced pulmonary alveolar injury. Stem Cell Res Ther 2022. [DOI: https://doi.org/10.1186/s13287-022-02821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
With the widespread of Coronavirus Disease 2019 pandemic, in spite of the newly emerging vaccines, mutated strains remain a great obstacle to supportive and preventive measures. Coronavirus 19 survivors continue to face great danger of contacting the disease again. As long as no specific treatment has yet to be approved, a great percentage of patients experience real complications, including among others, lung fibrosis. High oxygen inhalation especially for prolonged periods is per se destructive to the lungs. Nevertheless, oxygen remains the first line support for such patients. In the present study we aimed at investigating the role of amniotic fluid-mesenchymal stem cells in preventing versus treating the hyperoxia-induced lung fibrosis in rats.
Methods
The study was conducted on adult albino rats; 5 pregnant female rats were used as amniotic fluid donors, and 64 male rats were randomly divided into two groups: Control group; where 10 rats were kept in normal atmospheric air then sacrificed after 2 months, and hyperoxia-induced lung fibrosis group, where 54 rats were exposed to hyperoxia (100% oxygen for 6 h/day) in air-tight glass chambers for 1 month, then randomly divided into the following 5 subgroups: Hyperoxia group, cell-free media-treated group, stem cells-prophylactic group, stem cells-treated group and untreated group. Isolation, culture and proliferation of stem cells were done till passage 3. Pulmonary function tests, histological examination of lung tissue under light and electron microscopes, biochemical assessment of oxidative stress, IL-6 and Rho-A levels, and statistical analysis of data were performed. F-test (ANOVA) was used for normally distributed quantitative variables, to compare between more than two groups, and Post Hoc test (Tukey) for pairwise comparisons.
Results
Labelled amniotic fluid-mesenchymal stem cells homed to lung tissue. Stem cells administration in the stem cells-prophylactic group succeeded to maintain pulmonary functions near the normal values with no significant difference between their values and those of the control group. Moreover, histological examination of lung tissues showed that stem cells-prophylactic group were completely protected while stem cells-treated group still showed various degrees of tissue injury, namely; thickened interalveolar septa, atelectasis and interstitial pneumonia. Biochemical studies after stem cells injection also showed decreased levels of RhoA and IL-6 in the prophylactic group and to a lesser extent in the treated group, in addition to increased total antioxidant capacity and decreased malondialdehyde in the stem cells-injected groups.
Conclusions
Amniotic fluid-mesenchymal stem cells showed promising protective and therapeutic results against hyperoxia-induced lung fibrosis as evaluated physiologically, histologically and biochemically.
Collapse
|
7
|
Solaiman A, Mehanna RA, Meheissen GA, Elatrebi S, Said R, Elsokkary NH. Potential effect of amniotic fluid-derived stem cells on hyperoxia-induced pulmonary alveolar injury. Stem Cell Res Ther 2022; 13:145. [PMID: 35379329 PMCID: PMC8978174 DOI: 10.1186/s13287-022-02821-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/20/2022] [Indexed: 02/08/2023] Open
Abstract
Background With the widespread of Coronavirus Disease 2019 pandemic, in spite of the newly emerging vaccines, mutated strains remain a great obstacle to supportive and preventive measures. Coronavirus 19 survivors continue to face great danger of contacting the disease again. As long as no specific treatment has yet to be approved, a great percentage of patients experience real complications, including among others, lung fibrosis. High oxygen inhalation especially for prolonged periods is per se destructive to the lungs. Nevertheless, oxygen remains the first line support for such patients. In the present study we aimed at investigating the role of amniotic fluid-mesenchymal stem cells in preventing versus treating the hyperoxia-induced lung fibrosis in rats. Methods The study was conducted on adult albino rats; 5 pregnant female rats were used as amniotic fluid donors, and 64 male rats were randomly divided into two groups: Control group; where 10 rats were kept in normal atmospheric air then sacrificed after 2 months, and hyperoxia-induced lung fibrosis group, where 54 rats were exposed to hyperoxia (100% oxygen for 6 h/day) in air-tight glass chambers for 1 month, then randomly divided into the following 5 subgroups: Hyperoxia group, cell-free media-treated group, stem cells-prophylactic group, stem cells-treated group and untreated group. Isolation, culture and proliferation of stem cells were done till passage 3. Pulmonary function tests, histological examination of lung tissue under light and electron microscopes, biochemical assessment of oxidative stress, IL-6 and Rho-A levels, and statistical analysis of data were performed. F-test (ANOVA) was used for normally distributed quantitative variables, to compare between more than two groups, and Post Hoc test (Tukey) for pairwise comparisons. Results Labelled amniotic fluid-mesenchymal stem cells homed to lung tissue. Stem cells administration in the stem cells-prophylactic group succeeded to maintain pulmonary functions near the normal values with no significant difference between their values and those of the control group. Moreover, histological examination of lung tissues showed that stem cells-prophylactic group were completely protected while stem cells-treated group still showed various degrees of tissue injury, namely; thickened interalveolar septa, atelectasis and interstitial pneumonia. Biochemical studies after stem cells injection also showed decreased levels of RhoA and IL-6 in the prophylactic group and to a lesser extent in the treated group, in addition to increased total antioxidant capacity and decreased malondialdehyde in the stem cells-injected groups. Conclusions Amniotic fluid-mesenchymal stem cells showed promising protective and therapeutic results against hyperoxia-induced lung fibrosis as evaluated physiologically, histologically and biochemically. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02821-3.
Collapse
Affiliation(s)
- Amany Solaiman
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt.,Center of Excellence for Research in Regenerative Medicine and Its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ghada A Meheissen
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt.
| | - Soha Elatrebi
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Rasha Said
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| | - Nahed H Elsokkary
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Al. Mowassat Campus, Alexandria, 21561, Egypt
| |
Collapse
|
8
|
Rezaie J, Akbari A, Rahbarghazi R. Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis. Cell Biochem Funct 2022; 40:248-262. [PMID: 35285964 DOI: 10.1002/cbf.3695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Most eukaryotic cells secrete extracellular vesicles (EVs), which contribute to intracellular communication through transferring different biomolecules such as proteins, RNAs, and lipids to cells. Two main types of EVs are exosomes and microvesicles. Exosomes originate from multivesicular bodies, while microvesicles are shed from the plasma membrane. Mechanisms of exosomes and microvesicle biogenesis/trafficking are complex and many molecules are involved in their biogenesis and secretion. Tumor-derived EVs contain oncogenic molecules that promote tumor growth, metastasis, immune surveillance, angiogenesis, and chemoresistance. A growing body of evidence indicates various compounds can inhibit biogenesis and secretion of EVs from cells and several experiments were conducted to use EVs-inhibitors for understanding the biology of the cells or for understanding the pathology of several diseases like cancer. However, the nontargeting effects of drugs/inhibitors remain a concern. Our current knowledge of EVs biogenesis and their inhibition from tumor cells may provide an avenue for cancer management. In this review, we shed light on exosomes and microvesicles biogenesis, key roles of tumor-derived EVs, and discuss methods used to inhibition of EVs by different inhibitors.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Keyhanmanesh R, Khodamoradi F, Rahbarghazi R, Rahbarghazi A, Rezaie J, Ahmadi M, Salimi L, Delkhosh A. Intra-tracheal delivery of mesenchymal stem cell-conditioned medium ameliorates pathological changes by inhibiting apoptosis in asthmatic rats. Mol Biol Rep 2022; 49:3721-3728. [PMID: 35118570 DOI: 10.1007/s11033-022-07212-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Asthma, an inflammatory illness of the lungs, remains the most common long-term disease amongst children. This study tried to elaborate the status of apoptosis in asthmatic pulmonary niche after the application of rat mesenchymal stem cells (MSC-CM)-derived secretome. METHODS AND RESULTS Here, we randomly allocated male Wistar rats into three groups (n = 8); Control animals were intratracheally given 50 μl vehicle. In control-matched sensitized rats, 50 μl normal saline was used. In the last group, 50 μl MSC-CM was applied. Two-week post-administration, transcription of T-bet, GATA-3, Bax, Bcl-2 and Caspase-3 was measured by gene expression analysis. Pathological injuries were monitored using H&E staining. The BALF level of TNF-α was measured using ELISA assay. In asthmatic rats received MSC-CM, the expression of T-bet was increased while the level of GATA-3 decreased compared to the S group (p < 0.05). Levels of BALF TNF-α were suppressed in asthmatic niche after MSC-CM administration (p < 0.05). Compared to the asthmatic group, MSC-CM had potential to alter the expression of apoptosis-related genes in which the expression of Bax and Caspase 3 was decreased and the expression of pro-survival factor, Bcl-2 increased (p < 0.05). CONCLUSION Our data notified the potency of direct administration of MSC-CM in the alleviation of airway inflammation, presumably by down regulating apoptotic death in pulmonary niche.
Collapse
Affiliation(s)
- Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Khodamoradi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aref Delkhosh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Moradinasab S, Pourbagheri-Sigaroodi A, Zafari P, Ghaffari SH, Bashash D. Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles in COVID-19-induced ARDS: Mechanisms of action, research progress, challenges, and opportunities. Int Immunopharmacol 2021; 97:107694. [PMID: 33932694 PMCID: PMC8079337 DOI: 10.1016/j.intimp.2021.107694] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023]
Abstract
In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan city, Hubei province, China. Rapidly escalated into a worldwide pandemic, it has caused an unprecedented and devastating situation on the global public health and society economy. The severity of recent coronavirus disease, abbreviated to COVID-19, seems to be mostly associated with the patients' immune response. In this vein, mesenchymal stromal/stem cells (MSCs) have been suggested as a worth-considering option against COVID-19 as their therapeutic properties are mainly displayed in immunomodulation and anti-inflammatory effects. Indeed, administration of MSCs can attenuate cytokine storm and enhance alveolar fluid clearance, endothelial recovery, and anti-fibrotic regeneration. Despite advantages attributed to MSCs application in lung injuries, there are still several issues __foremost probability of malignant transformation and incidence of MSCs-related coagulopathy__ which should be resolved for the successful application of MSC therapy in COVID-19. In the present study, we review the historical evidence of successful use of MSCs and MSC-derived extracellular vesicles (EVs) in the treatment of acute respiratory distress syndrome (ARDS). We also take a look at MSCs mechanisms of action in the treatment of viral infections, and then through studying both the dark and bright sides of this approach, we provide a thorough discussion if MSC therapy might be a promising therapeutic approach in COVID-19 patients.
Collapse
Affiliation(s)
- Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Heidarzadeh M, Keyhanmanesh R, Rezabakhsh A, Rahbarghazi R, Rezaie J, Saberianpour S, Hasanpour M, Eslami A, Soleimanpour J, Ahmadi M. Chronic asthmatic condition modulated the onset of aging in bone marrow mesenchymal stem cells. Cell Biochem Funct 2021; 39:821-827. [PMID: 34227133 DOI: 10.1002/cbf.3655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
The emergence of an inflammatory condition such as asthma could affect the therapeutic potential of stem cells. Synopsis of previous documents yielded controversial outcomes, leading to a limitation of stem cell-based therapy in the clinical setting. This study aimed to assess the impact of asthmatic serum on the MSCs aging and dynamic growth in vitro. Rats were divided into control and asthmatic groups randomly. The asthmatic change was induced using OVA sensitization. The asthmatic structural changes are monitored by conventional Haematoxylin-Eosin staining. Thereafter, blood samples were taken and sera provided from each group. In this study, primary bone marrow mesenchymal stem cells were cultured in culture medium supplemented with normal and asthmatic serum for 7 days. The MSCs viability was examined using the MTT assay. The expression of the aging-related gene (β-galactosidase), and stemness-related markers such as Sox2, Kfl-4 and p16INK4a were analysed by real-time PCR assay. Histological examination revealed chronic inflammatory remodelling which is identical to asthmatic changes. MTT assay showed a reduction of mesenchymal stem cell viability compared to the control group (P < .05). Real-time PCR analysis revealed a down-regulation of stemness-related markers Sox2, Kfl-4 and p16INK4a coincided with aging changes (β-galactosidase) compared to the control group (P < .05). These data show the detrimental effect of asthmatic condition on bone marrow regenerative potential by accelerating early-stage aging in different stem cells and further progenitor cell depletion. SIGNIFICANCE OF THE STUDY: In such inflammatory conditions as asthma, the therapeutic potential of stem cells may be altered. We demonstrate that serum from asthmatic rats had the potential to reduce the viability of mesenchymal stem cells in vitro. Furthermore, we observed that the expression of the aging-related gene known β-galactosidase was statistically increased in cells co-cultured with asthmatic serum. At the same time, expression of stemness-related markers Sox2, Kfl-4 and p16INK4a down-regulated. These results support the damaging effect of asthmatic condition on bone marrow regenerative ability by inducing early-stage aging in stem cells and additional progenitor cell reduction.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Tuberculosis and lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Saberianpour
- Vascular and Endovascular Surgery Research Center, Mashhad University of medical Science, Mashhad, Iran
| | - Mehdi Hasanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Eslami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimanpour
- Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Tang H, Han X, Li T, Feng Y, Sun J. Protective effect of miR-138-5p inhibition modified human mesenchymal stem cell on ovalbumin-induced allergic rhinitis and asthma syndrome. J Cell Mol Med 2021; 25:5038-5049. [PMID: 33973707 PMCID: PMC8178307 DOI: 10.1111/jcmm.16473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
The objective of the study is to evaluate the protective effects of human mesenchymal stem cells (hMSCs) modified with miR‐138‐5p inhibitor against the allergic rhinitis and asthma syndrome (ARAS). MiR‐138‐5p or negative control was transfected into hMSCs, and fluorescence‐activated cell sorting was used to evaluate hMSC surface markers. Quantitative real‐time PCR (qRT‐PCR) was used to evaluate miR‐138‐5p, SIRT1, caspase‐3, IL‐6, IL‐1β and TNF‐α levels after TNF‐α and IL‐6 stimulations. hMSCs with or without miR‐138‐5p inhibition was intranasally administered into ARAS mice (n = 10 each group), followed by monitoring sneezing and nasal rubbing events to evaluate the allergic symptoms. Histamine, ovalbumin‐specific IgE, IgG2a, IgG1 and LTC4 release were monitored in the serum and nasal lavage fluid using enzyme‐linked immunosorbent assay. Expression of SIRT1 and HMGB1/TLR4 pathway in nasal mucosa was assessed. After miR‐138‐5p inhibitor transfection, the hMSC lineage was preserved. Binding between SIRT1 and miR‐138‐4p was observed, and miR‐138‐5p inhibition led to upregulation of SIRT1. Inhibition of miR‐138‐5p led to attenuated inflammatory responses of hMSCs upon TNF‐α and IL‐6 stimulation, and allergic symptoms in mice, as well as histamine and ovalbumin‐specific IgG release. hMSCs with miR‐138‐5p inhibition showed characteristics of activated SIRT1 and inhibited HMGB1/TLR4 pathway. Inhibition of miR‐138‐5p in hMSCs enhanced its effects in attenuating inflammatory responses and allergic reaction in the ARAS model, which is presumably regulated by SIRT1 and the HMGB1/TLR4 pathway.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaolei Han
- Health Office, Qingdao Municipal Hospital, Qingdao, China
| | - Tingtian Li
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Yan Feng
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Jie Sun
- Department of International Clinic, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
13
|
Guo H, Su Y, Deng F. Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Future Perspectives. Stem Cell Rev Rep 2021; 17:440-458. [PMID: 33211245 PMCID: PMC7675022 DOI: 10.1007/s12015-020-10085-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) as a kind of pluripotent adult stem cell have shown great therapeutic potential in relation to many diseases in anti-inflammation and regeneration. The results of preclinical experiments and clinical trials have demonstrated that MSC-derived secretome possesses immunoregulatory and reparative abilities and that this secretome is capable of modulating innate and adaptive immunity and reprograming the metabolism of recipient cells via paracrine mechanisms. It has been recognized that MSC-derived secretome, including soluble proteins (cytokines, chemokines, growth factors, proteases), extracellular vesicles (EVs) and organelles, plays a key role in tissue repair and regeneration in bronchopulmonary dysplasia, acute respiratory distress syndrome (ARDS), bronchial asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension, and silicosis. This review summarizes the known functions of MSC-EV modulation in lung diseases, coupled with the future challenges of MSC-EVs as a new pharmaceutical agent. The identification of underlying mechanisms for MSC-EV might provide a new direction for MSC-centered treatment in lung diseases.Graphical abstract.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022 Hefei, Anhui Province People’s Republic of China
| | - Yue Su
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast, Belfast, BT9 7BL UK
| | - Fang Deng
- Department of Nephrology, Anhui Provincial Children’s Hospital, Hefei City, Anhui Province 230022 People’s Republic of China
| |
Collapse
|
14
|
Almohammai A, Rahbarghazi R, Keyhanmanesh R, Rezaie J, Ahmadi M. Asthmatic condition induced the activity of exosome secretory pathway in rat pulmonary tissues. JOURNAL OF INFLAMMATION-LONDON 2021; 18:14. [PMID: 33794910 PMCID: PMC8015058 DOI: 10.1186/s12950-021-00275-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND The recent studies highlighted the critical role of exosomes in the regulation of inflammation. Here, we investigated the dynamic biogenesis of the exosomes in the rat model of asthma. RESULTS Our finding showed an increase in the expression of IL-4 and the suppression of IL-10 in asthmatic lung tissues compared to the control samples (p < 0.05). Along with the promotion of IL-4, the protein level of TNF-α was induced, showing an active inflammatory status in OVA-sensitized rats. According to our data, the promotion of asthmatic responses increased exosome biogenesis indicated by increased CD63 levels and acetylcholine esterase activity compared to the normal condition (p < 0.05). CONCLUSION Data suggest that the stimulation of inflammatory response in asthmatic rats could simultaneously increase the paracrine activity of pulmonary cells via the exosome biogenesis. Exosome biogenesis may correlate with the inflammatory response.
Collapse
Affiliation(s)
- Asheed Almohammai
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, University of Medical Sciences, Urmia, Iran.
| | - Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Dalouchi F, Falak R, Bakhshesh M, Sharifiaghdam Z, Azizi Y, Aboutaleb N. Human amniotic membrane mesenchymal stem cell-conditioned medium reduces inflammatory factors and fibrosis in ovalbumin-induced asthma in mice. Exp Physiol 2021; 106:544-554. [PMID: 33258520 DOI: 10.1113/ep088911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/24/2020] [Indexed: 01/16/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is mesenchymal stem cell-conditioned medium capable of improving the pathological alterations of ovalbumin-induced asthma in mice? What is the main finding and its importance? Our study indicated that human amniotic membrane mesenchymal stem cell-conditioned medium is capable of modulating inflammation, fibrosis, oxidative stress and the pathological consequences of ovalbumin-induced allergic asthma in mice. ABSTRACT Paracrine factors secreted by mesenchymal stem cells (MSCs) have immunomodulatory, anti-inflammatory and antifibrotic properties, and the conditioned medium (CM) of these cells might have functional capabilities. We examined the effects of human amniotic membrane MSC-CM (hAM-MSC-CM) on ovalbumin (OVA)-induced asthma. Forty male Balb/c mice were randomly divided into the following four groups: control; OVA (sensitized and challenged with OVA); OVA+CM (sensitized and challenged with OVA and treated with hAM-MSC-CM); and OVA+Placebo (sensitized and challenged with OVA and treated with placebo). Forty-eight hours after the last challenge, serum and bronchoalveolar lavage fluid samples were collected and used for evaluation of inflammatory factors and cells, respectively. Lung tissue sections were stained with Haematoxylin and Eosin or Masson's Trichrome to evaluate pathological changes, and oxidative stress was assessed in fresh lung tissues. Treatment with hAM-MSC-CM significantly hindered histopathological changes and fibrosis and reduced the total cell count and the percentage of eosinophils and neutrophils in bronchoalveolar lavage fluid. Furthermore, it reduced serum levels of immunoglobulin E, interleukin-4, transforming growth factor-β and lung malondialdehyde. It also increased serum levels of interferon-γ and interleukin-10, in addition to the enzymatic activity of glutathione peroxidase, catalase and superoxide dismutase in lung tissue in comparison to the OVA and OVA+Placebo groups. This study showed that administration of hAM-MSC-CM can improve pathological conditions, such as inflammation, fibrosis and oxidative stress, in OVA-induced allergic asthma.
Collapse
Affiliation(s)
- Fereshteh Dalouchi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Physiology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Raza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Bakhshesh
- Department of Physiology, Khomein University of Medical Sciences, Khomein, Iran
| | | | - Yaser Azizi
- Physiology Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Heiran H, Ahmadi M, Rahbarghazi R, Mir-Ershadi F, Delkhosh A, Khaksar M, Heidarzadeh M, Keyhanmanesh R. C-Kit + progenitors restore rat asthmatic lung function by modulation of T-bet and GATA-3 expression. Exp Physiol 2020; 105:1623-1633. [PMID: 32715538 DOI: 10.1113/ep088633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim of the experiment was to highlight the regenerative capacity of bone marrow Kit+ cells in the restoration of asthmatic pulmonary function in the rat model. What is the main finding and its importance? Data showed that these cells were recruited successfully to the asthmatic niche after intratracheal administration and accelerated the regeneration of asthmatic lungs by the modulation of inflammation via the control of Gata3 and Tbx21 expression, leading to decreased tracheal responsiveness to methacholine and reduction of pathological remodelling. ABSTRACT Allergic asthma is a T helper (Th) 2 immunological disorder with consequential uncontrolled inflammatory responses. There is an increasing demand to use new methods for the treatment of asthma based on modulation of the Th2-to-Th1 ratio in favour of the Th1 population. Accordingly, we decided to evaluate the effects of intratracheal administration of Kit+ bone marrow cells on tracheal responsiveness and the expression of Gata3 and Tbx21 genes. Forty male Wistar rats were allocated randomly into four experimental groups: healthy rats (control group), sensitized rats (OVA group), sensitized rats receiving Kit- cells (OVA+Kit- group) and sensitized rats receiving Kit+ cells (OVA+Kit+ group). Total and differential white blood cell counts, tracheal responsiveness to cumulative methacholine concentrations and histopathological analysis were evaluated. The results showed a statistically significant increase in total white blood cell, eosinophil and neutrophil counts, tracheal contractility, Gata3 expression and prototypical histopathology of asthma. Along with these conditions, we found that the number of lymphocytes was decreased and expression of Tbx21 diminished in sensitized rats compared with control animals. Monitoring of labelled tagged cells confirmed successful engraftment of transplanted cells in pulmonary tissue. Juxtaposition of Kit+ cells changed the blood leucogram closer to the control values. Kit+ cells increased the expression of Tbx21 and suppressed Gata3 (P < 0.05). In the OVA+Kit+ group, tracheal responsiveness was improved coincident with increased pulmonary regeneration. In conclusion, this study showed that intratracheal administration of bone marrow-derived Kit+ cells, but not Kit- cells, could be effective in the alleviation of asthma, presumably by the modulation of Gata3 and Tbx21.
Collapse
Affiliation(s)
- Hossein Heiran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Dsiseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mir-Ershadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Aref Delkhosh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Heidarzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Fan Z, Zhang Y, Xiao D, Ma J, Liu H, Shen L, Zhang M, He B. Long noncoding RNA UC.98 stabilizes atherosclerotic plaques by promoting the proliferation and adhesive capacity in murine aortic endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:141-149. [PMID: 31942916 DOI: 10.1093/abbs/gmz155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Pathological studies have shown that the vulnerability of plaques affects outcomes in patients with atherosclerosis (AS), a chronic inflammatory disease and common cause of morbidity and mortality worldwide. Although emerging technologies have enabled early diagnosis of AS with high-risk vulnerable plaques, more accurate and noninvasive diagnostic methods are urgently required. To this end, molecules involved in genetic or epigenetic regulation of the vulnerability of atherosclerotic plaques have been extensively studied. Here, we evaluated long noncoding RNA (lncRNA) variability by microarray assay in murine aortic endothelial cells (MAECs) bearing vulnerable plaques and identified the novel functional lncRNA UC.98, whose expression pattern was associated with the vulnerability of atherosclerotic plaques. Consistent with this, clinical statistics comparing the peripheral blood specimens from sets of patients with AS with or without vulnerable plaques confirmed the linear relationship between the expression pattern of UC.98 and plaque instability. Moreover, MTT assays and western blot analysis showed that silencing of intrinsic UC.98 in MAECs not only suppressed cell proliferation but also decreased the expressions of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, thereby inactivating the nuclear factor-κB pathway. In conclusion, our results highlighted the pivotal role of UC.98 in regulating the vulnerability of plaques during AS progression and suggested that UC.98 may be a biomarker of the early diagnosis and prognosis of AS with vulnerable plaques and a potential therapeutic target for slowing AS progression.
Collapse
Affiliation(s)
- Zixu Fan
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ying Zhang
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Danrui Xiao
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Jianwei Ma
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Hua Liu
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Linghong Shen
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Min Zhang
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ben He
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| |
Collapse
|
18
|
Boldrini-Leite LM, Michelotto PV, de Moura SAB, Capriglione LGA, Barussi FCM, Fragoso FYI, Senegaglia AC, Brofman PRS. Lung Tissue Damage Associated with Allergic Asthma in BALB/c Mice Could Be Controlled with a Single Injection of Mesenchymal Stem Cells from Human Bone Marrow up to 14 d After Transplantation. Cell Transplant 2020; 29:963689720913254. [PMID: 32216447 PMCID: PMC7444219 DOI: 10.1177/0963689720913254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cell (MSC) research has demonstrated the potential of these cells to modulate lung inflammatory processes and tissue repair; however, the underlying mechanisms and treatment durability remain unknown. Here, we investigated the therapeutic potential of human bone marrow-derived MSCs in the inflammatory process and pulmonary remodeling of asthmatic BALB/c mice up to 14 d after transplantation. Our study used ovalbumin to induce allergic asthma in male BALB/c mice. MSCs were injected intratracheally in the asthma groups. Bronchoalveolar lavage fluid (BALF) was collected, and cytology was performed to measure the total protein, hydrogen peroxide (H2O2), and proinflammatory (IL-5, IL-13, and IL-17A) and anti-inflammatory (IL-10) interleukin (IL) levels. The lungs were removed for the histopathological evaluation. On day zero, the eosinophil and lymphochte percentages, total protein concentrations, and IL-13 and IL-17A levels in the BALF were significantly increased in the asthma group, proving the efficacy of the experimental model of allergic asthma. On day 7, the MSC-treated group exhibited significant reductions in the eosinophil, lymphocyte, total protein, H2O2, IL-5, IL-13, and IL-17A levels in the BALF, while the IL-10 levels were significantly increased. On day 14, the total cell numbers and lymphocyte, total protein, IL-13, and IL-17A levels in the BALF in the MSC-treated group were significantly decreased. A significant decrease in airway remodeling was observed on days 7 and 14 in almost all bronchioles, which showed reduced inflammatory infiltration, collagen deposition, muscle and epithelial thickening, and mucus production. These results demonstrate that treatment with a single injection of MSCs reduces the pathophysiological events occurring in an experimental model of allergic asthma by controlling the inflammatory process up to 14 d after transplantation.
Collapse
Affiliation(s)
| | - Pedro Vicente Michelotto
- Department of Animal Science, Pontifícia Universidade Católica do
Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Sérgio Adriane Bezerra de Moura
- Department of Morphology, Campus Universitário Lagoa Nova,
Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte,
Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Rahimzadeh S, Rahbarghazi R, Aslani S, Rajabi H, Latifi Z, Farshdousti Hagh M, Nourazarian A, Nozad Charoudeh H, Nouri M, Abhari A. Promoter methylation and expression pattern of DLX3, ATF4, and FRA1 genes during osteoblastic differentiation of adipose-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2019; 10:243-250. [PMID: 32983940 PMCID: PMC7502906 DOI: 10.34172/bi.2020.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022]
Abstract
![]()
Introduction: Nowadays, mesenchymal stem cells are touted as suitable cell supply for the restoration of injured bone tissue. The existence of osteogenic differentiation makes these cells capable of replenishing damaged cells in the least possible time. It has been shown that epigenetic modifications, especially DNA methylation, contribute to the regulation of various transcription factors during phenotype acquisition. Hence, we concentrated on the correlation between the promoter methylation and the expression of genes DLX3, ATF4 , and FRA1 during osteoblastic differentiation of adipose-derived mesenchymal stem cells in vitro after 21 days.
Methods: Adipose-derived mesenchymal stem cells were cultured in osteogenesis differentiation medium supplemented with 0.1 µM dexamethasone, 10 mM β-glycerol phosphate, and 50 µM ascorbate-2-phosphate for 21 days. RNA and DNA extraction was done on days 0, 7, 14, and 21. Promoter methylation and expression levels of genes DLX3 , ATF4 , and FRA1 were analyzed by methylation-specific quantitative PCR and real-time PCR assays, respectively.
Results: We found an upward expression trend with the increasing time for genes DLX3, ATF4, and FRA1 in stem cells committed to osteoblast-like lineage compared to the control group (P <0.05). On the contrary, methylation-specific quantitative PCR displayed decreased methylation rates of DLX3 and ATF4 genes, but not FRA1 , over time compared to the non-treated control cells (P <0.05). Bright-field images exhibited red-colored calcified deposits around Alizarin Red S-stained cells after 21 days compared to the control group. Statistical analysis showed a strong correlation between the transcription of genes DLX3 and ATF4 and methylation rate (P <0.05).
Conclusion: In particular, osteoblastic differentiation of adipose-derived mesenchymal stem cells enhances DLX3 and ATF4 transcriptions by reducing methylation rate for 21 days.
Collapse
Affiliation(s)
- Sevda Rahimzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Aslani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Farshdousti Hagh
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:ijms20215386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|