1
|
Zhu X, Han X, Wang J. Sufentanil-induced Nrf2 protein ameliorates cerebral ischemia-reperfusion injury through suppressing neural ferroptosis. Int J Biol Macromol 2024; 279:135109. [PMID: 39197624 DOI: 10.1016/j.ijbiomac.2024.135109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
As an oxidative stress and inflammation-related disease, cerebral ischemia-reperfusion injury (CIRI) is a prevalent pathogenic factor of ischemic stroke (IS) and seriously degrades the life quality of human beings. As an opioid analgesic for anesthesia, Sufentanil (SUF) can activate the Nrf2 protein-induced anti-oxidant effects, which indicate that SUF may be used as alternative drug for CIRI therapy, but little is known regarding to its molecular mechanisms. Thus, this research aimed to examine whether SUF pre-treatment alleviated CIRI through the modulation of Nrf2 protein-mediated antioxidant activity. Our research revealed that middle cerebral artery occlusion/reperfusion (MCAO/R)-treated rats exhibited apparent CIRI-related symptoms and induced damages in rats' brain, which were all notably mitigated in the MCAO/R rats. The subsequent in vitro cellular experiments verified that oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cytotoxicity were apparently reversed by SUF co-treatment in HT22 and BV2 cells, and it was also validated that SUF was capable of suppressing inflammation and ferroptosis in CIRI models by inhibiting oxidative stress-related damages. Mechanistically, the Akt/GSK-3β pathway was excessively activated by SUF to promote Nrf2 protein expressions and enhance Nrf2-meidated anti-oxidant effects, and it was found that SUF-induced protective effects during CIRI progression were all abrogated by co-treating cells with MK2206 (Akt inhibitor), NP-12 (GSK-3β inhibitor), or ML385 (Nrf2 inhibitor). In conclusion, SUF activated the Akt/GSK-3β pathway to initiate Nrf2 protein-mediated antioxidant effects, which further suppressed oxidative stress-related inflammation and ferroptosis to ameliorate CIRI progression, and SUF could potentially be used as novel therapeutic agent for CIRI treatment in clinic.
Collapse
Affiliation(s)
- Xuelian Zhu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi 154000, China; Department of Anesthesiology, the First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Xi Han
- Department of Anatomy, School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China
| | - Jingtao Wang
- Department of Anatomy, School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China.
| |
Collapse
|
2
|
Liu D, Huang Y, Shang Y. Sufentanil Suppresses Cell Carcinogenesis Via Targeting miR-186-5p/HMGB1 Axis and Wnt/β-Catenin Pathway in Non-Small-Cell Lung Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01104-x. [PMID: 38470557 DOI: 10.1007/s12033-024-01104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Sufentanil is a common opioid anesthetic agent, which exerts anti-cancer properties in several cancer types. However, its action mechanisms in non-small cell lung cancer (NSCLC) are unclear. Therefore, the present study investigated the pharmacological effect of sufentanil on miRNAs in NSCLC treatment. In this study, after treatment with sufentanil, the proliferation, migration, invasion and apoptosis of A549 and H1299 NSCLC cell lines were measured by cell counting kit-8 (CCK-8) assay, colony formation assay, transwell assays and flow cytometry. Quantitative real time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of miR-186-5p and high mobility group box-1 (HMGB1), and their interaction was analyzed using luciferase reporter assay. The proteins of HMGB1, and apoptosis- and Wnt/β-catenin pathway-related factors were detected by western blot. It was demonstrated that sufentanil significantly upregulated miR‑186‑5p to restrict NSCLC cell proliferation, migration, invasion, and boost apoptosis in vitro. Mechanically, miR-186-5p interacted with HMGB1 and negatively regulated HMGB1 in NSCLC cells. Furthermore, rescue assay showed that sufentanil exerted antitumor activities by upregulating miR-186-5p, which targeted HMGB1 and restrained Wnt/β-catenin signal pathway in NSCLC cells. In conclusion, these results suggested that sufentanil disrupts the oncogenicity of NSCLC cells by regulating miR-186-5p/HMGB1/β-catenin axis, providing a promising implication for the anti-oncogenic effect of sufentanil.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Ye Huang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - You Shang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China.
| |
Collapse
|
3
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
4
|
Dery KJ, Yao S, Cheng B, Kupiec-Weglinski JW. New therapeutic concepts against ischemia-reperfusion injury in organ transplantation. Expert Rev Clin Immunol 2023; 19:1205-1224. [PMID: 37489289 PMCID: PMC10529400 DOI: 10.1080/1744666x.2023.2240516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) involves a positive amplification feedback loop that stimulates innate immune-driven tissue damage associated with organ procurement from deceased donors and during transplantation surgery. As our appreciation of its basic immune mechanisms has improved in recent years, translating putative biomarkers into therapeutic interventions in clinical transplantation remains challenging. AREAS COVERED This review presents advances in translational/clinical studies targeting immune responses to reactive oxygen species in IRI-stressed solid organ transplants, especially livers. Here we focus on novel concepts to rejuvenate suboptimal donor organs and improve transplant function using pharmacologic and machine perfusion (MP) strategies. Cellular damage induced by cold ischemia/warm reperfusion and the latest mechanistic insights into the microenvironment's role that leads to reperfusion-induced sterile inflammation is critically discussed. EXPERT OPINION Efforts to improve clinical outcomes and increase the donor organ pool will depend on improving donor management and our better appreciation of the complex mechanisms encompassing organ IRI that govern the innate-adaptive immune interface triggered in the peritransplant period and subsequent allo-Ag challenge. Computational techniques and deep machine learning incorporating the vast cellular and molecular mechanisms will predict which peri-transplant signals and immune interactions are essential for improving access to the long-term function of life-saving transplants.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siyuan Yao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
5
|
Pan Z, Wu X, Zhang X, Hu K. Phosphodiesterase 4B activation exacerbates pulmonary hypertension induced by intermittent hypoxia by regulating mitochondrial injury and cAMP/PKA/p-CREB/PGC-1α signaling. Biomed Pharmacother 2023; 158:114095. [PMID: 36495666 DOI: 10.1016/j.biopha.2022.114095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Proliferation of smooth muscle cells, oxidative stress, and pulmonary vasoconstriction resulting from intermittent hypoxia (IH) facilitate pulmonary hypertension (PH) in patients with obstructive sleep apnea. The role of Phosphodiesterase 4 B (PDE4B) in PH has not yet been established. Herein, we investigated whether PDE4B inhibition ameliorates experimental PH by modulating cAMP signaling. We performed an integrative analysis of PDE4B expression in Gene Expression Omnibus datasets, experimental IH-induced rat PH samples, and IH-induced pulmonary arterial smooth muscle cells (PASMCs). PDE4B expression was modulated using siRNA in vitro and a specific adeno-associated virus serotype 1 in vivo. In the databases of mouse models of IH-induced and sustained hypoxia-induced PH and in a rat model of six weeks of IH, the expression of PDE4B was up-regulated. Inhibition of PDE4B attenuated IH-induced pulmonary vascular remodeling and right ventricular hypertrophy. Our results also showed that PDE4B deficiency inhibited IH-induced proliferation of PASMCs with less mitochondrial reactive oxygen species and mitochondrial damage. Meanwhile, IH induced an increase in ATF4, which positively regulated the expression of PDE4B through transcription, and inhibition of ATF4 exerted effects similar to those of PDE4B inhibition. Mechanistically, downregulating the expression of PDE4B resulted in the activation of the cAMP/PKA/p-CREB/PGC-1α pathway in PASMCs after IH. Taken together, our present study provides evidence that inhibition of PDE4B attenuates IH-induced PH by regulating cAMP signaling.
Collapse
Affiliation(s)
- Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinyue Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
6
|
Yang J, Huang Q, Liao P, Zhang P, Sun S, Xu Q. Mechanism of miR-338-3p in sepsis-induced acute lung injury via indirectly modulating ATF4. Transpl Immunol 2023; 76:101681. [PMID: 35926799 DOI: 10.1016/j.trim.2022.101681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/31/2023]
Abstract
Sepsis is recognized as an inflammation-related syndrome in response to invading pathogens. Many patients suffer from sepsis including transplant recipients. Lipopolysaccharide (LPS) is known to trigger sepsis-related organ dysfunction. This study expounded on the possible effect of microRNA (miR)-338-3p in sepsis-induced acute lung injury (ALI). Firstly, human bronchial epithelial cell line 16HBE received LPS treatment to establish the cell models of sepsis-induced ALI. The expression patterns of miR-338-3p, long non-coding RNA OPA-interacting protein 5 antisense transcript 1 (lncRNA OIP5-AS1), and activating transcription factor 4 (ATF4) in 16HBE cells were examined. Afterwards, 16HBE cell viability, the apoptosis rate, and the levels of inflammation and lactate dehydrogenase (LDH) were determined to assess the degree of cell injury. We disclosed that LPS treatment triggered 16HBE cell injury, downregulated miR-338-3p, and upregulated OIP5-AS1 and ATF4. miR-338-3p overexpression repressed LPS-induced 16HBE cell injury. miR-338-3p diminished OIP5-AS1 stability via binding to OIP5-AS1 and downregulated OIP5-AS1 expression and OIP5-AS1 can enhance ATF4 mRNA stability and upregulate ATF4 mRNA level. The rescue experiments showed that ATF4 overexpression aggravated LPS-induced 16HBE cell injury. Overall, miR-338-3p overexpression decreased OIP5-AS1 expression and stability and further downregulated ATF4 mRNA level, thereby mitigating LPS-induced 16HBE cell injury.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pediatric, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong, China.
| | - Qikun Huang
- Department of Pediatric, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong, China
| | - Peiyuan Liao
- Department of Pediatric, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong, China
| | - Pingli Zhang
- Department of Pediatric, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong, China
| | - Shijing Sun
- Department of Pediatric, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong, China
| | - Qianwen Xu
- Department of Pediatric, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong, China
| |
Collapse
|
7
|
Yu D, Li J, Wang Y, Guo D, Zhang X, Chen M, Zhou Z. Oridonin ameliorates acetaminophen-induced acute liver injury through ATF4/PGC-1α pathway. Drug Dev Res 2022; 84:211-225. [PMID: 36567664 DOI: 10.1002/ddr.22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/27/2022]
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (ALI) causes hepatocyte cell death, oxidative stress, and inflammation. Oridonin (Ori), a covalent NLRP3-inflammasome inhibitor, ameliorates APAP-induced ALI through an unclear molecular mechanism. This study found that Ori decreased hepatic cytochrome P450 2E1 level and increased glutathione content to prevent APAP metabolism, and then reduced the necrotic area, improved liver function, and inhibited APAP-induced proinflammatory cytokines and oxidative stress. Ori also decreased activating transcription factor 4 (ATF4) protein levels and increased peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) to reduce APAP-induced endoplasmic reticulum stress activation and mitochondrial dysfunction. Furthermore, western blot and luciferase assay found that ATF4 inhibited transcription in the PGC-1α promoter -507 to -495 region to reduce PGC-1α levels, while ATF4 knockdown neutralized the hepatoprotective effect of Ori. Molecular docking showed that Ori bound to ATF4's amino acid residue glutamate 302 through 6, 7, and 18 hydroxyl bands. Our findings demonstrated that Ori prevented metabolic activation of APAP and further inhibited the ATF4/PGC-1α pathway to alleviate APAP overdose-induced hepatic toxicity, which illuminated its potential therapeutic effects on ALI.
Collapse
Affiliation(s)
- Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiye Li
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Yu Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Guo
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Xiaodan Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Mingming Chen
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Zhu MX, Ma XF, Niu X, Fan GB, Li Y. Mitochondrial unfolded protein response in ischemia-reperfusion injury. Brain Res 2022; 1797:148116. [PMID: 36209898 DOI: 10.1016/j.brainres.2022.148116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
Abstract
Mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that activates the transcriptional program of mitochondrial chaperone proteins and proteases to keep protein homeostasis in mitochondria. Ischemia-reperfusion injury results in multiple severe clinical issues linked to high morbidity and mortality in various disorders. The pathophysiology and pathogenesis of ischemia-reperfusion injury are complex and multifactorial. Emerging evidence showed the roles of UPRmt signaling in ischemia-reperfusion injury. Herein, we discuss the regulatory mechanisms underlying UPRmt signaling in C. elegans and mammals. Furthermore, we review the recent studies into the roles and mechanisms of UPRmt signaling in ischemia-reperfusion injury of the heart, brain, kidney, and liver. Further research of UPRmt signaling will potentially develop novel therapeutic strategies against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ming-Xi Zhu
- Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, Hainan, China
| | - Xiao-Fei Ma
- Department of ICU, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gui-Bo Fan
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yan Li
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
LncRNA H19 inhibits ER stress induced apoptosis and improves diabetic cardiomyopathy by regulating PI3K/AKT/mTOR axis. Aging (Albany NY) 2022; 14:6809-6828. [PMID: 36044268 PMCID: PMC9467416 DOI: 10.18632/aging.204256] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
Objective: Extensive studies have shown that ERS may be implicated in the pathogenesis of DCM. We explored the therapeutic effects of lncRNAH19 on DCM and its effect on ERS-associated cardiomyocyte apoptosis. Methods: C57/BL-6j mice were randomly divided into 3 groups: non-DM group (controls), DM group (DCM), and lncRNAH19 overexpression group (DCM+H19 group). The effect of H19 on cardiac function was detected. The effect of H19 on cardiomyocyte apoptosis and cardiac fibrosis in DM was examined. Differentially expressed genes (DEGs) and activated pathways were examined by bioinformatics analysis. STRING database was applied to construct a PPI network using Cytoscape software. The expression of p-PERK, p-IRE1, ATF6, CHOP, cleaved caspase-3, -9, -12 and BAX proteins in cardiac tissue was used to determine the ERS-associated apoptotic indicators. We established the HG-stimulated inflammatory cell model. The expression of p-PERK and CHOP in HL-1 cells following HG was determined by immunofluorescence labeling. The effects of H19 on ERS and PI3K/AKT/mTOR pathway were also detected. Results: H19 improved left ventricular dysfunction in DM. H19 could reduce cardiomyocytes apoptosis and improve fibrosis in vivo. H19 could reduce the expression of p-PERK, p-IRE1α, ATF6, CHOP, cleaved caspase-3, cleaved caspase-9, cleaved caspase-12, and BAX proteins in cardiac tissues. Furthermore, H19 repressed oxidative stress, ERS and apoptosis in vitro. Moreover, the effect of H19 on ERS-associated apoptosis might be rescued by LY294002 (the specific inhibitor for PI3K and AKT). Conclusion: H19 attenuates DCM in DM and ROS, ERS-induced cardiomyocyte apoptosis, which is associated with the activation of PI3K/AKT/mTOR signaling pathway.
Collapse
|
10
|
Ritiu SA, Rogobete AF, Sandesc D, Bedreag OH, Papurica M, Popovici SE, Toma D, Ivascu RI, Velovan R, Garofil DN, Corneci D, Bratu LM, Pahontu EM, Pistol A. The Impact of General Anesthesia on Redox Stability and Epigenetic Inflammation Pathways: Crosstalk on Perioperative Antioxidant Therapy. Cells 2022; 11:1880. [PMID: 35741011 PMCID: PMC9221536 DOI: 10.3390/cells11121880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Worldwide, the prevalence of surgery under general anesthesia has significantly increased, both because of modern anesthetic and pain-control techniques and because of better diagnosis and the increased complexity of surgical techniques. Apart from developing new concepts in the surgical field, researchers and clinicians are now working on minimizing the impact of surgical trauma and offering minimal invasive procedures due to the recent discoveries in the field of cellular and molecular mechanisms that have revealed a systemic inflammatory and pro-oxidative impact not only in the perioperative period but also in the long term, contributing to more difficult recovery, increased morbidity and mortality, and a negative financial impact. Detailed molecular and cellular analysis has shown an overproduction of inflammatory and pro-oxidative species, responsible for augmenting the systemic inflammatory status and making postoperative recovery more difficult. Moreover, there are a series of changes in certain epigenetic structures, the most important being the microRNAs. This review describes the most important molecular and cellular mechanisms that impact the surgical patient undergoing general anesthesia, and it presents a series of antioxidant therapies that can reduce systemic inflammation.
Collapse
Affiliation(s)
- Stelian Adrian Ritiu
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Alexandru Florin Rogobete
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dorel Sandesc
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Ovidiu Horea Bedreag
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Marius Papurica
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Anaesthesia and Intensive Care Research Center (CCATITM), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Sonia Elena Popovici
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Daiana Toma
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Robert Iulian Ivascu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
- Clinic of Anaesthesia and Intensive Care, Central Military Emergency Hospital “Dr. Carol Davila”, 010242 Bucharest, Romania
| | - Raluca Velovan
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brînzeu”, 300723 Timișoara, Romania; (S.A.R.); (D.S.); (O.H.B.); (M.P.); (S.E.P.); (D.T.); (R.V.)
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Dragos Nicolae Garofil
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
| | - Dan Corneci
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
- Clinic of Anaesthesia and Intensive Care, Central Military Emergency Hospital “Dr. Carol Davila”, 010242 Bucharest, Romania
| | - Lavinia Melania Bratu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Elena Mihaela Pahontu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Adriana Pistol
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.I.I.); (D.C.); (A.P.)
| |
Collapse
|
11
|
Yue Y, Xu F, Zhang J, Zhao M, Zhou F. Sufentanil alleviates pre-eclampsia via silencing microRNA-24-3p to target 11β-Hydroxysteroid dehydrogenase type 2. Bioengineered 2022; 13:11456-11470. [PMID: 35506414 PMCID: PMC9275916 DOI: 10.1080/21655979.2022.2066753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Pre-eclampsia (PE) is a prevalent pregnancy disease characterized by insufficient trophoblast cell migration (HTR8/SVneo). Consequently, accelerating trophoblast cell proliferation might ameliorate PE. This study assessed the effects and molecular mechanisms of Sufentanil (SUF) on HTR8/SVneo cells proliferation. HTR8/SVneo cells and PE clinical samples were used. Peripheral blood was collected from PE patients’ samples, and microRNA (miR)-24-3p and 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) was analyzed in the blood and cells. HTR8/SVneo cells were treated with varying SUF concentrations or transfected with miR-24-3p mimics/inhibitors, or HSD11B2 elevation vector. CCK-8, colony formation, transwell, and flow cytometry assays were then carried out. Association of miR-24 − 3p with HSD11B2 was investigated. PE animal model was constructed using Wistar rats to verify SUF’s role on PE in vivo. According to the results, SUF boosted HTR8/SVneo cell proliferation, and inhibited miR-24-3p to accelerate HSD11B2. MiR-24-3p was increased in PE, while HSD11B2 was inhibited, and miR-24-3p targeted HSD11B2. HSD11B2 reversed miR-24-3p’s repression on HTR/SVneo cell advancement. SUF restrained PE’s progression in vivo and in vitro via mediating the miR-24-3p/HSD11B2 axis. In conclusion, SUF enhances HSD11B2 via repressing miR-24-3p, thereby suppressing PE’s progression. The study provides an insight into the possibility of using SUF as a novel therapeutic target for PE, which acts via combining with miR-24-3p.
Collapse
Affiliation(s)
- Yang Yue
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen, Guangdong, China
| | - Fu Xu
- Department of Anesthesiology, Longhua District People's Hospital, Shenzhen, Guangdong, China
| | - JiaRong Zhang
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen, Guangdong, China
| | - Miao Zhao
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen, Guangdong, China
| | - FangFang Zhou
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Zheng Y, Tao Y, Zhan X, Wu Q. Nuclear receptor 4A1 (NR4A1) silencing protects hepatocyte against hypoxia-reperfusion injury in vitro by activating liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling. Bioengineered 2022; 13:8349-8359. [PMID: 35311465 PMCID: PMC9161842 DOI: 10.1080/21655979.2022.2053804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/03/2023] Open
Abstract
The nuclear receptor 4A1 (NR4A1) is widely involved in the regulation of cell survival and is related to ischemic injury in several organs. This research examined the emerging role and mechanism of NR4A1 in hepatocyte ischemia-reperfusion injury (IRI). BRL-3A cells were subjected to hypoxia-reperfusion (H/R) to simulate an IRI model in vitro. The expression of NR4A1 and liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) pathway-related proteins (LKB1, AMPK, and ACC) was detected by western blotting or RT-qPCR under H/R condition after NR4A1 overexpression or silencing. Then, radicicol, an inhibitor of LKB1 pathway, was used to determine the role of NR4A1 in hepatocyte H/R injury by regulating LKB1. Under the help of CCK-8 assay, cell viability was assessed. The levels of ROS, MDA, and SOD were determined with corresponding kits to evaluate oxidative stress. Additionally, RT-qPCR was employed to analyze the releases of the inflammatory factors. Flow cytometry was applied to estimate the apoptosis and its related proteins, and autophagy-associated proteins were assayed by western blotting. Results indicated that NR4A1 was highly expressed, while proteins in LKB1/AMPK signaling was downregulated in BRL-3A cells exposed to H/R. The activation of LKB1/AMPK pathway could be negatively regulated by NR4A1. Moreover, NR4A1 depletion conspicuously promoted cell viability, inhibited oxidative stress as well as inflammation, and induced apoptosis and autophagy in H/R-stimulated BRL-3A cells, which were reversed after radicicol intervention. Collectively, NR4A1/LKB1/AMPK axis is a new protective pathway involved in hepatocyte IRI, shedding new insights into the improvement of hepatocyte IRI.
Collapse
Affiliation(s)
- Yu Zheng
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yingying Tao
- Emergency Intensive Care Unit, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Xiaobo Zhan
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Qi Wu
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Protective Effect of Sufentanil on Myocardial Ischemia-Reperfusion Injury in Rats by Inhibiting Endoplasmic Reticulum Stress. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6267720. [PMID: 35356663 PMCID: PMC8958077 DOI: 10.1155/2022/6267720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Objective Sufentanil is the most common drug in clinical practice for the treatment of ischemic heart disease. This study is to investigate the protective mechanism of sufentanil on rat myocardial ischemia-reperfusion (I/R) injury. Methods A rat I/R model was established by ligating the left anterior descending coronary artery. A total of 24 SD male rats were enrolled and divided randomly into the control group, I/R group, sufentanil group (SUF; 3 μg/kg), and diltiazem group (DLZ; 20 mg/kg; positive control). The rat hearts were subjected to 30 min of ischemia followed by 120 min of reperfusion. Subsequently, hemodynamics, pathological changes of myocardial tissue, serum biochemical parameters, oxidative stress factors, the level of serum inducible nitric oxide synthases (iNOS), interleukin-6 (IL-6), and other bioactive factors were analyzed in the rats. Result Compared with the I/R group, sufentanil significantly improved cardiac action, myocardial fiber, and cardiomyocyte morphology and reduced inflammatory cell infiltration in rats in the SUF group. And the level of creatine kinase isoenzyme (CK-MB), troponin (cTn), lactate dehydrogenase (LDH), malondialdehyde (MDA), iNOS, and IL-6 was significantly declined in the serum of SUF group, while the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were significantly activated in the myocardial tissues. In addition, sufentanil also significantly decreased the protein expression of GRP78, CHOP, Caspase 12, and ATF6 in the myocardial tissue of the SUF group. Conclusion Sufentanil has a significant protective activity on myocardial I/R injury in rats, the mechanism of which may be associated with the inhibition of endoplasmic reticulum stress and oxidative stress.
Collapse
|
14
|
Wang Z, Du X, Yu D, Yang Y, Ma G, Jia X, Cheng L. Sufentanil alleviates cerebral ischemia-reperfusion injury by inhibiting inflammation and protecting the blood-brain barrier in rats. Eur J Histochem 2022; 66:3328. [PMID: 35016494 PMCID: PMC8764464 DOI: 10.4081/ejh.2022.3328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022] Open
Abstract
Stroke is a brain system disease with a high fatality rate and disability rate. About 80% of strokes are ischemic strokes. Cerebral ischemia-reperfusion injury (CIRI) caused by ischemic stroke seriously affects the prognosis of stroke patients. The purpose of this study is to investigate the effect of sufentanil (SUF) on CIRI model rats. We used middle cerebral artery occlusion (MCAO) to make the CIRI model in rats and monitored region cerebral blood flow (rCBF) to ensure that blood flow was blocked and recanalized. We used ELISA and RT-PCR to detect the expression of inflammatory factors in rat serum and brain tissue. In addition, we detected the expression of metalloproteinase (MMP) 2, MMP9 and collagen IV in brain tissues and performed Evans blue (EB) assay to determine the permeability of the blood-brain barrier (BBB). Finally, we clarified the apoptosis of brain tissue through the TUNEL staining and the detection of caspase3, Bcl2 and Bax. Various concentrations of SUF, especially 5, 10 and 25 μg/kg of SUF, all alleviated the infarct size, neurological function and brain edema of MCAO rats. SUF pretreatment also effectively reduced the expression of inflammatory cytokines in MCAO rats, including interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10 and tumor necrosis factor (TNF)-α. In addition, SUF also inhibited MMP2 and MMP9 and promoted the expression of collagen IV, indicating that SUF attenuated the destruction of the BBB. SUF also inhibited caspase3 and Bax rats and promoted Bcl2 in MCAO rats, thus inhibiting cell apoptosis. SUF pretreatment effectively improved the neurological function and cerebral infarction of MCAO rats, inhibited excessive inflammation in rats, protected the BBB, and inhibited cell apoptosis in brain tissue.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anesthesiology, Zhumadian Central Hospital, Zhumadian.
| | - Xiaoyan Du
- Rehabilitation Ward, Zhumadian City Welfare Home for Children, Zhumadian.
| | - Daoyang Yu
- Department of Anesthesiology, Zhumadian Central Hospital, Zhumadian.
| | - Yang Yang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian.
| | - Gaoen Ma
- Department of Ophtalmology, Third Affiliated Hospital of Xinxiang Medical College, Xinxiang.
| | - Xueli Jia
- Department of Anesthesiology, Zhumadian Central Hospital, Zhumadian.
| | - Lulu Cheng
- Laboratory of Microneurosurgery, Zhumadian Central Hospital, Zhumadian.
| |
Collapse
|