1
|
Yuan L, Dai Q, Wang X, Yang J, Yuan B. Unlocking the promise of MANF in diseases: Mechanistic insights and therapeutic potentials. Mol Biol Rep 2024; 51:1160. [PMID: 39549080 DOI: 10.1007/s11033-024-10111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a ubiquitous neurotrophic factor that exhibits a variety of physiological functions and plays a critical role in the exploitation of therapeutic potential across a range of diseases, including cardiovascular disorders, nervous system diseases, metabolic imbalances, and cancers. In the context of cardiac diseases, MANF significantly promotes cardiomyocyte survival and improves cardiac functionality. Furthermore, MANF not only provides neuroprotection by shielding neurons from damage and promoting nerve regeneration in neurological disorders, but also involves in insulin resistance, lipid metabolism disturbances and fat-containing liver lesions. However, the oncogenic or tumor suppressive function of MANF in cancer remains unclear, requiring further investigation to elucidate its precise role in the process of cancer initiation and progression. This review aims to summarize the latest advancements in understanding the molecular pathways, intricate mechanisms, and therapeutic potential of MANF in the prevention and treatment of various diseases, emphasizing its multifaceted contributions to health and disease management.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qiqiao Dai
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xirui Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui Province, China
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
- School of Basic Medical Sciences, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
2
|
Pu Y, Han S, Chen J, Liu Z. MANF inhibits NLRP3 inflammasome activation by competitively binding to DDX3X in paraquat-stimulated alveolar macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117331. [PMID: 39547060 DOI: 10.1016/j.ecoenv.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
NLRP3 inflammasome activation in macrophages is involved in paraquat-induced acute lung injury (ALI). MANF exerts an inhibitory effect against inflammation and cell death. The aim of this study was to investigate the role of MANF in paraquat-stimulated alveolar macrophages and the potential mechanism. Paraquat-induced ALI mouse model was established by intraperitoneally injection of 30 mg/kg of paraquat. The lung pathological changes were observed by hematoxylin and eosin staining. The expression of MANF/DDX3X/NLRP3/Caspase-1 in mice lung macrophages was evaluated by double immunofluorescence staining and western blot. NLRP3 inflammasome activation and pro-inflammatory cytokines (IL-1β and IL-18) in paraquat-stimulated macrophage transfected with MANF overexpression plasmid (pcDNA3.1-MANF) or siRNA-MANF were measured by Western blot. The protein-protein interaction of MANF/DDX3X/NLRP3 was verified by Co-immunoprecipitation. As a result, MANF/DDX3X/NLRP3/Caspase-1 were upregulated in alveolar macrophages of paraquat-induced ALI in mice. In paraquat-stimulated alveolar macrophages, upregulation of MANF and DDX3X were also observed, accompanied by NLRP3 inflammasome activation. In addition, overexpression of MANF inhibited NLRP3 inflammasome activation in paraquat-stimulated alveolar macrophages. In contrast, knockdown of MANF aggravated NLRP3 inflammasome activation. Co-immunoprecipitation results revealed that DDX3X could bind to MANF and NLRP3, but MANF could not bind to NLRP3 in paraquat-stimulated alveolar macrophages. Furthermore, Co-immunoprecipitation of truncated three fragments of DDX3X confirmed MANF can interact with the helicase core of DDX3X which is the binding site for NLRP3. Taken together, MANF exerted a protective effect against paraquat-induced cytotoxicity by inhibiting the NLRP3 inflammasome activation in macrophages via competitive binding to the helicase core of DDX3X.
Collapse
Affiliation(s)
- Yi Pu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Siying Han
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Jie Chen
- Department of Cardiology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Zhenning Liu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
3
|
Zhang X, Tian X, Wang Y, Yan Y, Wang Y, Su M, Lv H, Li K, Hao X, Xing X, Song S. Application of lipopolysaccharide in establishing inflammatory models. Int J Biol Macromol 2024; 279:135371. [PMID: 39244120 DOI: 10.1016/j.ijbiomac.2024.135371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipopolysaccharide (LPS), a unique component of the outer membrane of Gram-negative bacteria, possesses immune-activating properties. It induces an immune response by stimulating host cells to produce a lot of inflammatory cytokines with a thermogenic effect, which may cause an inflammatory response. In the past few decades, the structure and function of LPS and its mechanism leading to inflammation have been extensively analyzed. Since LPS can cause inflammation, it is often used to establish inflammation models. These models are crucial in the study of inflammatory diseases that pose a serious threat to human health. In addition, the non-pro-inflammatory effects of LPS under certain circumstances are also being studied widely. This review summarizes the methods by which LPS has been used to establish inflammatory models at the cellular and animal levels to study related diseases. It also introduces in detail the evaluation indicators necessary for the successful establishment of these models, providing a reference for future research.
Collapse
Affiliation(s)
- Xiao Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiao Tian
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yong Yan
- JD Berry Agricultural Development Co., Ltd, Weihai, Shandong 264209, China.
| | - Yuan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Meicai Su
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Haifei Lv
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Kaitao Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiaobin Hao
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiang Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
4
|
Zhu LR, Cui W, Liu HP. Molecular mechanisms of endoplasmic reticulum stress-mediated acute kidney injury in juvenile rats and the protective role of mesencephalic astrocyte-derived neurotrophic factor. J Pharm Pharmacol 2024:rgae134. [PMID: 39437337 DOI: 10.1093/jpp/rgae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES This study examined the role of endoplasmic reticulum stress in pediatric acute kidney injury and the therapeutic effect of midbrain astrocyte-derived neurotrophic factor. METHODS Two-week-old Sprague-Dawley rats were divided into: Sham, ischemia-reperfusion injury-induced acute kidney injury (AKI), mesencephalic astrocyte-derived neurotrophic factor (MANF)-treated, tauroursodeoxycholic acid (TUDCA)-treated. Analyses were conducted 24 h post-treatment. Serum creatinine, cystatin C, Albumin, MANF levels were measured, cytokine concentrations in serum and renal tissues were determined using a Luminex assay. Histopathology was assessed via light and electron microscopy. Western blotting and RT-qPCR analyzed markers for oxidative stress, apoptosis, endoplasmic reticulum (ER) stress, and autophagy. HK-2 cells underwent hypoxia/reoxygenation (H/R) to simulate AKI and were treated with MANF or TUDCA. RESULTS AKI rats had increased serum creatinine, cystatin C, and inflammatory cytokines, along with significant renal damage, and showed loose and swollen ER structures, reduced cell proliferation, and elevated levels of IRE1, PERK, ATF6, CHOP, LC3-II/I, KIM-1, TLR4, JNK, and NF-κB. MANF treatment reduced these biomarkers and protein levels, improved ER structure and cell proliferation, alleviated oxidative stress, apoptosis, ER stress, and inhibited JNK/TLR4/NF-κB signaling. In HK-2 cells, MANF reduced ER stress and inflammation post-H/R exposure. CONCLUSIONS MANF treatment alleviates ER stress, oxidative stress, apoptosis, and inflammation in pediatric AKI, improving renal function and morphology.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Wangjiang Road, Hefei, 230051 Anhui, China
| | - Wei Cui
- Department of Scientific Research and Education, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Wangjiang Road, Hefei, 230051 Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Wangjiang Road, Hefei, 230051 Anhui, China
| |
Collapse
|
5
|
Huang M, Hu J, Chen Y, Xun Y, Zhang X, Cao Y. Mesencephalic astrocyte-derived neurotrophic factor inhibits cervical cancer progression via regulating macrophage phenotype. Mol Biol Rep 2024; 51:654. [PMID: 38735002 DOI: 10.1007/s11033-024-09602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Cervical cancer is a common gynecologic malignant tumor, but the critical factors affecting cervical cancer progression are still not well demonstrated. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been widely recognized as an anti-inflammatory factor to regulate macrophage polarization. In this study, the effect and mechanism of MANF on cervical cancer were preliminarily explored. METHODS AND RESULTS Kaplan-Meier curve was used to show the overall survival time of the involved cervical cancer patients with high and low MANF expression in cervical cancer tissues. MANF was highly expressed in peritumoral tissues of cervical carcinoma by using immunohistochemistry and western blot. MANF mRNA level was detected by using qRT-PCR. Dual-labeled immunofluorescence showed MANF was mainly expressed in macrophages of cervical peritumoral tissues. Moreover, MANF-silenced macrophages promoted HeLa and SiHa cells survival, migration, invasion and EMT via NF-κB signaling activation. The results of tumor formation in nude mice indicated MANF-silenced macrophages promoted cervical tumor formation in vivo. CONCLUSION Our study reveals an inhibitory role of MANF in cervical cancer progression, indicating MANF as a new and valuable therapeutic target for cervical cancer treatment.
Collapse
Affiliation(s)
- Miaomiao Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingjing Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yueran Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Yingying Xun
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, Anhui, China
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Shen C, Ding X, Ruan J, Ruan F, Hu W, Huang J, He C, Yu Y, Zuo Z. Black phosphorus quantum dots induce myocardial inflammatory responses and metabolic disorders in mice. J Environ Sci (China) 2024; 137:53-64. [PMID: 37980037 DOI: 10.1016/j.jes.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 11/20/2023]
Abstract
As an ultrasmall derivative of black phosphorus (BP) sheets, BP quantum dots (BP-QDs) have been effectively used in many fields. Currently, information on the cardiotoxicity induced by BP-QDs remains limited. We aimed to evaluate BP-QD-induced cardiac toxicity in mice. Histopathological examination of heart tissue sections was performed. Transcriptome sequencing, real-time quantitative PCR (RT‒qPCR), western blotting, and enzyme-linked immunosorbent assay (ELISA) assays were used to detect the mRNA and/or protein expression of proinflammatory cytokines, nuclear factor kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT), peroxisome proliferator-activated receptor gamma (PPARγ), and glucose/lipid metabolism pathway-related genes. We found that heart weight and heart/body weight index (HBI) were significantly reduced in mice after intragastric administration of 0.1 or 1 mg/kg BP-QDs for 28 days. In addition, obvious inflammatory cell infiltration and increased cardiomyocyte diameter were observed in the BP-QD-treated groups. Altered expression of proinflammatory cytokines and genes related to the NF-κB signaling pathway further confirmed that BP-QD exposure induced inflammatory responses. In addition, BP-QD treatment also affected the PI3K-AKT, PPARγ, thermogenesis, oxidative phosphorylation, and cardiac muscle contraction signaling pathways. The expression of genes related to glucose/lipid metabolism signaling pathways was dramatically affected by BP-QD exposure, and the effect was primarily mediated by the PPAR signaling pathway. Our study provides new insights into the toxicity of BP-QDs to human health.
Collapse
Affiliation(s)
- Chao Shen
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoyan Ding
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jinpeng Ruan
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Fengkai Ruan
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weiping Hu
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jiyi Huang
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yi Yu
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Zhenghong Zuo
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Anttila JE, Mattila OS, Liew HK, Mätlik K, Mervaala E, Lindholm P, Lindahl M, Lindsberg PJ, Tseng KY, Airavaara M. MANF protein expression is upregulated in immune cells in the ischemic human brain and systemic recombinant MANF delivery in rat ischemic stroke model demonstrates anti-inflammatory effects. Acta Neuropathol Commun 2024; 12:10. [PMID: 38229173 DOI: 10.1186/s40478-023-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) has cytoprotective effects on various injuries, including cerebral ischemia, and it can promote recovery even when delivered intracranially several days after ischemic stroke. In the uninjured rodent brain, MANF protein is expressed almost exclusively in neurons, but post-ischemic MANF expression has not been characterized. We aimed to investigate how endogenous cerebral MANF protein expression evolves in infarcted human brains and rodent ischemic stroke models. During infarct progression, the cerebral MANF expression pattern both in human and rat brains shifted drastically from neurons to expression in inflammatory cells. Intense MANF immunoreactivity took place in phagocytic microglia/macrophages in the ischemic territory, peaking at two weeks post-stroke in human and one-week post-stroke in rat ischemic cortex. Using double immunofluorescence and mice lacking MANF gene and protein from neuronal stem cells, neurons, astrocytes, and oligodendrocytes, we verified that MANF expression was induced in microglia/macrophage cells in the ischemic hemisphere. Embarking on the drastic expression transition towards inflammatory cells and the impact of blood-borne inflammation in stroke, we hypothesized that exogenously delivered MANF protein can modulate tissue recovery processes. In an attempt to enhance recovery, we designed a set of proof-of-concept studies using systemic delivery of recombinant MANF in a rat model of cortical ischemic stroke. Intranasal recombinant MANF treatment decreased infarct volume and reduced the severity of neurological deficits. Intravenous recombinant MANF treatment decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokine IL-10 in the infarcted cortex one-day post-stroke. In conclusion, MANF protein expression is induced in activated microglia/macrophage cells in infarcted human and rodent brains, and this could implicate MANF's involvement in the regulation of post-stroke inflammation in patients and experimental animals. Moreover, systemic delivery of recombinant MANF shows promising immunomodulatory effects and therapeutic potential in experimental ischemic stroke.
Collapse
Affiliation(s)
- Jenni E Anttila
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Olli S Mattila
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, 00290, Helsinki, Finland
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien County, Hualien, 970, Taiwan
| | - Kert Mätlik
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Perttu J Lindsberg
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, 00290, Helsinki, Finland
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan.
| | - Mikko Airavaara
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland.
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
8
|
Zhang C, Zhang M, Cao X, Jiao B, Zhang W, Yu S, Zhang X. Navigating the Landscape of MANF Research: A Scientometric Journey with CiteSpace Analysis. Cell Mol Neurobiol 2023; 43:3897-3913. [PMID: 37751132 PMCID: PMC10661837 DOI: 10.1007/s10571-023-01412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
This study employs bibliometric analysis through CiteSpace to comprehensively evaluate the status and trends of MANF (mesencephalic astrocyte-derived neurotrophic factor) research spanning 25 years (1997-2022). It aims to fill the gap in objective and comprehensive reviews of MANF research. MANF-related studies were extracted from the Web of Science database. MANF publications were quantitatively and qualitatively analyzed for various factors by CiteSpace, including publication volume, journals, countries/regions, institutions, and authors. Keywords and references were visually analyzed to unveil research evolution and hotspot. Analysis of 353 MANF-related articles revealed escalating annual publications, indicating growing recognition of MANF's importance. High-impact journals such as the International Journal of Molecular Sciences and Journal of Biological Chemistry underscored MANF's interdisciplinary significance. Collaborative networks highlighted China and the USA's pivotal roles, while influential figures and partnerships drove understanding of MANF's mechanisms. Co-word analysis of MANF-related keywords exposed key evolutionary hotspots, encompassing neurotrophic effects, cytoprotective roles, MANF-related diseases, and the CDNF/MANF family. This progression from basic understanding to clinical potential showcased MANF's versatility from cellular protection to therapy. Bibliometric analysis reveals MANF's diverse research trends and pathways, from basics to clinical applications, driving medical progress. This comprehensive assessment enriches understanding and empowers researchers for dynamic evolution, advancing innovation, and benefiting patients. Bibliometric analysis of MANF research. The graphical abstract depicts the bibliometric analysis of MANF research, highlighting its aims, methods, and key results.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Mi Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xueqin Cao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Shangchen Yu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
9
|
He W, Zhou L, Xu K, Li H, Wang JJ, Chen C, Wang D. Immunopathogenesis and immunomodulatory therapy for myocarditis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2112-2137. [PMID: 37002488 PMCID: PMC10066028 DOI: 10.1007/s11427-022-2273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 04/03/2023]
Abstract
Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - James Jiqi Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - DaoWen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
10
|
Yu S, Zhang X, Sun T, Wang D, Wei Z. Low temperature plasma protects against inflammatory agents-mediated dysfunction of theca cells via enhancing MANF expression. Mol Biol Rep 2023; 50:3085-3097. [PMID: 36689049 DOI: 10.1007/s11033-022-08185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Low temperature plasma (LTP) exerts a protective effect in inflammation via enhancing MANF expression. Hyperactivation and dysfunction of theca cells induced by inflammatory agents is accompanied by polycystic ovary syndrome (PCOS), which is a common reproductive and endocrine disorder. However, the effect of LTP on theca cells is still unknown. METHODS AND RESULTS Theca cells were stimulated with IL-1β or TNF-α for 12 h, then treated with LTP for 100 s. After 8 h, medium supernatant and theca cells were collected. Production of androgen from theca cells were detected by ELISA. The PCNA and Annexin V levels in theca cells were detected by using immunofluorescent staining. The levels of PCNA, BCL-2 and BAX were evaluated by western blot and qPCR. MTT assay was used to detect the viability of theca cells. The proportions of apoptosis of theca cells were detected by Flow cytometry. The mRNA levels of androgenic genes were detected by qPCR. The MANF levels in medium supernatant and cell lysate were detected by using ELISA, western and qPCR. BIP and CHOP expressions were detected by using western blot and qPCR. We found that LTP irradiation decreased inflammatory agents-induced upregulation of androgen and androgenic genes in theca cells. And LTP irradiation relieves IL-1β or TNF-α-induced pathological proliferation and apoptosis in theca cells. In terms of mechanism, LTP irradiation increased MANF level in theca cells to inhibit BIP and CHOP expression. CONCLUSION These evidences suggest the protective effect of LTP on theca cells in inflammatory microenvironment, and LTP has the potential clinical application of PCOS.
Collapse
Affiliation(s)
- ShuJun Yu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - XinRu Zhang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Sun
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - ZhaoLian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China. .,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
11
|
Zeng T, Zhou Y, Yu Y, Wang JW, Wu Y, Wang X, Zhu L, Zhou LM, Wan LH. rmMANF prevents sepsis-associated lung injury via inhibiting endoplasmic reticulum stress-induced ferroptosis in mice. Int Immunopharmacol 2023; 114:109608. [PMID: 36700778 DOI: 10.1016/j.intimp.2022.109608] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Ferroptosis plays a critical role in LPS-induced acute lung injury and is modulated by endoplasmic reticulum stress (ERS). As a typical ER stress-responsive protein, recently mesencephalic astrocyte-derived neurotrophic factor (MANF) has been demonstrated to attenuate LPS-induced acute lung injury (ALI) through repressing macrophage activation. However, whether MANF exerts a preventive role on ferroptosis and excess ER stress remains unclear. Here, we first built a protein-protein interaction (PPI) network to obtain potential interacting proteins related to MANF through STRING and GeneMANIA. Then, male C57BL/6J mice were used to build a model of LPS-induced lung injury. Two days before LPS injection, the tail vein injected recombinant murine MANF (rmMANF) at 750 μg/kg. Twenty-four hours after the LPS injection, the histopathological changes and damage in the lung tissues were detected and scored by HE staining and TUNEL assay, respectively. Endogenous MANF levels, oxidative stress markers (GSH, SOD, CAT, and MDA), ERS markers (GRP78, PERK, and ATF4), and the ferroptosis markers (iron, GPX4, and 4-HNE) in the lung tissues were measured by IHC, western blotting, and commercial kits. Our results showed that LPS induced significant lung injury to the increase in MPO, MDA, and 4-HNE, a decrease in GPX4 and GSH, SOD, CAT, and total iron accumulation in LPS-exposed mice. Simultaneously, GRP78/PERK/ATF4 pathway was notably activated by LPS, accompanied by the down-regulation of MANF. Furthermore, rmMANF pretreatment markedly prevented LPS-induced lung tissue injury and ferroptosis characteristics with the increased GPX4 level in sepsis mice. Finally, we found that LPS-induced oxidative stress and activation of the GRP78/PERK/ATF4 pathway were significantly restrained by rmMANF pretreatment, except for endogenous MANF level. Overall, rmMANF pretreatment can prevent sepsis-associated lung injury by inhibiting ER stress-induced ferroptosis in mice.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan Zhou
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yang Yu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jian-Wen Wang
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yao Wu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Wang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ling Zhu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Li-Ming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Li-Hong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
12
|
Integrated Single-Cell and RNA Sequencing Analysis Identifies Key Immune Cell and Dendritic Cells Associated Genes Participated in Myocarditis. J Immunol Res 2022; 2022:8655343. [PMID: 36226312 PMCID: PMC9550476 DOI: 10.1155/2022/8655343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022] Open
Abstract
Myocarditis is a complex disease characterized by myocardial inflammatory cell infiltration. The purpose of our study was to investigate the gene and single-cell signature to explore the involvement of immune cells in myocarditis. Gene expressions merged from GSE35182 and GSE35182 datasets were subjected to differential expression gene (DEG) analysis and PPI network construction. The correlation analysis of DEGs with immune cell infiltration was performed. Single-cell RNA sequencing (scRNA-seq) was downloaded from GSE174458. A total of 58 DEGs were identified, including 51 DEGs upregulated and 7 DEGs downregulated in the myocarditis group compared with the control group. GO and KEGG enrichment analyses revealed that myocarditis triggered DEGs mainly involved in immune-related processes and pathways. PPI network analysis identified 20 central hub genes. Occurrence of myocarditis induced significant enrichment of conventional dendritic cell 2 (cDC2), plasmacytoid DC, and plasma cell in myocardial tissue. Mmp12, Gpnmb, and Atp6v0d2 expressions were positively correlated with cDC abundance, of which only Mmp1 and Gpnmb were shared with hub gene list. A total of 20972 cells in scRNA-seq yielded 26 cell clusters and annotated 9 cell types, including fibroblasts, neutrophils, stromal cells, monocytes, basophils, B cells, natural killer T cells, innate lymphoid cells, and T cells, and only proportion of natural killer T cells and monocytes were higher in the myocarditis than in control. Monocytes annotated 3 subclusters including DC, macrophage, and monocytes. Hub genes of Ctss, Mpeg1, Cybb, H2-Ab1, Ly86, CD74, and Lgals3 were highly expressed in monocytes cluster. Among DC-correlated DEGs, Mmp12 was mainly expressed in monocyte cluster, and Gpnmb was mainly expressed in fibroblast cluster, whereas Atp6v0d2 expression has a weaker signal and weaker cell preference. In conclusion, DC infiltration and its associated pivotal genes may be responsible for progression of myocarditis. Our study expands and provides novel information on the immune cell engagement of myocarditis.
Collapse
|
13
|
Sun T, Zhang X, Hou C, Yu S, Zhang Y, Yu Z, Kong L, Liu C, Feng L, Wang D, Ni G. Cold Plasma Irradiation Attenuates Atopic Dermatitis via Enhancing HIF-1α-Induced MANF Transcription Expression. Front Immunol 2022; 13:941219. [PMID: 35911675 PMCID: PMC9329666 DOI: 10.3389/fimmu.2022.941219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cold atmospheric plasma has been widely applied in medical treatment clinically, especially skin diseases. However, the mechanism of cold atmospheric plasma on the treatment of skin diseases is still undefined. In this study, dinitrofluorobenzene-induced atopic dermatitis mice model was constructed. Cold atmospheric plasma was able to decrease skin cells apoptosis, relieve skin inflammation, ER stress and oxidative stress caused by dinitrofluorobenzene stimulation, which was mediated by cold atmospheric plasma-induced MANF expression. In terms of mechanism, hypoxia-inducible factor-1α expression was increased intracellularly after cold atmospheric plasma treatment, which further bound to the promoter region of manf gene and enhanced MANF transcriptional expression. This study reveals that cold atmospheric plasma has a positive effect on atopic dermatitis treatment, also demonstrates the regulatory mechanism of cold atmospheric plasma on MANF expression via HIF-1α, which indicates the potential medical application of cold atmospheric plasma for atopic dermatitis treatment.
Collapse
Affiliation(s)
- Tao Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shujun Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yujing Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhuo Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ling Kong
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Changqing Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| | - Guohua Ni
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| |
Collapse
|
14
|
Lõhelaid H, Anttila JE, Liew HK, Tseng KY, Teppo J, Stratoulias V, Airavaara M. UPR Responsive Genes Manf and Xbp1 in Stroke. Front Cell Neurosci 2022; 16:900725. [PMID: 35783104 PMCID: PMC9240287 DOI: 10.3389/fncel.2022.900725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a devastating medical condition with no treatment to hasten recovery. Its abrupt nature results in cataclysmic changes in the affected tissues. Resident cells fail to cope with the cellular stress resulting in massive cell death, which cannot be endogenously repaired. A potential strategy to improve stroke outcomes is to boost endogenous pro-survival pathways. The unfolded protein response (UPR), an evolutionarily conserved stress response, provides a promising opportunity to ameliorate the survival of stressed cells. Recent studies from us and others have pointed toward mesencephalic astrocyte-derived neurotrophic factor (MANF) being a UPR responsive gene with an active role in maintaining proteostasis. Its pro-survival effects have been demonstrated in several disease models such as diabetes, neurodegeneration, and stroke. MANF has an ER-signal peptide and an ER-retention signal; it is secreted by ER calcium depletion and exits cells upon cell death. Although its functions remain elusive, conducted experiments suggest that the endogenous MANF in the ER lumen and exogenously administered MANF protein have different mechanisms of action. Here, we will revisit recent and older bodies of literature aiming to delineate the expression profile of MANF. We will focus on its neuroprotective roles in regulating neurogenesis and inflammation upon post-stroke administration. At the same time, we will investigate commonalities and differences with another UPR responsive gene, X-box binding protein 1 (XBP1), which has recently been associated with MANF’s function. This will be the first systematic comparison of these two UPR responsive genes aiming at revealing previously uncovered associations between them. Overall, understanding the mode of action of these UPR responsive genes could provide novel approaches to promote cell survival.
Collapse
Affiliation(s)
- Helike Lõhelaid
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- *Correspondence: Helike Lõhelaid,
| | - Jenni E. Anttila
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jaakko Teppo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Mikko Airavaara
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Mikko Airavaara,
| |
Collapse
|
15
|
Tang Q, Li Y, He J. MANF: an emerging therapeutic target for metabolic diseases. Trends Endocrinol Metab 2022; 33:236-246. [PMID: 35135706 DOI: 10.1016/j.tem.2022.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum-resident protein and a secretory factor and has beneficial effects in multiple diseases. Recent evidence shows that its circulating levels in humans are dynamically regulated under various metabolic diseases, including diabetes, obesity, fatty liver, and cardiovascular diseases, suggesting that MANF may play a role in these pathological states. Also, its downregulation in mice impairs glucose homeostasis, promotes lipid accumulation in the liver, reduces energy expenditure, and induces inflammation. Conversely, MANF overexpression prevents or mitigates some of these metabolic disturbances. In particular, systemic MANF administration alleviates dietary obesity and related metabolic disorders in obese mice. We therefore propose that MANF might be a promising target for treating chronic metabolic diseases.
Collapse
Affiliation(s)
- Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|