1
|
Dong J, Zheng X. SENP1 knockdown potentiates the apoptosis, cell cycle arrest, and reduces cisplatin resistance of diffuse large B cell lymphoma cells via inducing ferroptosis. Biochem Cell Biol 2024; 102:319-330. [PMID: 38708853 DOI: 10.1139/bcb-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Ferroptosis has been regarded as a critical event in the process of diffuse large B cell lymphoma (DLBCL). Sentrin-specific protease 1 (SENP1) has emerged as an oncogene in multiple human malignancies. The present work was to investigate the effects of SENP1 on the progression of DLBCL and the possible regulatory mechanism involving ferroptosis. SENP1 expression in DLBCL tissues, parental and cisplatin-resistant DLBCL cells were, respectively, tested by GEPIA database, RT-qPCR, and Western blot. Cell viability was estimated via CCK-8 assay. Flow cytometry analysis estimated cell apoptosis and cycle. Western blot examined the expression of apoptosis-, cell cycle-, and ferroptosis-associated proteins. TBARS assay and BODIPY 581/591 C11 probe measured lipid peroxidation. Related assay kit assessed total iron levels. CCK-8 and flow cytometry evaluated cisplatin resistance. SENP1 expression was raised in DLBCL tissues and cells. SENP1 knockdown reduced cell viability, boosted cell apoptosis, cell cycle arrest, and elevated cisplatin sensitivity in DLBCL. SENP1 depletion drove the ferroptosis of both parental and cisplatin-resistant DLBCL cells and ferroptosis inhibitor Fer-1 reversed the influences of SENP1 inhibition on cell viability, apoptosis, cell cycle, and cisplatin resistance in DLBCL. Anyway, SENP1 absence might facilitate ferroptosis to obstruct the development of DLBCL and cisplatin resistance.
Collapse
MESH Headings
- Humans
- Cisplatin/pharmacology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Ferroptosis/drug effects
- Apoptosis/drug effects
- Cysteine Endopeptidases/metabolism
- Cysteine Endopeptidases/genetics
- Drug Resistance, Neoplasm/drug effects
- Cell Cycle Checkpoints/drug effects
- Antineoplastic Agents/pharmacology
- Cell Survival/drug effects
- Cell Line, Tumor
Collapse
Affiliation(s)
- Jinfeng Dong
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xiaoqiang Zheng
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| |
Collapse
|
2
|
Qiu Z, Deng C, Zhou F, Chen Y, Chen X, Liu X, Ye C, Jin N. Ferroptosis heterogeneity within the tumor microenvironment revealed a genetic blueprint of breast cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:2741-2752. [PMID: 38251953 DOI: 10.1002/tox.24142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
The tumor microenvironment (TME) significantly influences disease progression through immune infiltration, while ferroptosis, a recently discovered cell death mechanism, plays a crucial role in tumor suppression. However, its role in breast cancer is not clear. In this study, we analyzed bulk RNA and single-cell RNA sequencing data from 1217 samples, including 1104 breast cancer patients and 113 controls, to identify ferroptosis-related genes (FRGs) and construct a prognostic model. Using univariate cox regression, LASSO regression, and multivariate cox regression analysis, we discovered 21 FRGs and 3 TME-related immune cell types with prognostic value. Dimensionality reduction clustering and visualization were performed using the UMAP method, while the immune infiltration process was calculated with the TIP online tool. We employed GSEA enrichment analysis, WGCNA clustering analysis, and correlation analysis to examine functional differences, and the mutation analysis of the best and worst prognosis groups was conducted using the maftools package. Our findings revealed that knocking down the expression of the hub gene SLC39A7 significantly impacted cancer cell apoptosis and combining ferroptosis and TME scores yielded high prognostic power. Epithelial cells and B cells exhibited higher ferroptosis scores, which were independently associated with immune checkpoint blockade (ICB) response and ICB gene expression. This study provides a foundation for further exploration of the relationship between ferroptosis and ICB response in breast cancer. In conclusion, we developed a prognostic model based on ferroptosis and infiltrated immune cells that effectively stratified breast cancer patients and demonstrated the role of SLC39A7 in breast cancer pathogenesis through the regulation of apoptosis.
Collapse
Affiliation(s)
- Ziran Qiu
- Department of Surgical Oncology, Loudi, Hunan, China
| | - Chongwen Deng
- Department of Surgical Oncology, Loudi, Hunan, China
| | - Fuyin Zhou
- Department of Surgical Oncology, Loudi, Hunan, China
| | - Yuan Chen
- Department of Surgical Oncology, Loudi, Hunan, China
| | - XinLiang Chen
- Department of Surgical Oncology, Loudi, Hunan, China
| | - Xinyu Liu
- Department of Otolaryngology, Head and Neck Surgery, Loudi City Central Hospital, Loudi, Hunan, China
| | - Chunhua Ye
- Department of Surgical Oncology, Loudi, Hunan, China
| | - Na Jin
- Department of Surgical Oncology, Loudi, Hunan, China
| |
Collapse
|
3
|
Jelicic J, Larsen TS, Andjelic B, Juul-Jensen K, Bukumiric Z. Should we use nomograms for risk predictions in diffuse large B cell lymphoma patients? A systematic review. Crit Rev Oncol Hematol 2024; 196:104293. [PMID: 38346460 DOI: 10.1016/j.critrevonc.2024.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Models based on risk stratification are increasingly reported for Diffuse large B cell lymphoma (DLBCL). Due to a rising interest in nomograms for cancer patients, we aimed to review and critically appraise prognostic models based on nomograms in DLBCL patients. A literature search in PubMed/Embase identified 59 articles that proposed prognostic models for DLBCL by combining parameters of interest (e.g., clinical, laboratory, immunohistochemical, and genetic) between January 2000 and 2024. Of them, 40 studies proposed different gene expression signatures and incorporated them into nomogram-based prognostic models. Although most studies assessed discrimination and calibration when developing the model, many lacked external validation. Current nomogram-based models for DLBCL are mainly developed from publicly available databases, lack external validation, and have no applicability in clinical practice. However, they may be helpful in individual patient counseling, although careful considerations should be made regarding model development due to possible limitations when choosing nomograms for prognostication.
Collapse
Affiliation(s)
- Jelena Jelicic
- Department of Hematology, Sygehus Lillebaelt, Vejle, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark.
| | - Thomas Stauffer Larsen
- Department of Hematology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bosko Andjelic
- Department of Haematology, Blackpool Victoria Hospital, Lancashire Haematology Centre, Blackpool, United Kingdom
| | - Karen Juul-Jensen
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Zoran Bukumiric
- Department of Statistics, Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
4
|
Zhu Y, He J, Wei R, Liu J. Construction and experimental validation of a novel ferroptosis-related gene signature for myelodysplastic syndromes. Immun Inflamm Dis 2024; 12:e1221. [PMID: 38578040 PMCID: PMC10996383 DOI: 10.1002/iid3.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by morphological abnormalities and peripheral blood cytopenias, carrying a risk of progression to acute myeloid leukemia. Although ferroptosis is a promising target for MDS treatment, the specific roles of ferroptosis-related genes (FRGs) in MDS diagnosis have not been elucidated. METHODS MDS-related microarray data were obtained from the Gene Expression Omnibus database. A comprehensive analysis of FRG expression levels in patients with MDS and controls was conducted, followed by the use of multiple machine learning methods to establish prediction models. The predictive ability of the optimal model was evaluated using nomogram analysis and an external data set. Functional analysis was applied to explore the underlying mechanisms. The mRNA levels of the model genes were verified in MDS clinical samples by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The extreme gradient boosting model demonstrated the best performance, leading to the identification of a panel of six signature genes: SREBF1, PTPN6, PARP9, MAP3K11, MDM4, and EZH2. Receiver operating characteristic curves indicated that the model exhibited high accuracy in predicting MDS diagnosis, with area under the curve values of 0.989 and 0.962 for the training and validation cohorts, respectively. Functional analysis revealed significant associations between these genes and the infiltrating immune cells. The expression levels of these genes were successfully verified in MDS clinical samples. CONCLUSION Our study is the first to identify a novel model using FRGs to predict the risk of developing MDS. FRGs may be implicated in MDS pathogenesis through immune-related pathways. These findings highlight the intricate correlation between ferroptosis and MDS, offering insights that may aid in identifying potential therapeutic targets for this debilitating disorder.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun He
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Rong Wei
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Bian W, Li H, Chen Y, Yu Y, Lei G, Yang X, Li S, Chen X, Li H, Yang J, Yang C, Li Y, Zhou Y. Ferroptosis mechanisms and its novel potential therapeutic targets for DLBCL. Biomed Pharmacother 2024; 173:116386. [PMID: 38492438 DOI: 10.1016/j.biopha.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), a heterogeneous lymphoid malignancy, poses a significant threat to human health. The standard therapeutic regimen for patients with DLBCL is rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), with a typical cure rate of 50-70%. However, some patients either relapse after complete remission (CR) or exhibit resistance to R-CHOP treatment. Therefore, novel therapeutic approaches are imperative for managing high-risk or refractory DLBCL. Ferroptosis is driven by iron-dependent phospholipid peroxidation, a process that relies on the transition metal iron, reactive oxygen species (ROS), and phospholipids containing polyunsaturated fatty acids-containing phospholipids (PUFA-PLs). Research indicates that ferroptosis is implicated in various carcinogenic and anticancer pathways. Several hematological disorders exhibit heightened sensitivity to cell death induced by ferroptosis. DLBCL cells, in particular, demonstrate an increased demand for iron and an upregulation in the expression of fatty acid synthase. Additionally, there exists a correlation between ferroptosis-associated genes and the prognosis of DLBCL. Therefore, ferroptosis may be a promising novel target for DLBCL therapy. In this review, we elucidate ferroptosis mechanisms, its role in DLBCL, and the potential therapeutic targets in DLBCL. This review offers novel insights into the application of ferroptosis in treatment strategies for DLBCL.
Collapse
Affiliation(s)
- Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haoran Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xi Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Chen C, Li T, Li Y, Chen Z, Shi P, Li Y, Qian S. GPX4 is a potential diagnostic and therapeutic biomarker associated with diffuse large B lymphoma cell proliferation and B cell immune infiltration. Heliyon 2024; 10:e24857. [PMID: 38333875 PMCID: PMC10850411 DOI: 10.1016/j.heliyon.2024.e24857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
At present, GPX4's role in the occurrence and development of diffuse large B lymphoma (DLBCL) is rarely reported. This study's purpose is to explore GPX4's significance in the diagnosis, treatment, and pathological mechanisms of DLBCL. The TIMER 2.0, GEPIA, and GEO databases were used to analyze GPX4's expression levels in DLBCL tissue, peripheral blood, and single cells, and evaluate its potential performance as a therapeutic and diagnostic marker. Cell experiments validate GPX4's role in DLBCL cells. And revealed the potential mechanism of GPX4's action from three aspects: immunity, pathogenic gene expression, and protein interaction. The results indicate that GPX4 can be used as a biomarker for treatment and diagnosis (FC > 1.5, P < 0.05, AUC>0.8, KM-P value < 0.05). In single cell data, GPX4 also showed high expression in immune cells. Besides, cell experiments have confirmed that GPX4's high expression can inhibit DLBCL cells' proliferation. Meanwhile, we found a negative correlation between GPX4 and the 16 core DLBCL's pathogenic genes, and a significant negative correlation with immune B cell infiltration. In summary, GPX4 can serve as a potential therapeutic and diagnostic marker for DLBCL. GPX4's high expression can lead to a good prognosis in DLBCL patients, which may be related to its inhibition of cancer cell proliferation, high expression of key pathogenic genes, and infiltration of immune B cells.
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, West Lake University, School of Medicine, Hangzhou, China
| | - TongYu Li
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yiwei Li
- Department of Hematology, Affiliated Hangzhou First People's Hospital, West Lake University, School of Medicine, Hangzhou, China
| | - Zhenzhen Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, West Lake University, School of Medicine, Hangzhou, China
| | - Pengfei Shi
- Department of Hematology, Affiliated Hangzhou First People's Hospital, West Lake University, School of Medicine, Hangzhou, China
| | - Yun Li
- Team of Neonatal & Infant Development, Health and Nutrition, NDHN, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan, China
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, West Lake University, School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Yu T, Xu-Monette ZY, Yu L, Li Y, Young KH. Mechanisms of ferroptosis and targeted therapeutic approaches in lymphoma. Cell Death Dis 2023; 14:771. [PMID: 38007476 PMCID: PMC10676406 DOI: 10.1038/s41419-023-06295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Lymphoma is the sixth most common type of cancer worldwide. Under the current treatment standards, patients with lymphoma often fail to respond to treatment or relapse early and require further therapy. Hence, novel therapeutic strategies need to be explored and our understanding of the molecular underpinnings of lymphomas should be expanded. Ferroptosis, a non-apoptotic regulated cell death, is characterized by increased reactive oxygen species and lipid peroxidation due to metabolic dysfunction. Excessive or lack of ferroptosis has been implicated in tumor development. Current preclinical evidences suggest that ferroptosis participates in tumorigenesis, progression, and drug resistance of lymphoma, identifying a potential biomarker and an attractive molecular target. Our review summarizes the core mechanisms and regulatory networks of ferroptosis and discusses existing evidences of ferroptosis induction for the treatment of lymphoma, with intent to provide a framework for understanding the role of ferroptosis in lymphomagenesis and a new perspective of lymphoma treatment.
Collapse
Affiliation(s)
- Tiantian Yu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Hematology and Oncology, The Second Affiliated Hospital of NanChang University, Nanchang, China
| | - Zijun Y Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Li Yu
- Department of Hematology and Oncology, The Second Affiliated Hospital of NanChang University, Nanchang, China
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ken H Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|
8
|
Chen X, Hu S, Han Y, Cai Y, Lu T, Hu X, Chu Y, Zhou X, Wang X. Ferroptosis-related STEAP3 acts as predictor and regulator in diffuse large B cell lymphoma through immune infiltration. Clin Exp Med 2023; 23:2601-2617. [PMID: 36682001 DOI: 10.1007/s10238-023-00996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 01/23/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a usual-seen hematological malignant tumor possessing molecular and genetic heterogeneity. Ferroptosis induction has been increasingly acknowledged to be an advantageous therapeutic method in tumor treatment by triggering cell death of tumor cells. However, studies on the function of ferroptosis in DLBCL remain scarce, especially the interaction with the tumor immune microenvironment (TIME). The clinical and biological functions of ferroptosis-related genes in DLBCL were still warranted to be explored. A ferroptosis-related risk model was constructed, followed by functional enrichment analyses and evaluation of immune profile. Quantitative real-time PCR, western blotting, and immunohistochemistry were conducted to examine the RNA and protein levels. Dysregulated expression of the major ferroptosis-related genes was found in DLBCL. A prognostic risk model based on 10 ferroptosis-related genes was constructed. The risk score served as an independent prognostic indicator for DLBCL patients in univariate and multivariate Cox regression analysis. Patients with low-risk scores presented a more favorable prognosis. Functional enrichment analysis revealed that immune-related pathways were significantly enriched, and the high-risk group exhibited less immunocyte infiltration, lower immunoscore, and downregulated PD-L1 expression relative to the low-risk group. Two molecular subtypes were determined through consensus clustering of the expression of ferroptosis-related genes. Cluster 1 was relevant to favorable prognosis, higher immunoscore, and elevated PD-L1 expression. More importantly, STEAP3 was screened as a reliable biomarker for DLBCL, and its enhanced expression levels of mRNA and protein were verified in public databases and clinical specimens. Our study demonstrated the crucial role of ferroptosis-related genes including STEAP3 in the TIME of DLBCL and identified promising novel molecular targets for DLBCL treatment.
Collapse
Affiliation(s)
- Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Yurou Chu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
9
|
Lu X, Zhang Q, Xie Y. TCFL5 knockdown sensitizes DLBCL to doxorubicin treatment via regulation of GPX4. Cell Signal 2023; 110:110831. [PMID: 37516394 DOI: 10.1016/j.cellsig.2023.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Resistance to chemo-drug is a major cause of bad outcome in diffuse large B-cell lymphoma (DLBCL). It was reported that TCFL5 may be related to chemoresistance in childhood acute lymphoblastic leukemia. However, it is still unclear whether TCFL5 is involved in DLBCL drug-resistance. METHODS To explore the underlying mechanism of doxorubicin resistance, recombinant lentivirus was applied to control expression of TCFL5 in DLBCL cells. CCK-8 assay was perfomed to investigate the influence of doxorubicin on proliferation of TCFL5-overexpressed or sh-TCFL5 DLBCL cells. Correlation between TCFL5 and GPX4 was analyzed with bioinformatic methods, which was further confirmed by qPCR and western blot. TCFL5 overexpression conferred doxorubicin resistance via regulating GPX4 and was verified by TUNEL assay and western blot in vitro and mice model in vivo. RESULTS TCFL5 was enriched in DLBCL cells and conferred doxorubicin resistance through binding to GPX4. Inhibition of TCFL5 enhanced the sensitivity of DLBCL cells to doxorubicin. GPX4 knockdown reversed doxorubicin resistance in TCFL5-overexpressed DLBCL cells. CONCLUSION DLBCL cells overexpress TCFL5 that promotes chemoresistance by regulating GPX4. Targeting TCFL5 may provide a prospective therapeutic strategy for doxorubicin-resistant DLBCL.
Collapse
Affiliation(s)
- Xueying Lu
- Graduate School, Nanjing Medical University, Nanjing 210000, China
| | - Quan'e Zhang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, China
| | - Yandong Xie
- Graduate School, Nanjing Medical University, Nanjing 210000, China.
| |
Collapse
|
10
|
Yu L, Wang YF, Xiao J, Shen QQ, Chi SS, Gao YL, Lin DZ, Ding J, Fang YF, Chen Y. Dysregulation of iron homeostasis by TfR-1 renders EZH2 wild type diffuse large B-cell lymphoma resistance to EZH2 inhibition. Acta Pharmacol Sin 2023; 44:2113-2124. [PMID: 37225847 PMCID: PMC10545686 DOI: 10.1038/s41401-023-01097-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/22/2023] [Indexed: 05/26/2023] Open
Abstract
EZH2 has been regarded as an efficient target for diffuse large B-cell lymphoma (DLBCL), but the clinical benefits of EZH2 inhibitors (EZH2i) are limited. To date, only EPZ-6438 has been approved by FDA for the treatment of follicular lymphoma and epithelioid sarcoma. We have discovered a novel EZH1/2 inhibitor HH2853 with a better antitumor effect than EPZ-6438 in preclinical studies. In this study we explored the molecular mechanism underlying the primary resistance to EZH2 inhibitors and sought for combination therapy strategy to overcome it. By analyzing EPZ-6438 and HH2853 response profiling, we found that EZH2 inhibition increased intracellular iron through upregulation of transferrin receptor 1 (TfR-1), ultimately triggered resistance to EZH2i in DLBCL cells. We demonstrated that H3K27ac gain by EZH2i enhanced c-Myc transcription, which contributed to TfR-1 overexpression in insensitive U-2932 and WILL-2 cells. On the other hand, EZH2i impaired the occurrence of ferroptosis by upregulating the heat shock protein family A (Hsp70) member 5 (HSPA5) and stabilizing glutathione peroxidase 4 (GPX4), a ferroptosis suppressor; co-treatment with ferroptosis inducer erastin effectively overrode the resistance of DLBCL to EZH2i in vitro and in vivo. Altogether, this study reveals iron-dependent resistance evoked by EZH2i in DLBCL cells, and suggests that combination with ferroptosis inducer may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Lei Yu
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ya-Fang Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Xiao
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Qian-Qian Shen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuai-Shuai Chi
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ying-Lei Gao
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dong-Ze Lin
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Yan-Fen Fang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
11
|
Wen Q, Li X, Zhao K, Li Q, Zhu F, Wu G, Lin T, Zhang L. A new prognostic nomogram in patients with mucosa-associated lymphoid tissue lymphoma: a multicenter retrospective study. Front Oncol 2023; 13:1123469. [PMID: 37182160 PMCID: PMC10166839 DOI: 10.3389/fonc.2023.1123469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Background The present study sought to understand how clinical factors and inflammatory biomarkers affected the prognosis of mucosa-associated lymphoid tissue (MALT) lymphoma and develop a predictive nomogram to assist in clinical practice. Methods We conducted a retrospective study on 183 cases of newly diagnosed MALT lymphoma from January 2011 to October 2021, randomly divided into two groups: a training cohort (75%); and a validation cohort (25%). The least absolute shrinkage and selection operator (LASSO) regression analysis was combined with multivariate Cox regression analysis to construct a nomogram for predicting the progression-free survival (PFS) in patients with MALT lymphoma. To evaluate the accuracy of the nomogram model, the area under the receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used. Results The PFS was significantly associated with the Ann Arbor Stage, targeted therapy, radiotherapy, and platelet-to-lymphocyte ratio (PLR) in MALT lymphoma. These four variables were combined to establish a nomogram to predict the PFS rates at three and five years. Importantly, our nomogram yielded good predictive value with area under the ROC curve (AUC) values of 0.841 and 0.763 in the training cohort and 0.860 and 0.879 in the validation cohort for the 3-year and 5-year PFS, respectively. Furthermore, the 3-year and 5-year PFS calibration curves revealed a high degree of consistency between the prediction and the actual probability of relapse. Additionally, DCA demonstrated the net clinical benefit of this nomogram and its ability to identify high-risk patients accurately. Conclusion The new nomogram model could accurately predict the prognosis of MALT lymphoma patients and assist clinicians in designing individualized treatments.
Collapse
Affiliation(s)
- Qiuyue Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Li
- Department of Medical Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
| | - Kewei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuhui Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongyu Lin
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine University of Electronic Science & Technology of China, Sichuan, Chengdu, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Liling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Mynott RL, Habib A, Best OG, Wallington-Gates CT. Ferroptosis in Haematological Malignancies and Associated Therapeutic Nanotechnologies. Int J Mol Sci 2023; 24:ijms24087661. [PMID: 37108836 PMCID: PMC10146166 DOI: 10.3390/ijms24087661] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Haematological malignancies are heterogeneous groups of cancers of the bone marrow, blood or lymph nodes, and while therapeutic advances have greatly improved the lifespan and quality of life of those afflicted, many of these cancers remain incurable. The iron-dependent, lipid oxidation-mediated form of cell death, ferroptosis, has emerged as a promising pathway to induce cancer cell death, particularly in those malignancies that are resistant to traditional apoptosis-inducing therapies. Although promising findings have been published in several solid and haematological malignancies, the major drawbacks of ferroptosis-inducing therapies are efficient drug delivery and toxicities to healthy tissue. The development of tumour-targeting and precision medicines, particularly when combined with nanotechnologies, holds potential as a way in which to overcome these obstacles and progress ferroptosis-inducing therapies into the clinic. Here, we review the current state-of-play of ferroptosis in haematological malignancies as well as encouraging discoveries in the field of ferroptosis nanotechnologies. While the research into ferroptosis nanotechnologies in haematological malignancies is limited, its pre-clinical success in solid tumours suggests this is a very feasible therapeutic approach to treat blood cancers such as multiple myeloma, lymphoma and leukaemia.
Collapse
Affiliation(s)
- Rachel L Mynott
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Ali Habib
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Oliver G Best
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Craig T Wallington-Gates
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
- Flinders Medical Centre, Bedford Park, SA 5042, Australia
| |
Collapse
|
13
|
Wu H, Sun HC, Ouyang GF. T-cell immunoglobulin mucin molecule-3, transformation growth factor β, and chemokine-12 and the prognostic status of diffuse large B-cell lymphoma. World J Clin Cases 2022; 10:11804-11811. [PMID: 36405294 PMCID: PMC9669877 DOI: 10.12998/wjcc.v10.i32.11804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The effects of T-cell immunoglobulin mucin molecule-3 (Tim-3), transforming growth factor β (TGF-β), and chemokine-12 (CXCL12) expression on the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) have not been elucidated.
AIM To examine the correlation between Tim-3, TGF-β and CXCL12 expression and DLBCL prognosis.
METHODS Lymph node tissues of 97 patients with DLBCL and 93 normal-response hyperplastic lymph node tissues treated from January 2017 to May 2019 were selected as the DLBCL and control groups, respectively. The expression of Tim-3, TGF-β, and CXCL12 was detected immunohistochemically. Patients were followed up for 3 years, and progression-free survival was recorded. Cox multifactorial analysis was performed to analyze the risk factors for poor prognosis.
RESULTS The positive expression rates of Tim-3, TGF-β, and CXCL12 were higher in DLBCL tissues than in non-cancerous (control) tissues (P < 0.05). One-year post-surgery, the positive expression rates of Tim-3, TGF-β, and CXCL12 were higher in patients with effective treatment than in those with ineffective treatment (P < 0.05). The 3-year progression-free survival of 97 patients with DLBCL was 67.01% (65/97). Univariate analysis revealed that clinical stage, bone marrow infiltration, International Prognostic Index (IPI) score, Tim-3 positivity, TGF-β positivity, and CXCL12 positivity were associated with poor prognosis (P < 0.05). Multivariate Cox regression analysis demonstrated that clinical stage III–IV, bone marrow infiltration, mediate-to-high-risk IPI scores, Tim-3 positivity, TGF-β positivity, and CXCL12 positivity were independent risk factors affecting prognosis (P < 0.05).
CONCLUSION DLBCL tissues exhibit high positive expression of Tim-3, TGF-β, and CXCL12, and a high expression of all three indicates a poor prognosis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Hematology, Ningbo First Hospital, Ningbo Clinical Research Center for Hematologic Malignancies, Ningbo 315010, Zhejiang Province, China
| | - Hui-Cong Sun
- Department of Adult Internal Medicine, Ningbo Women and Children's Hospital, Ningbo 315012, Zhejiang Province, China`
| | - Gui-Fang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo Clinical Research Center for Hematologic Malignancies, Ningbo 315010, Zhejiang Province, China
| |
Collapse
|
14
|
Zhou Q, Li T, Qin Q, Huang X, Wang Y. Ferroptosis in lymphoma: Emerging mechanisms and a novel therapeutic approach. Front Genet 2022; 13:1039951. [PMID: 36406116 PMCID: PMC9669386 DOI: 10.3389/fgene.2022.1039951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2023] Open
Abstract
Unlike apoptosis, necroptosis, autophagy, and pyroptosis, ferroptosis represents a new type of cell death, which is characterized by iron-dependent lipid peroxidation. This process relies largely on the metabolite reactive oxygen species (ROS), phospholipids containing polyunsaturated fatty acids (PUFA-PL), transition metal iron, intra-, and intercellular signaling events, and environmental stress that regulate cellular metabolism and ROS levels. Recent studies show that ferroptosis plays an important role in tumorigenesis, tumor development, and the treatment of hematological malignancies, including lymphoma. Despite the constant emergence of new drugs, the differences in morphological features, immunophenotypes, biological patterns, rates of onset, and response to treatment in lymphoma pose major therapeutic challenges. Since lymphoma is associated with ferroptosis and shows sensitivity towards it, targeting the potential regulatory factors may regulate lymphoma progression. This has emerged as a research hotspot. This review summarizes the current knowledge on ferroptosis induction and resistance mechanisms, their roles and mechanistic details of ferroptosis in lymphoma suppression and immunity, and finally the treatment strategies for lymphoma by targeting ferroptosis.
Collapse
Affiliation(s)
- Qiao Zhou
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Qin Qin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Jing S, Lu Y, Zhang J, Ren Y, Mo Y, Liu D, Duan L, Yuan Z, Wang C, Wang Q. Levistilide a Induces Ferroptosis by Activating the Nrf2/HO-1 Signaling Pathway in Breast Cancer Cells. Drug Des Devel Ther 2022; 16:2981-2993. [PMID: 36105321 PMCID: PMC9464640 DOI: 10.2147/dddt.s374328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yantong Lu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, People’s Republic of China
| | - Jing Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yan Ren
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, People’s Republic of China
| | - Yousheng Mo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Dongdong Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Lining Duan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People’s Republic of China
| | - Changjun Wang
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, People’s Republic of China
- Correspondence: Changjun Wang; Qi Wang, Email ;
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|