1
|
Ziehr BK, MacDonald JA. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119823. [PMID: 39173681 DOI: 10.1016/j.bbamcr.2024.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors containing pyrin (NLRP) family of cytosolic pattern-recognition receptors play an integral role in host defense following exposure to a diverse set of pathogenic and sterile threats. The canonical event following ligand recognition is the formation of a heterooligomeric signaling complex termed the inflammasome that produces pro-inflammatory cytokines. Dysregulation of this process is associated with many autoimmune, cardiovascular, metabolic, and neurodegenerative diseases. Despite the range of activating stimuli which affect varied cell types, recent literature makes evident that reactive oxygen species (ROS) are integral to the initiation and propagation of inflammasome signaling. Notably, ROS production and inflammasome activation act in a positive feedback loop to promote this potent immune response. While NLRP3 is by far the most extensively studied NLRP, there is also sufficient literature to make these conclusions for other NLRPs family members. In all cases, a knowledge gap exists regarding the molecular targets and effects of ROS. Future research to define these targets and to parse the order and timing of ROS-mediated NLRP activation will provide meaningful insights into inflammasome biology. This will create novel therapeutic opportunities for the numerous illnesses that are impacted by inflammasome activity.
Collapse
Affiliation(s)
- Bjoern K Ziehr
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
2
|
Li Y, Qiang R, Cao Z, Wu Q, Wang J, Lyu W. NLRP3 Inflammasomes: Dual Function in Infectious Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:407-417. [PMID: 39102612 PMCID: PMC11299487 DOI: 10.4049/jimmunol.2300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/11/2024] [Indexed: 08/07/2024]
Abstract
The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome has been the most distinctive polymer protein complex. After recognizing the endogenous and exogenous danger signals, NLRP3 can cause inflammation by pyroptosis and secretion of mature, bioactive forms of IL-1β and IL-18. The NLRP3 inflammasome is essential in the genesis and progression of infectious illnesses. Herein, we provide a comprehensive review of the NLRP3 inflammasome in infectious diseases, focusing on its two-sided effects. As an essential part of host defense with a protective impact, abnormal NLRP3 inflammasome activation, however, result in a systemic high inflammatory response, leading to subsequent damage. In addition, scientific evidence of small molecules, biologics, and phytochemicals acting on the NLRP3 inflammasome has been reviewed. We believe that the NLRP3 inflammasome helps us understand the pathological mechanism of different stages of infectious diseases and that inhibitors targeting the NLRP3 inflammasome will become a new and valuable research direction for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Rui Qiang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Shunyi Hospital, Beijing, China
| | - Zhengmin Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Qingjuan Wu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Jiuchong Wang
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Wenliang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| |
Collapse
|
3
|
Brujats A, Huerta A, Osuna-Gómez R, Guinart-Cuadra A, Ferrero-Gregori A, Pujol C, Soriano G, Poca M, Fajardo J, Escorsell A, Gallego A, Vidal S, Villanueva C, Alvarado-Tapias E. Immune Response and Risk of Decompensation following SARS-CoV-2 Infection in Outpatients with Advanced Chronic Liver Disease. Int J Mol Sci 2024; 25:8302. [PMID: 39125872 PMCID: PMC11312207 DOI: 10.3390/ijms25158302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Advanced chronic liver disease (ACLD) is associated with a wide spectrum of immune dysfunction. The clinical impact of SARS-CoV-2 on the development of decompensation and immune response in unvaccinated outpatients has not as yet been clearly defined. This study aimed to evaluate the clinical and immunological impact of SARS-CoV-2 on outpatients with ACLD. This is an observational case-control study, in which ACLD outpatients were included prospectively and consecutively and classified into two groups: SARS-CoV-2 infected and non-infected. Patients' baseline characteristics and infection data were collected and analyzed. Immunoglobulin G (IgG) levels against Spike 1 were evaluated. The primary endpoint was risk of liver decompensation during follow-up, assessed after propensity score matching and adjusted by Cox regression. Between October 2020 and July 2021, ACLD outpatients (n = 580) were identified, and 174 patients with clinical follow-up were included. SARS-CoV-2 infection incidence was 7.6% (n = 44). Risk of liver decompensation was significantly higher after infection (HR = 2.43 [1.01-5.86], p = 0.048) vs. non-infection. The time of IgG evaluation was similar in all patients (n = 74); IgG concentrations were significantly higher in compensated vs. decompensated patients (1.02 ± 0.35 pg/mL vs. 0.34 ± 0.16 pg/mL, p < 0.0001) and correlated with hemoglobin levels. The dysregulation of the innate immune response in patients with decompensated liver disease increased the risk of further decompensation following SARS-CoV-2, mainly due to a worsening of ascites.
Collapse
Affiliation(s)
- Anna Brujats
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
- Departament Medicina UAB, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Anna Huerta
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
| | - Rubén Osuna-Gómez
- Inflammatory Diseases Department, Institut Recerca Hospital de la Santa Creu i Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (A.G.-C.); (S.V.)
| | - Albert Guinart-Cuadra
- Inflammatory Diseases Department, Institut Recerca Hospital de la Santa Creu i Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (A.G.-C.); (S.V.)
| | - Andreu Ferrero-Gregori
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
| | - Clàudia Pujol
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
| | - German Soriano
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
- Departament Medicina UAB, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Poca
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Fajardo
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
| | - Angels Escorsell
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
- Departament Medicina UAB, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adolfo Gallego
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
| | - Silvia Vidal
- Inflammatory Diseases Department, Institut Recerca Hospital de la Santa Creu i Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (A.G.-C.); (S.V.)
| | - Càndid Villanueva
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
- Departament Medicina UAB, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Edilmar Alvarado-Tapias
- Department of Gastroenterology and Hepatology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Insitute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.B.); (A.H.); (A.F.-G.); (C.P.); (G.S.); (M.P.); (J.F.); (A.E.); (A.G.); (C.V.)
- Departament Medicina UAB, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Zhang L, Feng X, Chen W, Wang B, He S, Fan H, Liu D. Non-infectious immune complexes downregulate the production of interferons and tumor necrosis factor-α in primary porcine alveolar macrophages in vitro. Front Vet Sci 2024; 11:1420466. [PMID: 38962699 PMCID: PMC11221350 DOI: 10.3389/fvets.2024.1420466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) has been harming the pig industry worldwide for nearly 40 years. Although scientific researchers have made substantial efforts to explore PRRSV pathogenesis, the immune factors influencing PRRSV infection still need to be better understood. Infectious virus-antibody immune complexes (ICs) formed by PRRSV and sub-or non-neutralizing antibodies specific for PRRSV may significantly promote the development of PRRS by enhancing PRRSV replication through antibody-dependent enhancement. However, nothing is known about whether PRRSV infection is affected by non-infectious ICs (NICs) formed by non-pathogenic/infectious antigens and corresponding specific antibodies. Here, we found that PRRSV significantly induced the transcripts and proteins of interferon-α (IFN-α), IFN-β, IFN-γ, IFN-λ1, and tumor necrosis factor-α (TNF-α) in vitro primary porcine alveolar macrophages (PAMs) in the early stage of infection. Our results showed that NICs formed by rabbit-negative IgG (RNI) and pig anti-RNI specific IgG significantly reduced the transcripts and proteins of IFN-α, IFN-β, IFN-γ, IFN-λ1, and TNF-α in vitro PAMs and significantly elevated the transcripts and proteins of interleukine-10 (IL-10) and transforming growth factor-β1 (TGF-β1) in vitro PAMs. NICs-mediated PRRSV infection showed that NICs not only significantly decreased the induction of IFN-α, IFN-β, IFN-γ, IFN-λ1, and TNF-α by PRRSV but also significantly increased the induction of IL-10 and TGF-β1 by PRRSV and considerably enhanced PRRSV replication in vitro PAMs. Our data suggested that NICs could downregulate the production of antiviral cytokines (IFN-α/β/γ/λ1 and TNF-α) during PRRSV infection in vitro and facilitated PRRSV proliferation in its host cells by inhibiting innate antiviral immune response. This study elucidated one novel immune response to PRRSV infection, which would enhance our understanding of the pathogenesis of PRRSV.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongjie Fan
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Deyi Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
5
|
Rosas-Murrieta NH, Rodríguez-Enríquez A, Herrera-Camacho I, Millán-Pérez-Peña L, Santos-López G, Rivera-Benítez JF. Comparative Review of the State of the Art in Research on the Porcine Epidemic Diarrhea Virus and SARS-CoV-2, Scope of Knowledge between Coronaviruses. Viruses 2024; 16:238. [PMID: 38400014 PMCID: PMC10892376 DOI: 10.3390/v16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents comparative information corresponding to the progress in knowledge of some aspects of infection by the porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronaviruses. PEDV is an alphacoronavirus of great economic importance due to the million-dollar losses it generates in the pig industry. PEDV has many similarities to the SARS-CoV-2 betacoronavirus that causes COVID-19 disease. This review presents possible scenarios for SARS-CoV-2 based on the collected literature on PEDV and the tools or strategies currently developed for SARS-CoV-2 that would be useful in PEDV research. The speed of the study of SARS-CoV-2 and the generation of strategies to control the pandemic was possible due to the knowledge derived from infections caused by other human coronaviruses such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Therefore, from the information obtained from several coronaviruses, the current and future behavior of SARS-CoV-2 could be inferred and, with the large amount of information on the virus that causes COVID-19, the study of PEDV could be improved and probably that of new emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Nora H. Rosas-Murrieta
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Alan Rodríguez-Enríquez
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Lourdes Millán-Pérez-Peña
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular y Virología, Instituto Mexicano del Seguro Social (IMSS), Metepec 74360, Mexico;
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México 38110, Mexico;
| |
Collapse
|
6
|
Móvio MI, de Almeida GWC, Martines IDGL, Barros de Lima G, Sasaki SD, Kihara AH, Poole E, Nevels M, Carlan da Silva MC. SARS-CoV-2 ORF8 as a Modulator of Cytokine Induction: Evidence and Search for Molecular Mechanisms. Viruses 2024; 16:161. [PMID: 38275971 PMCID: PMC10819295 DOI: 10.3390/v16010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Severe cases of SARS-CoV-2 infection are characterized by an immune response that leads to the overproduction of pro-inflammatory cytokines, resulting in lung damage, cardiovascular symptoms, hematologic symptoms, acute kidney injury and multiple organ failure that can lead to death. This remarkable increase in cytokines and other inflammatory molecules is primarily caused by viral proteins, and particular interest has been given to ORF8, a unique accessory protein specific to SARS-CoV-2. Despite plenty of research, the precise mechanisms by which ORF8 induces proinflammatory cytokines are not clear. Our investigations demonstrated that ORF8 augments production of IL-6 induced by Poly(I:C) in human embryonic kidney (HEK)-293 and monocyte-derived dendritic cells (mono-DCs). We discuss our findings and the multifaceted roles of ORF8 as a modulator of cytokine response, focusing on type I interferon and IL-6, a key component of the immune response to SARS-CoV-2. In addition, we explore the hypothesis that ORF8 may act through pattern recognition receptors of dsRNA such as TLRs.
Collapse
Affiliation(s)
- Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (M.I.M.)
| | - Giovana Waner Carneiro de Almeida
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Isabella das Graças Lopes Martines
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Gilmara Barros de Lima
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Sergio Daishi Sasaki
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (M.I.M.)
| | - Emma Poole
- Division of Virology, Department of Pathology, Cambridge University, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael Nevels
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK;
| | - Maria Cristina Carlan da Silva
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| |
Collapse
|
7
|
Agac A, Kolbe SM, Ludlow M, Osterhaus ADME, Meineke R, Rimmelzwaan GF. Host Responses to Respiratory Syncytial Virus Infection. Viruses 2023; 15:1999. [PMID: 37896776 PMCID: PMC10611157 DOI: 10.3390/v15101999] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.A.); (S.M.K.); (M.L.); (A.D.M.E.O.); (R.M.)
| |
Collapse
|
8
|
Kanwar B, Khattak A, Kast RE. Dapsone Lowers Neutrophil to Lymphocyte Ratio and Mortality in COVID-19 Patients Admitted to the ICU. Int J Mol Sci 2022; 23:ijms232415563. [PMID: 36555204 PMCID: PMC9779021 DOI: 10.3390/ijms232415563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Some physicians use dapsone as part of the standard treatment of severe COVID-19 patients entering the ICU, though some do not. To obtain an indication of whether dapsone is helping or not, we undertook a retrospective chart review of 29 consecutive ICU COVID-19 patients receiving dapsone and 30 not receiving dapsone. As we previously reported, of those given dapsone, 9/29 (30%) died, while of those not given dapsone, 18/30 (60%) died. We looked back on that data set to determine if there might be basic laboratory findings in these patients that might give an indication of a mechanism by which dapsone was acting. We found that the neutrophil-to-lymphocyte ratio decreased in 48% of those given dapsone and in 30% of those not given dapsone. We concluded that dapsone might be lowering that ratio. We then reviewed collected data on neutrophil related inflammation pathways on which dapsone might act as presented here. As this was not a controlled study, many variables prevent drawing any conclusions from this work; a formal, randomized controlled study of dapsone in severe COVID-19 is warranted.
Collapse
Affiliation(s)
| | - Asif Khattak
- Department of Neonatal Intensive Care Unit, Hunt Regional Hospital, Greenville, TX 75401, USA
| | - Richard E. Kast
- IIAIGC Study Center, Burlington, VT 05408, USA
- Correspondence:
| |
Collapse
|
9
|
Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol 2022; 13:992384. [PMID: 36466841 PMCID: PMC9709252 DOI: 10.3389/fimmu.2022.992384] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 08/02/2023] Open
Abstract
COVID-19 patients have a high incidence of thrombosis, and thromboembolic complications are associated with severe COVID-19 and high mortality. COVID-19 disease is associated with a hyper-inflammatory response (cytokine storm) mediated by the immune system. However, the role of the inflammatory response in thrombosis remains incompletely understood. In this review, we investigate the crosstalk between inflammation and thrombosis in the context of COVID-19, focusing on the contributions of inflammation to the pathogenesis of thrombosis, and propose combined use of anti-inflammatory and anticoagulant therapeutics. Under inflammatory conditions, the interactions between neutrophils and platelets, platelet activation, monocyte tissue factor expression, microparticle release, and phosphatidylserine (PS) externalization as well as complement activation are collectively involved in immune-thrombosis. Inflammation results in the activation and apoptosis of blood cells, leading to microparticle release and PS externalization on blood cells and microparticles, which significantly enhances the catalytic efficiency of the tenase and prothrombinase complexes, and promotes thrombin-mediated fibrin generation and local blood clot formation. Given the risk of thrombosis in the COVID-19, the importance of antithrombotic therapies has been generally recognized, but certain deficiencies and treatment gaps in remain. Antiplatelet drugs are not in combination with anticoagulant treatments, thus fail to dampen platelet procoagulant activity. Current treatments also do not propose an optimal time for anticoagulation. The efficacy of anticoagulant treatments depends on the time of therapy initiation. The best time for antithrombotic therapy is as early as possible after diagnosis, ideally in the early stage of the disease. We also elaborate on the possible mechanisms of long COVID thromboembolic complications, including persistent inflammation, endothelial injury and dysfunction, and coagulation abnormalities. The above-mentioned contents provide therapeutic strategies for COVID-19 patients and further improve patient outcomes.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Langjiao Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|