1
|
Kamelnia R, Ahmadi-Hamedani M, Darroudi M, Kamelnia E. Improving the stability of insulin through effective chemical modifications: A Comprehensive review. Int J Pharm 2024; 661:124399. [PMID: 38944170 DOI: 10.1016/j.ijpharm.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Insulin, an essential peptide hormone, conjointly regulates blood glucose levels by its receptor and it is used as vital drug to treat diabetes. This therapeutic hormone may undergo different chemical modifications during industrial processes, pharmaceutical formulation, and through its endogenous storage in the pancreatic β-cells. Insulin is highly sensitive to environmental stresses and readily undergoes structural changes, being also able to unfold and aggregate in physiological conditions. Even; small changes altering the structural integrity of insulin may have significant impacts on its biological efficacy to its physiological and pharmacological activities. Insulin analogs have been engineered to achieve modified properties, such as improved stability, solubility, and pharmacokinetics, while preserving the molecular pharmacology of insulin. The casually or purposively strategies of chemical modifications of insulin occurred to improve its therapeutic and pharmaceutical properties. Knowing the effects of chemical modification, formation of aggregates, and nanoparticles on protein can be a new look at the production of protein analogues drugs and its application in living system. The project focused on effects of chemical modifications and nanoparticles on the structure, stability, aggregation and their results in effective drug delivery system, biological activity, and pharmacological properties of insulin. The future challenge in biotechnology and pharmacokinetic arises from the complexity of biopharmaceuticals, which are often molecular structures that require formulation and delivery strategies to ensure their efficacy and safety.
Collapse
Affiliation(s)
- Reyhane Kamelnia
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Mahmood Ahmadi-Hamedani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Kamelnia
- Department of biology, Faculty of sciences, Mashhad branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
2
|
Ye Y, Zhong W, Luo R, Wen H, Ma Z, Qi S, Han X, Nie W, Chang D, Xu R, Ye N, Gao F, Zhang P. Thermosensitive hydrogel with emodin-loaded triple-targeted nanoparticles for a rectal drug delivery system in the treatment of chronic non-bacterial prostatitis. J Nanobiotechnology 2024; 22:33. [PMID: 38238760 PMCID: PMC10795337 DOI: 10.1186/s12951-023-02282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The complex etiology and pathogenesis underlying Chronic Non-Bacterial Prostatitis (CNP), coupled with the existence of a Blood Prostate Barrier (BPB), contribute to a lack of specificity and poor penetration of most drugs. Emodin (EMO), a potential natural compound for CNP treatment, exhibits commendable anti-inflammatory, anti-oxidant, and anti-fibrosis properties but suffers from the same problems as other drugs. METHODS By exploiting the recognition properties of lactoferrin (LF) receptors that target intestinal epithelial cells (NCM-460) and prostate epithelial cells (RWPE-1), a pathway is established for the transrectal absorption of EMO to effectively reach the prostate. Additionally, hyaluronic acid (HA) is employed, recognizing CD44 receptors which target macrophages within the inflamed prostate. This interaction facilitates the intraprostatic delivery of EMO, leading to its pronounced anti-inflammatory effects. A thermosensitive hydrogel (CS-Gel) prepared from chitosan (CS) and β-glycerophosphate disodium salt (β-GP) was used for rectal drug delivery with strong adhesion to achieve effective drug retention and sustained slow release. Thus, we developed a triple-targeted nanoparticle (NPs)/thermosensitive hydrogel (Gel) rectal drug delivery system. In this process, LF, with its positive charge, was utilized to load EMO through dialysis, producing LF@EMO-NPs. Subsequently, HA was employed to encapsulate EMO-loaded LF nanoparticles via electrostatic adsorption, yielding HA/LF@EMO-NPs. Finally, HA/LF@EMO-NPs lyophilized powder was added to CS-Gel (HA/LF@EMO-NPs Gel). RESULTS Cellular assays indicated that NCM-460 and RWPE-1 cells showed high uptake of both LF@EMO-NPs and HA/LF@EMO-NPs, while Raw 264.7 cells exhibited substantial uptake of HA/LF@EMO-NPs. For LPS-induced Raw 264.7 cells, HA/LF@EMO-NPs can reduce the inflammatory responses by modulating TLR4/NF-κB signaling pathways. Tissue imaging corroborated the capacity of HA/LF-modified formulations to breach the BPB, accumulating within the gland's lumen. Animal experiments showed that rectal administration of HA/LF@EMO-NPs Gel significantly reduced inflammatory cytokine expression, oxidative stress levels and fibrosis in the CNP rats, in addition to exerting anti-inflammatory effects by inhibiting the NF-κB signaling pathway without obvious toxicity. CONCLUSION This triple-targeted NPs/Gel rectal delivery system with slow-release anti-inflammatory, anti-oxidant, and anti-fibrosis properties shows great potential for the effective treatment of CNP.
Collapse
Affiliation(s)
- Yan Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenzhen Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hongzhi Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Ziyang Ma
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Degui Chang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Peihai Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
3
|
Network Pharmacology and Molecular Docking Verify the Mechanism of Qinshi Simiao San in Treating Chronic Prostatitis in the Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7098121. [PMID: 35069766 PMCID: PMC8769824 DOI: 10.1155/2022/7098121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
Background Using network pharmacology and molecular docking, this study aimed to explore the active pharmaceutical ingredients (APIs) and molecular mechanism of Qinshi Simiao San (QSSMS) in the treatment of chronic prostatitis (CP) and verify our findings in the rat model. Methods The APIs of QSSMS and the common targets of QSSMS and CP were screened from the TCMSP database. The STRING database and Cytoscape software were used to construct the network graph. The enriched GO and KEGG pathways were displayed by David software and R software. Molecular docking was performed to visualize key components and target genes. In addition, the rats model of CP was established to verify the molecular mechanism of QSSMS. Results Network pharmacology showed that the APIs of QSSMS mainly included quercetin, kaempferol, formononetin, isorhamnetin, and calycosin. QSSMS alleviated CP mainly through the negative regulation of the apoptotic process, oxidation-reduction process, inflammatory response, and immune response. Molecular docking showed that the APIs could bind to the corresponding targets. QSSMS repaired the pathological damage of prostate tissue, upregulated the expression of oxidative stress scavenging enzymes CAT and SOD, and downregulated the peroxidative product MDA, inflammatory factors IL-1β, IL-6, TNF-α, COX-2, PGE2, and NGF, and immune factors IgG and SIgA. Conclusion The APIs in QSSMS may inhibit inflammation in the rat CP model by regulating immune and oxidative stress.
Collapse
|
4
|
Gerivani B, Staji H, Rassouli M, Ghazaleh N, Vayeghan AJ. Co-administration of Erythromycin and Leech Salivary Extract Alleviates Osteomyelitis in Rats Induced by Methicillin-Resistant Staphylococcus aureus. Vet Comp Orthop Traumatol 2020; 33:243-251. [PMID: 32356297 DOI: 10.1055/s-0040-1703008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Erythromycin (Ery) and leech saliva (LS) can inhibit Staphylococcus aureus growth in in vitro conditions. This study aimed to evaluate the activities and synergy between Ery and LS on chronic osteomyelitis in male Wistar rat's tibia induced by methicillin-resistant S. aureus (MRSA). MATERIALS AND METHODS Four weeks after osteomyelitis induction, rats were divided into four groups including no treatment (control), Ery monotherapy (orally), LS monotherapy, or Ery + LS twice daily for 2 weeks. Staphylococcus aureus growth, pathological signs and inflammatory cytokine tumour necrosis factor-alpha (TNF-α) levels were assessed. RESULTS Rats tolerated all therapeutic strategies well during the experiment. The Ery treatment alone significantly decreased bacterial growth, pathological signs and TNF-α levels. Leech saliva alone reduced TNF-α level significantly, but did not produce a significant reduction in bacterial growth and pathological signs. Ery + LS treatment significantly decreased bacterial growth, considerably alleviated bone pathological signs and decreased TNF-α levels compared with other groups. Statistical analysis suggested that there was a stronger efficiency and synergistic action of Ery and LS when combined against MRSA-induced osteomyelitis in rats. CLINICAL SIGNIFICANCE The present study suggests that LS may have clinical utility to treat MRSA-induced osteomyelitis when combined with Ery or other therapeutics.
Collapse
Affiliation(s)
- Bahar Gerivani
- Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran (the Islamic Republic of)
| | - Hamid Staji
- Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran (the Islamic Republic of)
| | - Maryam Rassouli
- Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran (the Islamic Republic of)
| | - Nooshin Ghazaleh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran (the Islamic Republic of)
| | - Abbas Javaheri Vayeghan
- Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran (the Islamic Republic of)
| |
Collapse
|
5
|
Gao Y, Lv X, Yang H, Peng L, Ci X. Isoliquiritigenin exerts antioxidative and anti-inflammatory effects via activating the KEAP-1/Nrf2 pathway and inhibiting the NF-κB and NLRP3 pathways in carrageenan-induced pleurisy. Food Funct 2020; 11:2522-2534. [PMID: 32141447 DOI: 10.1039/c9fo01984g] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pleurisy refers to a pleural disease caused by pathogenic factors that stimulate the pleura associated with pleural inflammation and oxidative stress. Isoliquiritigenin (ISL), a flavonoid from the liquorice compound, possesses antioxidative and anti-inflammatory properties. In the current study, we investigated the protective effects of ISL on carrageenan-induced pleurisy and lung injury in mice. The mice were intraperitoneally injected with ISL (30 mg kg-1) twice (each time interval of 12 h), followed by exposure to Car 1 h after the second dose of ISL. Our results indicated that ISL treatment significantly alleviated carrageenan-induced histopathological damage and increased levels of inflammatory cell exudation, protein leakage, and pro-inflammatory mediators. Meanwhile, ISL inhibited reactive oxygen species (ROS) generation, MDA and MPO formation, and SOD and GSH depletion induced by carrageenan. In addition, it decreased the GSSG level and GSSG-to-GSH ratio. In terms of the mechanism, ISL inhibited NOX2 and NOX4 levels, caused the dissociation of KEAP-1 and Nrf2, and activated the downstream genes HO-1, NQO1, GCLC and GCLM, thus decreasing oxidative stress. In addition, ISL exerts protective effects against inflammation by suppressing the NOD-like receptor protein 3 (NLRP3)/NF-κB pathway and the high levels of iNOS and COX-2. In summary, our results reinforce the hypothesis that ISL exerts protective effects on carrageenan-induced pleurisy and lung injury in a manner that can be attributed to Nrf2-mediated antioxidative activities and NLRP3/NF-κB-mediated anti-inflammatory activities.
Collapse
Affiliation(s)
- Yun Gao
- Department of Respiratory Medicine, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, China.
| | | | | | | | | |
Collapse
|
6
|
Deng GC, Lu M, Zhao YY, Yuan Y, Chen G. Activated spinal astrocytes contribute to the later phase of carrageenan-induced prostatitis pain. J Neuroinflammation 2019; 16:189. [PMID: 31653262 PMCID: PMC6814979 DOI: 10.1186/s12974-019-1584-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
Background Prostatodynia is the main symptom of chronic prostatitis and the main reason that patients go to the hospital for treatment. Although a variety of factors, including inflammatory immune response, nervous system sensitization, and psychological factors, have been shown to play important roles in the induction and development of chronic pain in prostatitis, the underlying cause of chronic prostatodynia maintenance in prostatitis patients remains unclear. Methods A mouse model of chronic prostatitis induced by carrageenan injection was used. The von Frey test was used to measure pain behavior. The microglial and astrocyte activations were immunohistochemically demonstrated with antibodies against Iba1 and GFAP. The expression of cytokine or signaling pathway was detected by enzyme-linked immunosorbent assay (ELISA) and Western blotting. Results In this study, we provide several lines of evidence to demonstrate that activated spinal astrocytes contribute to the later phase (5 weeks after carrageenan injection) of carrageenan-induced prostatitis pain. First, activation of spinal astrocytes but not microglia was found in the spinal cord dorsal horn at 5 weeks. Second, intrathecal injection of the astroglial toxin L-2-Aminoadipate acid (L-AA) but not microglial inhibitor minocycline reduced mechanical allodynia at 5 weeks. Third, chronic prostatitis induced a profound and persistent upregulation of connexin-43 hemichannels in spinal astrocytes, and spinal injection of the connexin-43 inhibitor carbenoxolone (CBX) effectively reduced pain symptoms. Fourth, increased expression and release of chemokine C-X-C motif ligand 1 (CXCL1) in the spinal dorsal horn and intrathecal injection of a CXCL1 neutralizing antibody or the CXCR2 (a major receptor of CXCL1) antagonist SB225002 significantly reduced mechanical allodynia at 5 weeks. Conclusions In this study, we found that a novel mechanism of activated spinal astrocytes plays a crucial role in maintaining chronic prostatitis-induced persistent pain via connexin-43-regulated CXCL1 production and secretion.
Collapse
Affiliation(s)
- Guo-Chuang Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ming Lu
- Department of Urology, The Second Affiliated Hospital of Nantong University (The First People's Hospital of Nantong), Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China. .,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
7
|
Farmer T, Johnston M, Milica A, Hindley R, Emara A. Chronic Prostatitis/Chronic Pelvic Pain Syndrome: a Literature Review of NIH III Prostatitis. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Konkol Y, Vuorikoski H, Streng T, Tuomela J, Bernoulli J. Characterization a model of prostatic diseases and obstructive voiding induced by sex hormone imbalance in the Wistar and Noble rats. Transl Androl Urol 2019; 8:S45-S57. [PMID: 31143671 DOI: 10.21037/tau.2019.02.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Chronic nonbacterial prostatitis associated with lower urinary tract symptoms (LUTS) is a prevalent condition in men. One potential pathophysiological factor is change in sex hormone, testosterone and estrogen, balance. Inflammation, cancer and obstructive voiding has been induced in the Noble rat strain by altering levels of sex hormones. We evaluated if imbalance of sex hormones could induce comparable diseases also in a less estrogen sensitive Wistar strain rats. Methods Subcutaneous testosterone (830 µg/day) and 17β-estradiol (83 µg/day) hormone pellets were used in male Wistar and Noble strain rats to induce prostatic diseases. The rats were followed for 13 and 18 weeks. Urodynamical measurements were performed at the end of the study under anesthesia. Prostates were collected for further histological analysis. A panel of cytokines were measured from collected serum samples. Results Noble rats exhibited stromal and glandular inflammation after 13 weeks that progressed into more severe forms after 18 weeks of hormonal treatment. CD68-positive macrophages were observed in the stromal areas and inside the inflamed acini. CD163-positive macrophages were present in the stromal compartment but absent inside inflammatory foci or prostate acini. Thirteen-week hormonal treatment in Noble rats induced obstructive voiding, which progressed to urinary retention after 18-weeks treatment. In the Wistar rats 18-week treatment was comparable to the 13-week-treated Noble rats judged by progression of prostatic inflammation, being also evident for obstructive voiding. Incidence of PIN-like lesions and carcinomas in the periurethal area in Noble rats were high (100%) but lower (57%) and with smaller lesions in Wistar rats. Serum cytokines leptin, CCL5, and VEGF concentrations showed a decrease in the hormone-treated rats compared to placebo-treated rats. Conclusions Prostate inflammation and obstructive voiding developed also in the Wistar rats but more slowly than in Noble rats. Male non-castrated Wistar strain rats may thus be suitable to use in studies of pathophysiology and hormone-dependent prostate inflammation and obstructive voiding.
Collapse
Affiliation(s)
- Yvonne Konkol
- Cancer Research Laboratory, FICAN West, Institute of Biomedicine, University of Turku, Turku, Finland.,Pharmatest Services Ltd., Turku, Finland
| | | | - Tomi Streng
- Department of Biology, Laboratory of Animal Physiology, University of Turku, Turku, Finland.,Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Tuomela
- Cancer Research Laboratory, FICAN West, Institute of Biomedicine, University of Turku, Turku, Finland
| | | |
Collapse
|
9
|
Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress. Biomed Pharmacother 2018; 106:714-723. [DOI: 10.1016/j.biopha.2018.06.139] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/09/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022] Open
|
10
|
Meng LQ, Yang FY, Wang MS, Shi BK, Chen DX, Chen D, Zhou Q, He QB, Ma LX, Cheng WL, Xing NZ. Quercetin protects against chronic prostatitis in rat model through NF-κB and MAPK signaling pathways. Prostate 2018; 78:790-800. [PMID: 29654614 DOI: 10.1002/pros.23536] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is a common disease of urology, of which the pathogenesis and therapy remain to be further elucidated. Quercetin has been reported to improve the symptoms of CP/CPPS patients. We aimed to verify the therapeutic effect of quercetin on CP/CPPS and identify the mechanism responsible for it. METHODS A novel CP/CPPS model induced with Complete Freund Adjuvant in Sprague Dawley rats was established and the prostates and blood specimens were harvested for further measurement after oral administration of quercetin for 4 weeks. RESULTS Increased prostate index and infiltration of lymphocytes, up-regulated expression of IL-1β, IL-2, IL-6, IL-17A, MCP1, and TNFα, decreased T-SOD, CAT, GSH-PX, and increased MDA, enhanced phosphorylation of NF-κB, P38, ERK1/2, and SAPK/JNK were detected in CP/CPPS rat model. Quercetin was identified to ameliorate the histo-pathologic changes, decrease the expression of pro-inflammatory cytokines IL-1β, IL-2, IL-6, IL-17A, MCP1, and TNFα, improve anti-oxidant capacity, and suppress the phosphorylation of NF-κB and MAPKs. CONCLUSIONS Quercetin has specific protective effect on CP/CPPS, which is mediated by anti-inflammation, anti-oxidation, and at least partly through NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ling-Quan Meng
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Fei-Ya Yang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ming-Shuai Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ben-Kang Shi
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - De-Xi Chen
- Beijing You'an Hospital, Capital Medical University, Beijing, P.R. China
- Beijing Institute of Hepatology, Beijing, P.R. China
| | - Dong Chen
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Qiang Zhou
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Qing-Bao He
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Lin-Xiang Ma
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Wen-Long Cheng
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing, P.R. China
| | - Nian-Zeng Xing
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
11
|
Yousefi S, Ahmadi-hamedani M, Narenji Sani R, Moslemi HR, Ghafari Khaligh S, Darvishi MM. Pentoxifylline mitigates detrimental impact of chronic nonbacterial prostatitis on sperm characteristics, reproductive hormones and histopathology in rats. Andrologia 2017; 50. [DOI: 10.1111/and.12932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/25/2023] Open
Affiliation(s)
- S. Yousefi
- Semnan University of Veterinary Medicine; Semnan Iran
| | - M. Ahmadi-hamedani
- Department of Clinical Sciences; Faculty of Veterinary Medicine; Semnan University; Semnan Iran
| | - R. Narenji Sani
- Department of Clinical Sciences; Faculty of Veterinary Medicine; Semnan University; Semnan Iran
| | - H. R. Moslemi
- Department of Clinical Sciences; Faculty of Veterinary Medicine; Semnan University; Semnan Iran
| | - S. Ghafari Khaligh
- Department of Pathobiology; Faculty of Veterinary Medicine; Semnan University; Semnan Iran
| | - M. M. Darvishi
- Department of Pathobiology; Faculty of Veterinary Medicine; Semnan University; Semnan Iran
| |
Collapse
|