1
|
Silva-Cunha M, Lacchini R, Tanus-Santos JE. Facilitating Nitrite-Derived S-Nitrosothiol Formation in the Upper Gastrointestinal Tract in the Therapy of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:691. [PMID: 38929130 PMCID: PMC11200996 DOI: 10.3390/antiox13060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often associated with impaired nitric oxide (NO) bioavailability, a critical pathophysiological alteration in CVDs and an important target for therapeutic interventions. Recent studies have revealed the potential of inorganic nitrite and nitrate as sources of NO, offering promising alternatives for managing various cardiovascular conditions. It is now becoming clear that taking advantage of enzymatic pathways involved in nitrite reduction to NO is very relevant in new therapeutics. However, recent studies have shown that nitrite may be bioactivated in the acidic gastric environment, where nitrite generates NO and a variety of S-nitrosating compounds that result in increased circulating S-nitrosothiol concentrations and S-nitrosation of tissue pharmacological targets. Moreover, transnitrosation reactions may further nitrosate other targets, resulting in improved cardiovascular function in patients with CVDs. In this review, we comprehensively address the mechanisms and relevant effects of nitrate and nitrite-stimulated gastric S-nitrosothiol formation that may promote S-nitrosation of pharmacological targets in various CVDs. Recently identified interfering factors that may inhibit these mechanisms and prevent the beneficial responses to nitrate and nitrite therapy were also taken into consideration.
Collapse
Affiliation(s)
- Mila Silva-Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil;
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| |
Collapse
|
2
|
Pineda-Peña EA, Capistran-Amezcua D, Reyes-Ramírez A, Xolalpa-Molina S, Chávez-Piña AE, Figueroa M, Navarrete A. Gastroprotective effect methanol extract of Caesalpinia coriaria pods against indomethacin- and ethanol-induced gastric lesions in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116057. [PMID: 36574790 DOI: 10.1016/j.jep.2022.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caesalpinia coriaria (Jacq.) Willd is widely used as a traditional medinal plant in Mexico for protective and healing purposes and the treatment of gastrointestinal diseases. AIM OF THE STUDY To investigate the gastroprotective effect of extract of Caesalpinia coriaria pods against ethanol-induced and indomethacin-induced gastric lesion models, its anti-inflammatory and antioxidative activities, and its main compounds through LC-MS analysis. MATERIALS AND METHODS Male Wistar rats were orally administered a methanol extract obtained from the pods of C. coriaria at doses of 10, 30, 100, and 300 mg/kg prior to inducing gastric lesions with ethanol or indomethacin. Gastric mucosal lesions were evaluated by macroscopic and histopathological alterations. Determination of prostaglandin E2 (PGE2), alpha tumor necrosis factor (TNF-α), leukotriene B4 (LTB4), nitrites/nitrates, superoxide dismutase (SOD), and H2S gastric levels were investigated. Its main compounds of the active extract through LC-MS analysis. RESULTS Phenolic compounds were identified as major components of methanol extract. LC-MS analysis identified 15 constituents, and the significant compounds were gallic acid, 3-O-galloylquinic acid, digalloylglucose, tetragalloylglucose, valoneic acid dilactone, pentagalloylglucose, digalloylshikimic acid, and ellagic acid. Pretreatment with the extract at doses of 100 and 300 mg/kg significantly reduced gastric ulcer lesions in both models. Compared with the reference drugs (omeprazole or ranitidine, respectively), no significant difference was found (p < 0.05). The extract's gastroprotective effect was accompanied by significant decreases in leukocyte recruitment, and gastric levels of TNF-α and LTB4 by two to fourfold (p < 0.05). Also, gastric levels of PGE2 gastric levels were maintained and the antioxidant enzyme activities of SOD and nitrate/nitrite in the gastric tissue were improved (p < 0.05). The LC-MS analysis indicated the presence of hydrolyzable tannins (mainly gallic acid derivatives). CONCLUSION The results suggest that the gastroprotective effect of the methanol extract of C. coriaria pods occurs through anti-inflammatory, antioxidant, and NO modulation properties, and gallic acid derivatives may be the main possible compounds responsible for its actions.
Collapse
Affiliation(s)
- Elizabeth Arlen Pineda-Peña
- Carrera Médico Cirujano, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Campus I, Av. Guelatao, No. 66, Ejercito de Oriente, Iztapalapa, C.P, 09230, CDMX, Mexico; Unidad Multidisciplinaria de Investigación Experimental (UMIEZ), Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo esquina Fuerte de Loreto, Ejército de Oriente, Iztapalapa, C.P, 09230, CDMX, Mexico.
| | - David Capistran-Amezcua
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, C.P, 04510, CDMX, Mexico.
| | - Adelfo Reyes-Ramírez
- Unidad Multidisciplinaria de Investigación Experimental (UMIEZ), Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo esquina Fuerte de Loreto, Ejército de Oriente, Iztapalapa, C.P, 09230, CDMX, Mexico.
| | - Santiago Xolalpa-Molina
- Herbario Medicinal del Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI, CDMX, Mexico.
| | - Aracely Evangelina Chávez-Piña
- Laboratorio de Farmacología, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Guillermo Massieu Helguera, No. 239, Fracc. La Escalera, Ticomán, C.P, 07320, CDMX, Mexico.
| | - Mario Figueroa
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, C.P, 04510, CDMX, Mexico.
| | - Andrés Navarrete
- Unidad Multidisciplinaria de Investigación Experimental (UMIEZ), Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo esquina Fuerte de Loreto, Ejército de Oriente, Iztapalapa, C.P, 09230, CDMX, Mexico; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, C.P, 04510, CDMX, Mexico.
| |
Collapse
|
3
|
Quiñonez-Bastidas GN, Navarrete A. Mexican Plants and Derivates Compounds as Alternative for Inflammatory and Neuropathic Pain Treatment-A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050865. [PMID: 33923101 PMCID: PMC8145628 DOI: 10.3390/plants10050865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/17/2023]
Abstract
Despite the availability of many anti-pain drugs, in the form of NSAIDs, steroids, gabapentinoids, opioids, and antidepressants, in this study we address the natural compounds belonging to the group of Mexican medicinal plants or "Mexican folk medicine", used for pain management in Mexico. Our interest in this subject is due to the growing idea that "natural is harmless" and to the large number of side effects exhibited in pharmacotherapy. The objective of this review was to document the scientific evidence about Mexican medicinal plants and their derivatives used for inflammatory and neuropathic pain treatment, as well as the mechanisms of action implicated in their antinociceptive effects, their possible adverse effects, and the main pharmacological aspects of each plant or compound. Our data review suggested that most studies on Mexican medicinal plants have used inflammatory experimental models for testing. The anti-pain properties exerted by medicinal plants lack adverse effects, and their toxicological assays report that they are safe to consume; therefore, more studies should be performed on preclinical neuropathic pain models. Moreover, there is no convincing evidence about the possible mechanisms of action involved in the anti-pain properties exerted by Mexican plants. Therefore, the isolation and pharmacological characterization of these plant derivatives' compounds will be important in the design of future preclinical studies.
Collapse
Affiliation(s)
| | - Andrés Navarrete
- Correspondence: (G.N.Q.-B.); (A.N.); Tel.: +52-5556225291 (A.N.)
| |
Collapse
|
4
|
Disrupted H 2S Signaling by Cigarette Smoking and Alcohol Drinking: Evidence from Cellular, Animal, and Clinical Studies. Antioxidants (Basel) 2021; 10:antiox10010049. [PMID: 33401622 PMCID: PMC7824711 DOI: 10.3390/antiox10010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
The role of endogenous hydrogen sulfide (H2S) as an antioxidant regulator has sparked interest in its function within inflammatory diseases. Cigarette and alcohol use are major causes of premature death, resulting from chronic oxidative stress and subsequent tissue damage. The activation of the Nrf2 antioxidant response by H2S suggests that this novel gasotransmitter may function to prevent or potentially reverse disease progression caused by cigarette smoking or alcohol use. The purpose of this study is to review the interrelationship between H2S signaling and cigarette smoking or alcohol drinking. Based on the databases of cellular, animal, and clinical studies from Pubmed using the keywords of H2S, smoking, and/or alcohol, this review article provides a comprehensive insight into disrupted H2S signaling by alcohol drinking and cigarette smoking-caused disorders. Major signaling and metabolic pathways involved in H2S-derived antioxidant and anti-inflammatory responses are further reviewed. H2S supplementation may prove to be an invaluable asset in treating or preventing diseases in those suffering from cigarette or alcohol addiction.
Collapse
|
5
|
Pavlovskiy Y, Yashchenko A, Zayachkivska O. H 2S Donors Reverse Age-Related Gastric Malfunction Impaired Due to Fructose-Induced Injury via CBS, CSE, and TST Expression. Front Pharmacol 2020; 11:1134. [PMID: 32848752 PMCID: PMC7396573 DOI: 10.3389/fphar.2020.01134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Objective Excess of fructose consumption is related to life-treating conditions that affected more than a third of the global population. Therefore, to identify a newer therapeutic strategy for the impact prevention of high fructose injury in age-related malfunctions of the gastric mucosa (GM) in the animal model is important. Methods Adult and aged male rats were divided into control groups (standard diet, SD) and high fructose diet (HFD) groups; acute water immersion restraint stress (WIRS) was induced for evaluation of GM adaptive response and effects of testing the therapeutic potential of H2S-releasing compounds (H2S donors). Histological examination of gastric damage was done on hematoxylin-eosin stained slides. Cystathionine beta-synthase (CBS), Cystathionine gamma-lyase (CSE), and Thiosulfate-dithiol sulfurtransferase (TST) activities and oxidative index were assessed during exogenous administration of H2S donors: sodium hydrosulfide (NaHS) and the novel hybrid H2S-releasing aspirin (ATB-340). The results showed that HFD increased gastric damage in adult and aged rats. HFD-associated malfunction characterized by low activities of H2S key enzymes, inducing increased oxidation. Pretreatment with NaHS, ATB-340 of aged rats in the models of HFD, and WIRS attenuated gastric damage in contrast to vehicle-treated group (p < 0.05). The effect of ATB-340 was characterized by reverse oxidative index and increased CBS, CSE, and TST activities. In conclusion, H2S donors prevent GM age-related malfunctions by enhancement of CBS, CSE, and TST expression against fructose excess injury though reduction of oxidative damage.
Collapse
Affiliation(s)
- Yaroslav Pavlovskiy
- Physiology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Antonina Yashchenko
- Histology, Cytology and Embryology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Zayachkivska
- Physiology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
6
|
Pineda-Peña EA, Orona-Ortiz A, Velázquez-Moyado JA, Tavares-Carvalho JC, Chávez-Piña AE, Balderas-López JL, Navarrete A. Anti-inflammatory, antioxidant, and gaso-protective mechanism of 3α-hydroxymasticadienoic acid and diligustilide combination on indomethacin gastric damage. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1501-1513. [PMID: 32242245 DOI: 10.1007/s00210-020-01857-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
The co-administration of 3α-hydroxymasticadienoic acid (3α-OH MDA) and diligustilide (DLG) generates a synergist gastroprotective effect on indomethacin-induced gastric damage. However, the related protective activities of the compounds alone (or in combination) remain unclear. In the present study, we evaluated the anti-inflammatory and antioxidative activities, as well as the potential modulation of important gasotransmitters of each compound individually and in combination using the indomethacin-induced gastric damage model. Male Wistar rats were treated orally with the 3α-OH MDA, DLG, or their combination (at a fixed ratio of 1:1, 1:3, and 3:1) 30 min before the generation of gastric mucosal lesions with indomethacin (30 mg/kg, p.o.). Three hours later, the gastric injury (mm2) was determined. Results from these experiments indicate, in addition to maintaining basal levels of PGE2, the gastroprotective effect of the pre-treatment with 3α-OH MDA (70%), DLG (81%), and their combination (72%) which was accompanied by significant decreases in leukocyte recruitment, as well as decreases in TNF-α and LTB4 gastric levels (p < 0.05). We also found that the pre-treatment maintains the basal antioxidant enzyme activities (SOD) and gastric NO and H2S production even in the presence of indomethacin (p < 0.05). In conclusion, when 3α-OH MDA-DLG is given at a 1:1 combination ratio, the gastroprotective effect and the inflammatory, antioxidant, and gaso-modulation properties are not different from those of treatments using the maximum doses of each compound, revealing that this combination produces promising results for the treatment of gastric ulcers.
Collapse
Affiliation(s)
- Elizabeth Arlen Pineda-Peña
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Alejandra Orona-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Josué Arturo Velázquez-Moyado
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - José Carlos Tavares-Carvalho
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Aracely Evangelina Chávez-Piña
- Laboratorio de Farmacología, Programa Institucional en Biomedicina Molecular, Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - José Luis Balderas-López
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Andrés Navarrete
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Pineda‐Peña EA, Meza‐Pérez DG, Chávez‐Piña AE, Velázquez‐Moyado JA, Tavares‐Carvalho JC, Navarrete Castro A. Pharmacodynamic interaction of 3α‐hydroxymasticadienonic acid and diligustilide against indomethacin‐induced gastric damage in rats. Drug Dev Res 2019; 80:585-594. [DOI: 10.1002/ddr.21535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/13/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Elizabeth A. Pineda‐Peña
- Facultad de Química, Departamento de FarmaciaUniversidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| | - Dulce G. Meza‐Pérez
- Facultad de Química, Departamento de FarmaciaUniversidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| | - Aracely E. Chávez‐Piña
- Laboratorio de Farmacología, Programa Institucional en Biomedicina Molecular, EscuelaNacional de Medicina y Homeopatía del Instituto Politécnico Nacional Ciudad de México Mexico
| | - Josué A. Velázquez‐Moyado
- Facultad de Química, Departamento de FarmaciaUniversidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da SaúdeUniversidade Federal do Amapá Macapá Amapá Brazil
| | - José C. Tavares‐Carvalho
- Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da SaúdeUniversidade Federal do Amapá Macapá Amapá Brazil
| | - Andrés Navarrete Castro
- Facultad de Química, Departamento de FarmaciaUniversidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| |
Collapse
|
8
|
Mata R, Figueroa M, Navarrete A, Rivero-Cruz I. Chemistry and Biology of Selected Mexican Medicinal Plants. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 108:1-142. [PMID: 30924013 DOI: 10.1007/978-3-030-01099-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herbal medicines are an integral element of alternative medical care in Mexico, and the best testimony to their efficacy and cultural value is their persistence in contemporary Mexican marketplaces where the highest percentages of medicinal and aromatic plants are sold. This chapter summarizes current trends in research on medicinal plants in Mexico, with emphasis on work carried out at the authors' laboratories. The most relevant phytochemical and pharmacological profiles of a selected group of plants used widely for treating major national health problems are described.From this contribution, it is evident that in the last five decades a significant amount of research on medicinal plants has been performed by Mexican scientists. Such efforts have led to the publication of many research papers in noted peer-reviewed journals and technical books. The isolation and structural characterization of hundreds of bioactive secondary metabolites have been accomplished, and most importantly, these studies have tended to support the ethnomedical uses of many different species. A multidisciplinary approach for investigating these plants has led to an increased emphasis on areas such as phytopharmacology, phytotoxicology, quality control, regulation, and conservation issues for these valuable resources. The medicinal plants analyzed so far have shown a very broad chemical diversity of their constituents, which have a high potential for exhibiting novel mechanistic effects biologically. The chapter shows also that there is need to conduct additional clinical studies on herbal drugs, in particular because the longstanding traditional evidence for their safety is not always sufficient to assure their rational use. There is also need to move to "omics" approaches for investigating the holistic effect and the influence of groups of phytochemicals on the whole organism. Mexican scientists may be expected to have bright prospects in this regard, which will imbue medicinal plant research with a new dynamism in the future.
Collapse
Affiliation(s)
- Rachel Mata
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Mario Figueroa
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Andrés Navarrete
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Isabel Rivero-Cruz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|