1
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
2
|
Kamsu GT, Ndebia EJ. Usefulness of Natural Phenolic Compounds in the Fight against Esophageal Cancer: A Systematic Review. FUTURE PHARMACOLOGY 2024; 4:626-650. [DOI: 10.3390/futurepharmacol4030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Esophageal cancer (EC) is a very common form of cancer in developing countries, and its exponential progression is a cause for concern. Available treatments face the phenomenon of multi-drug resistance, as well as multiple disabling side effects. The number of deaths is expected to double by 2030 if nothing is done. Due to their high representativeness in plants, phenolic compounds are a potential alternative for halting the spread of this disease, which bereaves many thousands of families every year. This study aims to identify phenolic compounds with activity against esophageal cancer, assess their toxicological profiles, and explore future perspectives. To achieve this, the literature search was meticulously carried out in the Google Scholar, Scopus, Web of Sciences, and Pub-Med/Medline databases, in accordance with the PRISMA 2020 guidelines. The results show that proanthocyanidin and curcumin represent promising therapeutic options, given their significant in vitro and in vivo activity, and their safety in human subjects in clinical trials. Moscatilin, Genistein, and pristimerin have anticancer activities (≤10 µM) very close to those of doxorubicin and 5-FU, although their safety has not yet been fully established. The compounds identified in vivo exhibit highly significant activities compared with the results obtained in vitro, and are sometimes more effective than the molecules conventionally used to treat EC. Generally, with the exceptions of plumbagin, lapachol, and β-lapachone, all other molecules are relatively non-toxic to normal human cells and represent a therapeutic avenue to be explored by pharmaceutical companies in the fight against esophageal cancer. However, more detailed toxicological studies of certain molecules remain a priority.
Collapse
Affiliation(s)
- Gabriel Tchuente Kamsu
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| | - Eugene Jamot Ndebia
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| |
Collapse
|
3
|
Bhattacharya T, Gupta A, Gupta S, Saha S, Ghosh S, Shireen Z, Dey S, Sinha S. Benzofuran Iboga-Analogs Modulate Nociception and Inflammation in an Acute Mouse Pain Model. Chembiochem 2024; 25:e202400162. [PMID: 38874536 DOI: 10.1002/cbic.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Pain management following acute injury or post-operative procedures is highly necessary for proper recovery and quality of life. Opioids and non-steroidal anti-inflammatory drugs (NSAIDS) have been used for this purpose, but opioids cause addiction and withdrawal symptoms whereas NSAIDS have several systemic toxicities. Derivatives of the naturally occurring iboga alkaloids have previously shown promising behavior in anti-addiction of morphine by virtue of their interaction with opioid receptors. On this frontier, four benzofuran analogs of the iboga family have been synthesized and their analgesic effects have been studied in formalin induced acute pain model in male Swiss albino mice at 30 mg/kg of body weight dose administered intraperitoneally. The antioxidant, anti-inflammatory and neuro-modulatory effects of the analogs were analyzed. Reversal of tail flick latency, restricted locomotion and anxiogenic behavior were observed in iboga alcohol, primary amide and secondary amide. Local neuroinflammatory mediators' substance P, calcitonin gene related peptide, cyclooxygenase-2 and p65 were significantly decreased whereas the depletion of brain derived neurotrophic factor and glia derived neurotrophic factor was overturned on iboga analog treatment. Behavioral patterns after oral administration of the best analog were also analyzed. Taken together, these results show that the iboga family of alkaloid has huge potential in pain management.
Collapse
Affiliation(s)
- Tuhin Bhattacharya
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Abhishek Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| | - Samrat Saha
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Shatabdi Ghosh
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Zofa Shireen
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| |
Collapse
|
4
|
Exploring the possible mechanism involved in the anti-nociceptive effect of β-sitosterol: modulation of oxidative stress, nitric oxide and IL-6. Inflammopharmacology 2023; 31:517-527. [PMID: 36574096 DOI: 10.1007/s10787-022-01122-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 12/28/2022]
Abstract
Β-sitosterol is a phytosterol, documented to possess various activities including protection against inflammation, diabetes and Alzheimer's disease. The current investigation was designed to explore the analgesic potential of β-sitosterol and the possible molecular mechanism involved in the observed effect. β-sitosterol was administered at varying doses of 10, 20, and 40 mg/kg before subjecting the mice to acetic acid and formalin challenges. The number of writhings in acetic acid and the number of flinchings and foot tappings were quantified in the formalin test. For mechanistic studies, substance P (cyclooxygenase-2 (COX-2) stimulator) and L-Nitro arginine methyl ester (L-NAME) (nitric oxide synthetases (NOS) inhibitor) and L-arginine (nitric oxide precursor) were administered before β-sitosterol treatment. β-sitosterol (10, 20, 40 mg/kg) treatment significantly reduced acetic acid-induced writhings and ameliorated the formalin-induced inflammatory phase dose-dependently. Whereas, 40 mg/kg dose of β-sitosterol abrogated the formalin-induced neurogenic phase. Substance-P abrogated the effect of β-sitosterol in both neurogenic and inflammatory phases. Whereas, L-arginine only abrogated the inflammatory phase. In biochemical analysis, β-sitosterol treatment reduced the level of interleukin-6 (IL-6), thiobarbituric acid reactive substances (TBARS) and increased the level of reduced glutathione (GSH). Furthermore, L-arginine and substance-P abrogated the GSH increasing and TBARS lowering effect of β-sitosterol (40 mg/kg). Overall, the current study delineated that β-sitosterol may induce an anti-nociceptive effect via inhibiting the IL-6, oxidative stress, cyclo-oxygenase and nitric oxide.
Collapse
|
5
|
Zhu C, Wang M, Guo J, Su SL, Yu G, Yang Y, Zhou Y, Tang Z. Angelica dahurica Extracts Attenuate CFA-Induced Inflammatory Pain via TRPV1 in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4684830. [PMID: 35656472 PMCID: PMC9152374 DOI: 10.1155/2022/4684830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Angelica dahurica, belonging to the family Apiaceae, is a well-known herbal medicine. The roots of Angelica dahurica are commonly used for the treatment of headache, toothache, abscess, furunculosis, and acne. However, little is known about their analgesic molecular mechanism underlying pain relief. In this study, we used behavioral tests to assess the analgesic effect of the ADE (Angelica dahurica extracts) on CFA (complete Freund's adjuvant)-induced inflammatory pain mice models. TRPV1 (Transient Receptor Potential Cation Channel Subfamily V Member 1) protein activity in dorsal root ganglion (DRG) was assessed with a calcium imaging assay. TRPV1 expression was detected with western blot and immunohistochemistry. Then, we examined the constituents of ADE using combined ultra-performance liquid chromatography-quadrupole time-of-light mass spectrometry (UPLC/Q-TOF-MS). Our results showed that ADE effectively attenuated mechanical and thermal hypersensitivities in CFA-induced inflammatory pain model in mice. ADE also significantly reduced the activity and the protein expression of TRPV1 in DRG from CFA mice. Therefore, ADE might be an attractive and suitable analgesic agent for the management of chronic inflammatory pain.
Collapse
Affiliation(s)
- Chan Zhu
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Meiyuan Wang
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jun Guo
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Shu Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Guang Yu
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yan Yang
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yuan Zhou
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Zongxiang Tang
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Mosebarger A, Reddi RN, Menon R, Kammala AK. Computational Screening of the Natural Product Osthole and Its Derivates for Anti-Inflammatory Activity. Life (Basel) 2022; 12:life12040505. [PMID: 35454996 PMCID: PMC9030959 DOI: 10.3390/life12040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Osthole (OS) is a natural coumarin with a long history of medicinal use in a variety of diseases, such as itch and menstrual disorders. In recent years, OS has been shown to treat inflammation and reduce the expression and activity of NF-κB, although its mechanism of action is still unclear. Overexpression of inflammatory cytokines can have many negative effects in the body, including inducing preterm labor; thus, the modulation of inflammation by OS and its derivatives may be able to delay preterm birth, increasing neonatal survival rates. The objectives of this study were to screen and identify the derivatives of OS with the highest potential for binding capacity to inflammatory mediators NF-κB, TNF-α, and ERK1, and to measure the drug-like properties of these compounds. GLIDE docking in Schrodinger Maestro software was used to calculate docking scores for a variety of semi-synthetic OS derivatives against three proteins involved in inflammation: NF-κB, TNF-α, and ERK1. Schrodinger Qikprop was also used to measure the pharmaceutically relevant properties of the compounds. The protonated demethoxy osthole 1 showed the highest docking of all the proteins tested, while the deprotonated demethoxy osthole 2 consistently had the lowest scores, denoting the importance of pH in the binding activity of this derivative. The lowest docking was at NF-κB, suggesting that this is less likely to be the primary target of OS. All of the screened derivatives showed high drug potential, based on their Qikprop properties. OS and its derivatives showed potential to bind to multiple proteins that regulate the inflammatory response and are prospective candidates for delaying preterm birth.
Collapse
Affiliation(s)
- Angela Mosebarger
- Division of Basic & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA; (A.M.); (R.M.)
| | - Rambabu N. Reddi
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 234 Herzl St., P.O. Box 26, Rehovot 7610001, Israel;
| | - Ramkumar Menon
- Division of Basic & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA; (A.M.); (R.M.)
| | - Ananth Kumar Kammala
- Division of Basic & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA; (A.M.); (R.M.)
- Correspondence: ; Tel.: +1-517-899-6963
| |
Collapse
|
7
|
Anti-Inflammatory and Antioxidant Chinese Herbal Medicines: Links between Traditional Characters and the Skin Lipoperoxidation “Western” Model. Antioxidants (Basel) 2022; 11:antiox11040611. [PMID: 35453296 PMCID: PMC9030610 DOI: 10.3390/antiox11040611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The relationship between lipid peroxidation and inflammation has been accepted as a paradigm in the field of topical inflammation. The underlying biochemical mechanisms may be summarised as unspecific oxidative damage followed by specific oxidative processes as the physio pathological response in skin tissues. In this experimental review we hypothesise that the characteristics attributed by Traditional Chinese Medicine (TCM) to herbal drugs can be linked to their biomolecular activities within the framework of the above paradigm. To this end, we review and collect experimental data from several TCM herbal drugs to create 2D-3D pharmacological and biochemical spaces that are further reduced to a bidimensional combined space. When multivariate analysis is applied to the latter, it unveils a series of links between TCM herbal characters and the skin lipoperoxidation “Western” model. With the help of these patterns and a focused review on their chemical, pharmacological and antioxidant properties we show that cleansing herbs of bitter and cold nature acting through removal of toxins—including P. amurense, Coptis chinensis, S. baicalensis and F. suspensa—are highly correlated with strong inhibition of both lipid peroxidation and eicosanoids production. Sweet drugs—such as A. membranaceus, A. sinensis and P. cocos—act through a specific inhibition of the eicosanoids production. The therapeutic value of the remaining drugs—with low antioxidant or anti-inflammatory activity—seems to be based on their actions on the Qi with the exception of furanocoumarin containing herbs—A. dahurica and A. pubescens—which “expel wind”. A further observation from our results is that the drugs present in the highly active “Cleansing herbs” cluster are commonly used and may be interchangeable. Our work may pave the way to a translation between two medical systems with radically different philosophies and help the prioritisation of active ingredients with specific biomolecular activities of interest for the treatment of skin conditions.
Collapse
|
8
|
Lei F, Yan Z. Antinociceptive and Anti-inflammatory Effect of Corynoline in Different Nociceptive and Inflammatory Experimental Models. Appl Biochem Biotechnol 2022; 194:4783-4799. [PMID: 35247154 DOI: 10.1007/s12010-022-03843-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Pain is growing to be a massive health issue across the globe. It is reported that one in every five adults tends to suffer from pain worldwide each year, regardless of age and gender. Inflammation caused by tissue damage, chemical stimulus, and foreign substances is commonly associated with pain. Inflammatory pain is mainly caused by the direct effect of inflammatory mediators on particular classes of nociceptive neurons. In the current investigation, the antinociceptive and anti-inflammatory effect of corynoline, a phytochemical compound isolated from Corydalis bungeana Turcz., has been evaluated in experimental mice. The experimental mice were divided into 5 groups of 6 animals each. The first control group was fed with water. The second, third, and fourth groups received different doses of corynoline and the fifth group of mice received positive controls. Nociception was induced with the help of acetic acid, formalin, glutamate, capsaicin, hot plate, and tail immersion in mice whereas carrageenan was used to induce inflammation. The peritoneal cavity leukocyte infiltration and pro-inflammatory mediator generation were also analyzed to confirm the anti-inflammatory effect and the natural locomotor activity was determined using an open field test. Corynoline treatment significantly suppressed the paw licking, writhing in the abdominal region, and displayed high nociceptive inhibitory reaction in a dose-related manner. Additionally, corynoline significantly reduced the carrageenan-triggered paw edema and also reduced the levels of pro-inflammatory cytokines. Thus, the antinociceptive and anti-inflammatory activity of corynoline has been successfully established.
Collapse
Affiliation(s)
- Feng Lei
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Zhou Yan
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, 100035, China.
| |
Collapse
|
9
|
Ren Z, Lv M, Xu H. Osthole: Synthesis, Structural Modifications and Biological Properties. Mini Rev Med Chem 2022; 22:2124-2137. [DOI: 10.2174/1389557522666220214101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Osthole, a naturally occurring coumarin-type compound, is isolated from a Chinese herbal medicine Cnidium monnieri (L.), and exhibits a broad range of biological properties. In this review, the total synthesis and structural modifications of osthole and its analogs are described. Additionally, the progress on bioactivities of osthole and its analogs is outlined since 2016. Moreover, the structure-activity relationships and mechanisms of action of osthole and its derivatives are discussed. These can provide references for future design, development and application of osthole and its analogs as drugs or pesticides in the fields of medicine and agriculture.
Collapse
Affiliation(s)
- Zili Ren
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
10
|
Huang CY, Cheng CJ, Chiou WF, Chang WC, Kang YN, Lee MH. Efficacy and safety of Duhuo Jisheng Decoction add-on bisphosphonate medications in patients with osteoporosis: A meta-analysis of randomized controlled trials. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114732. [PMID: 34637967 DOI: 10.1016/j.jep.2021.114732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/25/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duhuo Jisheng Decoction (DHJSD) is the most frequently prescribed herbal formula for the treatment of osteoporosis. However, efficacy and safety of DHJSD add-on bisphosphonate medications remain unclear. AIM OF THE STUDY The purpose of this study was to reveal efficacy and safety of DHJSD add-on bisphosphonate medications in patients with osteoporosis through a systematic review with meta-analysis of randomized controlled trials (RCTs). METHODS Five important databases were searched for RCTs on this topic, and two authors individually extracted information and data concerning study design, baseline characteristics, efficacy rate, bone mineral density (BMD), pain score, and adverse event. Meta-analysis was done mainly with risk ratio (RR) and standardized mean difference (SMD) for BMD and pain, using random-effects model; while Peto odds ratios (PORs) were used for pooling adverse event rates due to sparse data. Point estimate was reported with 95% confidence intervals (CIs). RESULTS Seventeen RCTs (n = 1526) met eligibility criteria, and were included in this synthesis. Pooled estimates demonstrated that as compared with no DHJSD, DHJSD-B led to significantly higher efficacy rates (RR = 1.25, 95%CI: 1.19-1.31; I2 = 0%), more lumbar BMD (SMD = 0.61, 95%CI: 0.25-0.96; I2 = 20%), lower pain score (SMD = -1.10, 95%CI: 1.40-0.79; I2 = 33%), and lower overall adverse event rates (POR = 0.40; 95%CI: 0.20-0.97; I2 = 27%). CONCLUSION Adding DHJSD on bisphosphonate medications seems to be an effective and safe strategy in treating patients with osteoporosis.
Collapse
Affiliation(s)
- Chung-Yu Huang
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan; Department of Traditional Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
| | - Ciao-Jhih Cheng
- Department of Traditional Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, 97004, Taiwan.
| | - Wen-Fei Chiou
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, 112, Taiwan.
| | - Wei-Chiao Chang
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan; Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Yi-No Kang
- Evidence-Based Medicine Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan; Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan; Cochrane Taiwan, Taipei Medical University, Taipei, 11031, Taiwan; Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, 10055, Taiwan.
| | - Mei-Hsien Lee
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan; Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
11
|
Osthole: an overview of its sources, biological activities, and modification development. Med Chem Res 2021; 30:1767-1794. [PMID: 34376964 PMCID: PMC8341555 DOI: 10.1007/s00044-021-02775-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Osthole, also known as osthol, is a coumarin derivative found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. It can be obtained via extraction and separation from plants or total synthesis. Plenty of experiments have suggested that osthole exhibited multiple biological activities covering antitumor, anti-inflammatory, neuroprotective, osteogenic, cardiovascular protective, antimicrobial, and antiparasitic activities. In addition, there has been some research done on the optimization and modification of osthole. This article summarizes the comprehensive information regarding the sources and modification progress of osthole. It also introduces the up-to-date biological activities of osthole, which could be of great value for its use in future research. ![]()
Collapse
|
12
|
Li S, Lv M, Sun Z, Hao M, Xu H. Optimization of Osthole in the Lactone Ring: Structural Elucidation, Pesticidal Activities, and Control Efficiency of Osthole Ester Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6465-6474. [PMID: 34077224 DOI: 10.1021/acs.jafc.1c01434] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we prepared a series of novel osthole-type ester derivatives modified in the lactone ring of osthole, which is isolated from Cnidium monnieri. The positions of H-3 and H-4 of the representative compound 4z were determined by a 1H-1H COSY spectrum. By opening the lactone ring of osthole, the double bonds at the C-3 and C-4 positions of diol 3 and esters 4a-4z, 4a', and 4b' were still retained as a Z configuration. That is, H-3 and H-4 of compounds 3 and 4a-4z, 4a', and 4b' were all in the cis relationship. The steric configurations of 4k, 4v, and 4z were further undoubtedly determined by single-crystal X-ray diffraction. Against Tetranychus cinnabarinus Boisduval, four aliphatic esters 4c (R = n-C3H7; LC50: 0.31 mg/mL), 4d (R = CH3(CH2)10; LC50: 0.24 mg/mL), 4a' (R = CH3(CH2)9; LC50: 0.28 mg/mL), and 4b' (R = CH3(CH2)12; LC50: 0.32 mg/mL) showed the most promising acaricidal activity, and compounds 4c, 4d, and 4a' also exhibited a potent control efficiency. Especially, compound 4d exhibited greater than fivefold acaricidal activity of the precursor osthole (LC50: 1.22 mg/mL). Against Mythimna separata Walker, compounds 4g, 4l, and 4m displayed 1.6-1.8-fold potent insecticidal activity of osthole. It demonstrated that the lactone ring of osthole is not necessary for the agricultural activities, thiocarbonylation of osthole was not beneficial for the agricultural activities, introduction of R as an aliphatic chain is vital for the acaricidal activity, notably, the length of the aliphatic chain is related to the acaricidal activity, 4d could be further studied as a lead acaricidal agent, and to the aromatic series, R containing the fluorine atom(s) is important for the insecticidal activity.
Collapse
Affiliation(s)
- Shaochen Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Zhiqiang Sun
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
13
|
Li L, Chen B, An T, Zhang H, Xia B, Li R, Zhu R, Tian Y, Wang L, Zhao D, Mo F, Li Y, Yang G, Orekhov AN, Prentki M, Zhang D, Jiang G, Zhu X. BaZiBuShen alleviates altered testicular morphology and spermatogenesis and modulates Sirt6/P53 and Sirt6/NF-κB pathways in aging mice induced by D-galactose and NaNO 2. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113810. [PMID: 33508368 DOI: 10.1016/j.jep.2021.113810] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/12/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sperm infertility and testicular atrophy are symptoms associated with aging. BaZiBuShen formula (BZBS), a patented Chinese herbal prescription composed of Semen Cuscutae, Fructus Lycii, Epimedii Folium, Fructus Schisandrae Sphenantherae, Fructus Cnidii, Fructus Rosae Laevigatae, Semen Allii Tuberosi., Radix Morindae Officinalis, Herba Cistanches, Fructus Rubi, Radix Rehmanniae Recens, Radix Cyathulae, Radix Ginseng, Cervi Cornu Pantotrichum, Hippocampus, and Fuctus Toosendan, has been used as a kidney-tonifying and anti-aging drug as well as for the treatment of impotence and male infertility in traditional Chinese medicine. AIM OF THE STUDY We aimed at investigating whether BZBS preserves sperm and testes morphology in aging mice, and to explore the underlying mechanisms. MATERIALS AND METHODS BZBS was orally administered to aging mice induced by D-galactose (D-gal) and NaNO2 for 65 days. Sperm quality and testes pathophysiological alterations were examined by a Semen Analysis System, hematoxylin-eosin staining, transmission electron microscopy, and mitochondrial complex IV activity. In addition, serum levels of total antioxidant capacity (TAC), malondialdehyde (MDA), 8-hydroxy-desoxyguanosine (8-OH-dG), reduced glutathione (GSH), oxidized glutathione disulfide (GSSG), testosterone (T), follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) and tumor necrosis factor-α (TNF-α) were determined by ELISA. The expressions of P450 aromatase (CYP19), sirtuin 6 (Sirt6), P53, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB)-p65, and phospho-NF-κB-p65 (NF-κB-pp65) in the testes were examined by western blot and/or immunohistochemical staining. RESULTS Sustained exposure to D-gal/NaNO2 caused a deterioration of sperm quality and testes morphology in this rapid aging mouse model. BZBS treatment curtailed these alterations. These beneficial effects were associated with increased serum levels of TAC, GSH/GSSG, T, E2, and FSH, and decreased levels of MDA, TNF-α, and 8-OH-dG. BZBS treatment also downregulated the expressions of P53, iNOS, and NF-κB-pp65, as well as upregulated the expressions of Sirt6 and CYP19 in aging testes. CONCLUSIONS BZBS preserves testicular morphology and spermatogenesis possibly via inhibition of oxidative stress and the modulation of the Sirt6/P53 and Sirt6/NF-κB signaling pathways. The results shed light on the beneficial effect of BZBS on sperm quality and fertility in aging males.
Collapse
Affiliation(s)
- Lin Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Beibei Chen
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tian An
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hao Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bingke Xia
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Rui Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ruyuan Zhu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yimiao Tian
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dandan Zhao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fangfang Mo
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yu Li
- Department of Histo-embryology, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ge Yang
- The Geriatric Department, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China, Beijing, 100053, China.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, QC, Canada.
| | - Dongwei Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Guangjian Jiang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaofeng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
14
|
Therapeutic Role of Protein Tyrosine Phosphatase 1B in Parkinson's Disease via Antineuroinflammation and Neuroprotection In Vitro and In Vivo. PARKINSONS DISEASE 2020; 2020:8814236. [PMID: 33456749 PMCID: PMC7787797 DOI: 10.1155/2020/8814236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is one of the most widespread neurodegenerative diseases. However, the currently available treatments could only relieve symptoms. Novel therapeutic targets are urgently needed. Several previous studies mentioned that protein tyrosine phosphatase 1B (PTP1B) acted as a negative regulator of the insulin signal pathway and played a significant role in the inflammation process. However, few studies have investigated the role of PTP1B in the central nervous system. Our study showed that suramin, an inhibitor of PTP1B, could improve neuronal damage. It could significantly attenuate the interferon-gamma-induced upregulation of proinflammatory cytokines, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). It enhanced M2 type microglia markers, such as arginase-1 and Ym-1 in BV2 murine microglial cells. PTP1B inhibition also reversed 6-hydroxydopamine- (6-OHDA-) induced downregulation of phospho-cAMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) in SH-SY5Y cells. Besides, we knocked down and overexpressed PTP1B in the SH-SY5Y cells to confirm its role in neuroprotection. We also verified the effect of suramin in the zebrafish PD model. Treatment with suramin could significantly reverse 6-OHDA-induced locomotor deficits and improved tyrosine hydroxylase (TH) via attenuating endoplasmic reticulum (ER) stress biomarkers. These results support that PTP1B could potentially regulate PD via antineuroinflammation and antiapoptotic pathways.
Collapse
|
15
|
Abstract
Neuropathic pain (NP) has become a serious global health issue and a huge clinical challenge without available effective treatment. P2 receptors family is involved in pain transmission and represents a promising target for pharmacological intervention. Traditional Chinese medicine (TCM) contains multiple components which are effective in targeting different pathological mechanisms involved in NP. Different from traditional analgesics, which target a single pathway, TCMs take the advantage of multiple components and multiple targets, and can significantly improve the efficacy of treatment and contribute to the prediction of the risks of NP. Compounds of TCM acting at nucleotide P2 receptors in neurons and glial cells could be considered as a potential research direction for moderating neuropathic pain. This review summarized the recently published data and highlighted several TCMs that relieved NP by acting at P2 receptors.
Collapse
|
16
|
Kumar SS, Hira K, Begum Ahil S, Kulkarni OP, Araya H, Fujimoto Y. New synthetic coumarinolignans as attenuators of pro-inflammatory cytokines in LPS-induced sepsis and carrageenan-induced paw oedema models. Inflammopharmacology 2020; 28:1365-1373. [PMID: 32356087 DOI: 10.1007/s10787-020-00710-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/13/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of the study was to explore the inhibition efficacy of new synthetic coumarinolignans (SCLs) against the secretion of pro-inflammatory cytokines in two in vivo models of inflammation. METHODS Four SCLs 1-4 were screened for their pro-inflammatory cytokine inhibitory potential through oral administration at a dose of 50 mg/kg body weight in lipopolysaccharide-induced mouse endotoxaemia and carrageenan-induced mouse paw oedema models. Levels of pro-inflammatory cytokines (IL-1β, TNFα and IL-6) in blood and paw tissue samples were estimated using ELISA. Paw oedema was measured using a plethysmometer. Results were compared with a natural coumarinolignan, cleomiscosin A (5), and the structure-activity relationship (SAR) was interpreted. RESULTS AND DISCUSSION Compound 2 had the greatest potential in the endotoxaemia model, exhibiting 66.41%, 62.56% and 43.15% inhibition of plasma IL-1β, TNFα and IL-6 secretions, respectively. Further dose-dependent study revealed its anti-inflammatory potential even at dose of 10 mg/kg body weight with 24.42% decline in the level of IL-1β. Nevertheless, SCLs 1, 3 and 4 showed marked inhibitory activity with 57.54%, 51.48% and 62.46% reduction in the levels of IL-1β, respectively. Moreover, compound 2 decreased the plasma TNFα and IL-1β levels to 50.03% and 36.58% along with the reduction of paw oedema volume in the local inflammation induced by carrageenan. All compounds including cleomiscosin A (5) were more effective against IL-1β. By studying SAR, the presence of dihydroxyl groups in the phenyl ring of lignans was identified to be essential for the activity. Also, esterification of lignans and presence of a 4-methyl substituent in the coumarin nucleus were found to play some role in enhancing the activity. CONCLUSION All four SCLs, especially compound 2, have shown vast potential to emerge out as promising anti-inflammatory drugs.
Collapse
Affiliation(s)
- Santhosh S Kumar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500 078, India
| | - Kirti Hira
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500 078, India
| | - Sajeli Begum Ahil
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500 078, India.
| | - Onkar P Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500 078, India
| | - Hiroshi Araya
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yoshinori Fujimoto
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
17
|
Su X, Wu B, Zhang W, Ji YH, Wang Q, Tan ZY. Inhibitory Effects of Columbianadin on Nociceptive Behaviors in a Neuropathic Pain Model, and on Voltage-Gated Calcium Currents in Dorsal Root Ganglion Neurons in Mice. Front Pharmacol 2020; 10:1522. [PMID: 31998126 PMCID: PMC6970200 DOI: 10.3389/fphar.2019.01522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Radix angelicae pubescentis (RAP) has been used in Chinese traditional medicine to treat painful diseases such as rheumatism and headache. A previous study has reported that columbianadin (CBN), a major coumarin in RAP inhibits acute and inflammatory pain behaviors. However, the effects of CBN on neuropathic pain behaviors, and the potential underlying mechanism have not been reported. In the present study, the effects of CBN, compared to another major coumarin of RAP osthole (OST), on oxaliplatin-induced neuropathic pain behaviors and on the voltage-gated calcium currents in small dorsal root ganglion (DRG) neurons were studied in mice. It was found that CBN and OST inhibited both mechanical and cold hypersensitivity induced by oxaliplatin. Moreover, CBN and OST might preferentially inhibit T- and L-type calcium currents (Ica). The inhibitory effects of CBN and OST on the oxaliplatin-induced mechanical allodynia were prevented by gabapentin. These results suggest that CBN, as well as OST might inhibit neuropathic pain behaviors through an inhibition of T- and L-type calcium currents in nociceptive DRG neurons.
Collapse
Affiliation(s)
- Xiaolin Su
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bin Wu
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Institute of Special Environment Medicine, Nantong University, Nantong, China
| | - Wentong Zhang
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yong-Hua Ji
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, China
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
18
|
Feng CW, Chen NF, Chan TF, Chen WF. Therapeutic Role of Protein Tyrosine Phosphatase 1B in Parkinson's Disease via Antineuroinflammation and Neuroprotection In Vitro and In Vivo. PARKINSON'S DISEASE 2020. [PMID: 33456749 DOI: 10.1155/2020/8814236.ecollection2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Parkinson's disease (PD) is one of the most widespread neurodegenerative diseases. However, the currently available treatments could only relieve symptoms. Novel therapeutic targets are urgently needed. Several previous studies mentioned that protein tyrosine phosphatase 1B (PTP1B) acted as a negative regulator of the insulin signal pathway and played a significant role in the inflammation process. However, few studies have investigated the role of PTP1B in the central nervous system. Our study showed that suramin, an inhibitor of PTP1B, could improve neuronal damage. It could significantly attenuate the interferon-gamma-induced upregulation of proinflammatory cytokines, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). It enhanced M2 type microglia markers, such as arginase-1 and Ym-1 in BV2 murine microglial cells. PTP1B inhibition also reversed 6-hydroxydopamine- (6-OHDA-) induced downregulation of phospho-cAMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) in SH-SY5Y cells. Besides, we knocked down and overexpressed PTP1B in the SH-SY5Y cells to confirm its role in neuroprotection. We also verified the effect of suramin in the zebrafish PD model. Treatment with suramin could significantly reverse 6-OHDA-induced locomotor deficits and improved tyrosine hydroxylase (TH) via attenuating endoplasmic reticulum (ER) stress biomarkers. These results support that PTP1B could potentially regulate PD via antineuroinflammation and antiapoptotic pathways.
Collapse
Affiliation(s)
- Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Neurosurgery, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Singh G, Kaur J, Kaur M, Singh P, Bhatti R. Anti-nociceptive and anti-inflammatory effect of imperatorin: evidences for involvement of COX-2, iNOS, NFκB and inflammatory cytokines. Int J Neurosci 2019; 130:176-185. [PMID: 31524564 DOI: 10.1080/00207454.2019.1667789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: The objective of the current investigation was to explore the analgesic effect of naturally occurring furanocoumarin, imperatorin and the involvement of inducible cyclooxygenase (COX-2), inducible nitric oxide synthase (iNOS), NFκB and cytokines in the observed effect.Materials and methods: Anti-nociceptive effect was explored by inducing chemical hyperalgesia using acetic acid and formalin in mice. ED50 of imperatorin was calculated in acetic acid model. Modulation of cyclooxygenase and nitric oxide pathway by imperatorin was examined by stimulator/precursor challenge with substance P and L-arginine, respectively and quantification of COX-2, iNOS and NFκB expression by immunohistochemical analysis in spinal tissues. Involvement of inflammatory cytokines TNF-α and IL-1β was investigated using LPS challenge and subsequent ELISA analysis of these inflammatory mediators in serum. Carrageenan inflicted paw edema was employed to explore the anti-inflammatory activity of imperatorin.Results: A significant reduction in the nociceptive behaviour was observed with imperatorin treatment in acetic acid and formalin test. ED50 of imperatorin was found to be 4.53 mg/kg. Pre-treatment with substance P and L-arginine significantly attenuated the anti-nociceptive activity of imperatorin in formalin test. Immunohistochemical findings revealed marked decrease in spinal COX-2, iNOS and NFκB expression. Imperatorin administration significantly reduced LPS induced rise in level of TNF-α and IL-1β dose dependently. In carrageenan-induced paw edema test, maximum possible anti-inflammatory effect of imperatorin was evident after 240 min of carrageenan administration.Conclusion: Current investigation revealed that anti-nociceptive and anti-inflammatory potential of imperatorin is probably mediated through the attenuation of COX-2, iNOS, NFκB activity and reduction in circulatory cytokines.
Collapse
Affiliation(s)
- Gurjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Jashanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Manpreet Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Palwinder Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
20
|
Kong L, Yao Y, Xia Y, Liang X, Ni Y, Yang J. Osthole alleviates inflammation by down-regulating NF-κB signaling pathway in traumatic brain injury. Immunopharmacol Immunotoxicol 2019; 41:349-360. [PMID: 31056982 DOI: 10.1080/08923973.2019.1608560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is a common neurotrosis disorder of the central nervous system (CNS), which has dramatic consequences on the integrity of damaged tissue. In this study, we investigated the neuroprotective effect and anti-inflammatory actions of osthole, a natural coumarin derivative, in both in vivo and in vitro TBI models. We first prepared a mouse model of cortical stab wound brain injury, investigated the capacity for osthole to prevent secondary brain injury and further examined the underlying mechanism. We revealed that osthole significantly improved the neurological function, increased the number of neurons beside injured site. Additionally, osthole treatment reduced the expression of microglia and glial scar, lowered the level of the proinflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), and blocked the activation of nuclear factor kappa B (NF-κB). Furthermore, the protective effect of osthole was also examined in SH-SY5Y cells subjected to scratch injury. Treatment of osthole prominently suppressed cell apoptosis and inflammatory factors release by blocking injury-induced IκB-α phosphorylation and NF-κB translocation, and upregulated the IκB-α which functions in the NF-κB signaling pathway of SH-SY5Y cells. However, NF-κB signaling pathway was inhibited by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, the anti-inflammatory effect of osthole was abolished. In conclusion, our findings demonstrated that osthole attenuated inflammatory response by inhibiting the NF-κB pathway in TBI.
Collapse
Affiliation(s)
- Liang Kong
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yingjia Yao
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yang Xia
- b Department of Engineering , University of Oxford , Oxford , UK
| | - Xicai Liang
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yingnan Ni
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Jingxian Yang
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|
21
|
Bergapten inhibits chemically induced nociceptive behavior and inflammation in mice by decreasing the expression of spinal PARP, iNOS, COX-2 and inflammatory cytokines. Inflammopharmacology 2019; 27:749-760. [DOI: 10.1007/s10787-019-00585-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
|
22
|
Kordulewska NK, Cieślińska A, Fiedorowicz E, Jarmołowska B, Kostyra E. High Expression of IL-1RI and EP₂ Receptors in the IL-1β/COX-2 Pathway, and a New Alternative to Non-Steroidal Drugs-Osthole in Inhibition COX-2. Int J Mol Sci 2019; 20:E186. [PMID: 30620999 PMCID: PMC6337662 DOI: 10.3390/ijms20010186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Osthole (7-methoxy-8-isopentenylcoumarin) is natural coumarin isolated from the fruit of Cnidium monnieri (L.) Cusson, which is commonly used in medical practice of traditional Chinese medicine (TCM) in various diseases including allergies and asthma disorders. PURPOSE Osthole was tested for the anti-histamine, anti-allergic, and inhibitory effects of COX-2 (cyclooxygenase-2) in children with diagnosed allergies. Additionally, we hypothesize that stated alterations in children with diagnosed allergies including increased expression of interleukin 1-β receptor type 1 (IL-1 type I) and E-prostanoid (EP) 2 receptors, as well as raised expression, production, and activity of COX-2 and IL-1β in incubated medium are approximately connected. Furthermore, we establish the mechanisms included in the changed regulation of the COX-2 pathway and determine whether osthole may be COX-2 inhibitor in peripheral blood mononuclear cells (PBMCs). METHOD PBMCs were obtained from peripheral blood of healthy children (control, n = 28) and patients with diagnosed allergies (allergy, n = 30). Expression of the autocrine loop components regulating PGE₂ production and signaling namely IL-1 type I receptor (IL-1RI), cyclooksygenaze-2 (COX-2), E-prostanoid (EP) 2, and also histamine receptor-1 (HRH-1) was assessed at baseline and after stimulation with histamine, osthole, and a mixture of histamine/osthole 1:2 (v/v). This comprised the expression of histamine receptor 1 (HRH-1), IL-1RI, COX-2, EP₂ receptor, and the secretion of IL-1β and COX-2 in cultured media and sera. RESULTS Compared with control group, basal mRNA expression levels of HRH-1, IL-1RI, COX-2, and EP₂ were higher in the allergy group. Histamine-induced EP₂ and COX-2 expression mRNA levels were also increased. CONCLUSIONS Osthole successively inhibits PGE₂ and COX-2 mRNA expression. Furthermore, osthole reduces the secretion of COX-2 protein in signaling cellular mechanisms. Changed EP₂ expression in children with allergies provides higher IL-1RI induction, increasing IL-1β capacity to increase COX-2 expression. This effects in higher PGE₂ production, which in turn increases its capability to induce IL-1RI.
Collapse
MESH Headings
- Case-Control Studies
- Child
- Child, Preschool
- Coumarins/chemistry
- Coumarins/pharmacology
- Cyclooxygenase 2/metabolism
- Cyclooxygenase Inhibitors/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Histamine/chemistry
- Histamine/pharmacology
- Humans
- Hypersensitivity/genetics
- Hypersensitivity/pathology
- Interleukin-1beta/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Male
- Models, Biological
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Interleukin-1 Type I/genetics
- Receptors, Interleukin-1 Type I/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Natalia Karolina Kordulewska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Anna Cieślińska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Ewa Fiedorowicz
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Beata Jarmołowska
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Elżbieta Kostyra
- Department of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| |
Collapse
|