1
|
Karimi M, Vakili K, Rashidian P, Razavi-Amoli SK, Akhbari M, Kazemi K. Effect of boswellia ( Boswellia serrata L.) supplementation on glycemic markers and lipid profile in type 2 diabetic patients: a systematic review and meta-analysis. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 5:1466408. [PMID: 39449720 PMCID: PMC11499236 DOI: 10.3389/fcdhc.2024.1466408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Background Type 2 diabetes mellitus (T2DM) is a significant global health challenge whose prevalence is projected to increase alarmingly. Recently, due to better safety and fewer adverse effects, herbal medicines have been used to manage T2DM. This study aimed to evaluate the efficacy of boswellia in improving glycemic markers and lipid profiles in T2DM patients. Methods A comprehensive search was conducted on the PubMed, Web of Science, and Scopus databases for all relevant studies published up to April 30, 2024. The effects of boswellia supplementation were evaluated using glycemic markers and lipid profiles. The data were extracted and meta-analyzed using Stata software. Results This meta-analysis included five studies with a total of 287 patients with T2DM. It was found that boswellia in patients with T2DM compared to the placebo or control group significantly reduced hemoglobin A1C (HbA1C) (SMD: -1.01; 95%CI: -1.55 to -0.46; P=0.00), total cholesterol (TC) (SMD: -0.44; 95%CI: -0.68 to -0.21; P=0.00), Triglycerides (TG) (SMD: -0.42; 95%CI: -0.66 to -0.19); P=0.00) and low-density lipoprotein (LDL) (SMD: -0.43; 95%CI: -0.73 to -0.12); P=0.006) levels, while reduced fasting blood glucose (FBG) but it was not significant (SMD: -1.34, 95%CI: -2.68 to 0.00; P=0.05). Notably, it did not affect high-density lipoprotein (HDL) (SMD: 0.56, 95%CI: -0.14 to -1.26; P=0.118). Conclusion In summary, boswellia supplementation has the potential to improve glycemic markers and lipid profiles in patients with T2DM. It may help diabetic patients in addition to a controlled diet and other treatments. Systematic review registration crd.york.ac.uk/PROSPERO/display_record.php?RecordID=538347, identifier CRD42024538347.
Collapse
Affiliation(s)
- Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Rashidian
- Reproductive Health Research Center, School of Medicine, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| | - Seyedeh-Kiana Razavi-Amoli
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences (MazUMS), Sari, Iran
| | - Matin Akhbari
- Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
| | - Kimia Kazemi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
2
|
Marino Y, Inferrera F, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Role of mitochondrial dysfunction and biogenesis in fibromyalgia syndrome: Molecular mechanism in central nervous system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167301. [PMID: 38878832 DOI: 10.1016/j.bbadis.2024.167301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 08/18/2024]
Abstract
A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
3
|
Inferrera F, Marino Y, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Impaired mitochondrial quality control in fibromyalgia: Mechanisms involved in skeletal muscle alteration. Arch Biochem Biophys 2024; 758:110083. [PMID: 38969196 DOI: 10.1016/j.abb.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Fibromyalgia (FMS) is a persistent syndrome marked by widespread musculoskeletal pain and behavioural symptoms. Given the hypothesis linking FMS aetiology to mitochondrial dysfunction and oxidative stress, we examined the biochemical correlation among these factors by studying specific proteins associated with mitochondrial homeostasis in muscle. Additionally, this study investigated the role of Boswellia serrata gum resin extract (BS), known for its various functions, including the potent induction of antioxidant enzymes, in determining protective or reparative mechanisms in the muscle cells. Sprague-Dawley rats were injected with reserpine to induce FMS. These animals exhibited moderate changes in hind limb skeletal muscles, experiencing mobility difficulties. Additionally, there were noteworthy morphological and ultrastructural alterations, along with the expression of myogenin, mitochondrial enzymes and oxidative stress markers in the gastrocnemius muscle. Interestingly, BS demonstrated a reduction in spontaneous motor activity difficulties. Moreover, BS showed a positive impact on musculoskeletal morphostructural aspects, as well as a decrease in oxidative stress and mitochondrial alterations. In particular, BS restored the mRNA expression of citrate synthase and cytochrome-c oxidase subunit II and the activity of electron transfer chain complexes. BS also influenced mitochondrial biogenesis, upregulating PGC-1α expression and the related transcription factors (Nrf1, Tfam, Nrf2, FOXO3a, SIRT3, GCLC, NQO1, SOD2 and GPx4), oxidative stress (lipid peroxidation, GSH levels and GSH-Px activity) and mitochondrial dynamics and function (Mnf2 expression and CoQ10 levels). Overall, this study underlined the key role of the mitochondrial alteration in FMS and that BS had a very high antioxidant effect in these organelles and also in the cells.
Collapse
Affiliation(s)
- Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125, Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy.
| |
Collapse
|
4
|
Salama RM, Abbas SS, Darwish SF, Sallam AA, Elmongy NF, El Wakeel SA. Regulation of NOX/p38 MAPK/PPARα pathways and miR-155 expression by boswellic acids reduces hepatic injury in experimentally-induced alcoholic liver disease mouse model: novel mechanistic insight. Arch Pharm Res 2023; 46:323-338. [PMID: 36959348 PMCID: PMC10123034 DOI: 10.1007/s12272-023-01441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Alcoholic liver disease (ALD) refers to hepatic ailments induced by excessive alcohol intake. The pathogenesis of ALD comprises a complex interplay between various mechanistic pathways, among which inflammation and oxidative stress are key players. Boswellic acids (BAs), found in Boswellia serrata, have shown hepatoprotective effects owing to their antioxidant and anti-inflammatory activities, nevertheless, their therapeutic potential against ALD has not been previously investigated. Hence, this study was performed to depict the possible protective effect of BAs and detect their underlying mechanism of action in an experimentally-induced ALD mouse model. Male BALB/c mice were equally categorized into six groups: control, BAs-treated, ALD, and ALD that received BAs at three-dose levels (125, 250, and 500 mg/kg) by oral gavage for 14 days. Results showed that the high dose of BAs had the most protective impact against ALD according to histopathology examination, blood alcohol concentration (BAC), and liver function enzymes. Mechanistic investigations revealed that BAs (500 mg/kg) caused a significant decrease in cytochrome P450 2E1(CYP2E1), nicotine adenine dinucleotide phosphate oxidase (NOX) 1/2/4, p38 mitogen-activated protein kinase (MAPK), and sterol regulatory element-binding protein-1c (SREBP-1c) levels, and the expression of miR-155, yet increased peroxisome proliferator-activated receptor alpha (PPARα) levels. This led to an improvement in lipid profile and reduced hepatic inflammation, oxidative stress, and apoptosis indices. In summary, our study concludes that BAs can protect against ethanol-induced hepatic injury, via modulating NOX/p38 MAPK/PPARα pathways and miR-155 expression.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), KM 28, Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), KM 28, Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Al Aliaa Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noura F Elmongy
- Physiology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Sara A El Wakeel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), KM 28, Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt
| |
Collapse
|
5
|
Drake L, Reyes-Hadsall S, Martinez J, Heinrich C, Huang K, Mostaghimi A. Evaluation of the Safety and Effectiveness of Nutritional Supplements for Treating Hair Loss: A Systematic Review. JAMA Dermatol 2023; 159:79-86. [PMID: 36449274 DOI: 10.1001/jamadermatol.2022.4867] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Importance Despite the widespread use of nutritional supplements and dietary interventions for treating hair loss, the safety and effectiveness of available products remain unclear. Objective To evaluate and compile the findings of all dietary and nutritional interventions for treatment of hair loss among individuals without a known baseline nutritional deficiency. Evidence Review The MEDLINE, Embase, and CINAHL databases were searched from inception through October 20, 2021, to identify articles written in English with original findings from investigations of dietary and nutritional interventions in individuals with alopecia or hair loss without a known baseline nutritional deficiency. Quality was assessed with Oxford Centre for Evidence Based Medicine criteria. Outcomes of interest were disease course, both objectively and subjectively measured. Data were evaluated from January 3 to 11, 2022. Findings The database searches yielded 6347 citations to which 11 articles from reference lists were added. Of this total, 30 articles were included: 17 randomized clinical trials (RCTs), 11 clinical studies (non-RCT), and 2 case series studies. No diet-based interventional studies met inclusion criteria. Studies of nutritional interventions with the highest-quality evidence showed the potential benefit of Viviscal, Nourkrin, Nutrafol, Lamdapil, Pantogar, capsaicin and isoflavone, omegas 3 and 6 with antioxidants, apple nutraceutical, total glucosides of paeony and compound glycyrrhizin tablets, zinc, tocotrienol, and pumpkin seed oil. Kimchi and cheonggukjang, vitamin D3, and Forti5 had low-quality evidence for disease course improvement. Adverse effects were rare and mild for all the therapies evaluated. Conclusions and Relevance The findings of this systematic review should be interpreted in the context of each study's design; however, this work suggests a potential role for nutritional supplements in the treatment of hair loss. Physicians should engage in shared decision-making by covering the potential risks and benefits of these treatments with patients experiencing hair loss. Future research should focus on larger RCTs with active comparators.
Collapse
Affiliation(s)
- Lara Drake
- Tufts University School of Medicine, Boston, Massachusetts
| | | | - Jeremy Martinez
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | | | - Kathie Huang
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Arash Mostaghimi
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
6
|
Alshafei MM, Mabrouk AM, Hanafi EM, Ramadan MM, Korany RM, Kassem SS, Mohammed DM. Prophylactic supplementation of microencapsulated Boswellia serrata and probiotic bacteria in metabolic syndrome rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Gomaa AA, Farghaly HSM, Makboul RM, Hussien AM, Nicola MA. Polyphenols from Conyza dioscoridis (L.) ameliorate Alzheimer’s disease- like alterations through multi-targeting activities in two animal models. BMC Complement Med Ther 2022; 22:288. [PMID: 36348329 PMCID: PMC9644610 DOI: 10.1186/s12906-022-03765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Background Recent investigations suggested that anticancer agents may inhibit the progression of Alzheimer's disease (AD) pathology. Conyza dioscoridis (L.) was demonstrated to have anticancer, antioxidant, anti-inflammatory and antidiabetic effects. This study was carried out to investigate the efficacy of polyphenols from Conyza dioscoridis (L.) extract (PCDE) on AD. Methods Impacts of 3 doses of PCDE and donepezil, a reference drug, on the features of Alzheimer's disease in two animal models were investigated. Results PCDE ameliorated the memory and learning impairment shown in rats following a single dose of scopolamine (scopolamine model) or 17 weeks of high-fat/high-fructose(HF/Hfr) diet coupled with a single dose of streptozotocin, (25 mg/kg) (T2D model). They reduced significantly the high hippocampal cholinesterase activity in the two models of rats. Administration of PCDE for 8 weeks in the T2D model showed a significant reduction in hippocampal GSK-3β, caspase-3 activity and increase in the inhibited glutamate receptor expression (AMPA GluR1 subunit and NMDA receptor subunits NR1, NR2A, NR2B). A significant reduction of HOMA-insulin resistance and serum hypercholesterolemia was observed. The Tau hyperphosphorylation and Aβ 1–42 generation in the hippocampal of T2D rats were significantly decreased by PCDE. Modulation of the oxidative stress markers, (rise in GH and SOD; decrease in MDA levels) and a significant reduction of TNF-α and IL-1β in the hippocampus of T2D rats treated by PCDE extract were important findings in this study. The highest dose tested was 4% of the highest safe dose. Conclusion Our study suggests that PCDE is multi-targeting agent with multiple beneficial activities in combating features of AD. This study may provide a novel therapeutic strategy for AD treatment that warrants clinical studies.
Collapse
|
8
|
Asuquo EA, Nwodo OFC, Assumpta AC, Orizu UN, Oziamara ON, Solomon OA. FTO gene expression in diet-induced obesity is downregulated by Solanum fruit supplementation. Open Life Sci 2022; 17:641-658. [PMID: 35800074 PMCID: PMC9202533 DOI: 10.1515/biol-2022-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 03/05/2022] [Indexed: 11/15/2022] Open
Abstract
The Fat Mass and Obesity-associated (FTO) gene has been shown to play an important role in developing obesity, manifesting in traits such as increased body mass index, increased waist-to-hip ratio, and the distribution of adipose tissues, which increases the susceptibility to various metabolic syndromes. In this study, we evaluated the impact of fruit-based diets of Solanum melongena (SMF) and Solanum aethiopicum fruits (SAF) on the FTO gene expression levels in a high-fat diet (HFD)-induced obese animals. Our results showed that the mRNA level of the FTO gene was downregulated in the hypothalamus, and white and brown adipose tissue following three and six weeks of treatment with SMF- and SAF-based diets in the HFD-induced obese animals. Additionally, the Solanum fruit supplementation exhibited a curative effect on obesity-associated abrasions on the white adipose tissue (WAT), hypothalamus, and liver. Our findings collectively suggest the anti-obesity potential of SMF and SAF via the downregulation of the FTO gene.
Collapse
Affiliation(s)
- Edeke Affiong Asuquo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | | | - Anosike Chioma Assumpta
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Uchendu Nene Orizu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Okoro Nkwachukwu Oziamara
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Odiba Arome Solomon
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
- Department of Molecular Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| |
Collapse
|
9
|
Potential therapeutic effects of boswellic acids/Boswellia serrata extract in the prevention and therapy of type 2 diabetes and Alzheimer's disease. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2167-2185. [PMID: 34542667 DOI: 10.1007/s00210-021-02154-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
The link between diabetes and cognitive dysfunction has been reported in many recent articles. There is currently no disease-modifying treatment available for cognitive impairment. Boswellia serrata (B. serrata) is used traditionally to treat chronic inflammatory diseases such as type 2 diabetes (T2D), insulin resistance (IR), and Alzheimer's disease (AD). This review aims to highlight current research on the potential use of boswellic acids (BAs)/B. serrata extract in T2D and AD. We reviewed the published information through June 2021. Studies have been collected through a search on online electronic databases (Academic libraries as PubMed, Scopus, Web of Science, and Egyptian Knowledge Bank). Accumulating evidence in preclinical and small human clinical studies has indicated that BAs/B. serrata extract has potential therapeutic effect in T2D and AD. According to most of the authors, the potential therapeutic effects of BAs/B. serrata extract in T2D and AD can be attributed to immunomodulatory, anti-inflammatory, antioxidant activity, and elimination of the senescent cells. BAs/B. serrata extract may act by inhibiting the IκB kinase/nuclear transcription factor-κB (IKK/NF-κB) signaling pathway and increasing the formation of selective anti-inflammatory LOX-isoform modulators. In conclusion, BAs/B. serrata extract may have positive therapeutic effects in prevention and therapy of T2D and AD. However, more randomized controlled trials with effective, large populations are needed to show a definitive conclusion about therapeutic efficacy of BAs/B. serrata extract in T2D and AD.
Collapse
|
10
|
Vasileva LV, Savova MS, Tews D, Wabitsch M, Georgiev MI. Rosmarinic acid attenuates obesity and obesity-related inflammation in human adipocytes. Food Chem Toxicol 2021; 149:112002. [PMID: 33476690 DOI: 10.1016/j.fct.2021.112002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Chronic low-grade inflammation is a hallmark of obesity and its related metabolic disorders. At the same time signaling from pro-inflammatory factors such as transforming growth factor beta (TGF-β) or interleukin 17A (IL-17A) are proposed as crucial for the commitment of fibroblast progenitor cells towards adipogenic differentiation. Modulation of inflammation during adipogenic differentiation is incompletely explored as a potential approach to prevent metabolic disorders. Rosmarinic acid (RA) is a caffeic acid derivative known for its anti-inflammatory effects. Experimental studies of its activity on adipogenic factors or in vivo obesity models are, however, controversial and hence insufficient. Here, we investigated the anti-adipogenic action of RA in human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. Gene expression levels of key players in adipogenesis and lipid metabolism were assessed. Furthermore, a molecular mechanism of action was proposed. The most prominent effect was found on the translation of C/EBPα, PPARγ and adiponectin, as well as on the modulation of TGF1B and IL17A. Interestingly, involvement of NRF2 signaling was identified upon RA treatment. In summary, our findings indicate that RA prevents inflammation and excessive lipid accumulation in human adipocytes. Data from the molecular analysis demonstrate that RA has potential for treatment of obesity and obesity-related inflammation.
Collapse
Affiliation(s)
- Liliya V Vasileva
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Martina S Savova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.
| |
Collapse
|
11
|
Xu Q, Qi W, Zhang Y, Wang Q, Ding S, Han X, Zhao Y, Song X, Zhao T, Zhou L, Ye L. DNA methylation of JAK3/STAT5/PPARγ regulated the changes of lipid levels induced by di (2-ethylhexyl) phthalate and high-fat diet in adolescent rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30232-30242. [PMID: 32451896 DOI: 10.1007/s11356-020-08976-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) and high-fat diet (HFD) could induce lipid metabolic disorder. This study was undertaken to identify the effect of DNA methylation of JAK3/STAT5/PPARγ on lipid metabolic disorder induced by DEHP and HFD. Wistar rats were divided into a normal diet (ND) group and HFD group. Each diet group treated with DEHP (0, 5, 50, 500 mg/kg/d) for 8 weeks' gavage. The DNA-methylated levels of PPARγ, JAK3, STAT5a, and STAT5b in rats' livers and adipose were analyzed with MethylTarget. The lipid levels of rats' livers and adipose were detected with ELISA. Results showed in ND group that the DNA methylation levels of PPARγ, JAK3 in livers, and STAT5b in adipose were lower in 500 mg/kg/d group than the control. And the level of total cholesterol (TC) in adipose was higher in 500 mg/kg/d group than the control. In HFD group, the DNA methylation level of JAK3 was the lowest in livers and the highest in adipose in 50 mg/kg/d group. And the level of TC in livers was the lowest in 50 mg/kg/d group. In the 500 mg/kg/d group, the DNA methylation level of STAT5b was lower in livers and higher in adipose in HFD group than that in ND group. And the levels of TC in livers were lower in HFD group than those in ND group. Therefore, DNA methylation of JAK3/STAT5/PPARγ regulated the changes in lipid levels induced by DEHP and HFD in adolescent rats.
Collapse
Affiliation(s)
- Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Shuang Ding
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Han
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xinyue Song
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
12
|
Exogenous hydrogen sulfide for the treatment of mesenteric damage associated with fructose-induced malfunctions via inhibition of oxidative stress. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.02.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Ammon HPT. Boswellic extracts and 11-keto-ß-boswellic acids prevent type 1 and type 2 diabetes mellitus by suppressing the expression of proinflammatory cytokines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153002. [PMID: 31301539 DOI: 10.1016/j.phymed.2019.153002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease directed to the pancreatic islets where inflammation leads to the death of insulin-producing ß cells and insulin deficiency. Type 2 diabetes, which is closely related to overweight, is characterized by insulin resistance. In both cases, proinflammatory cytokines play an important role by causing insulitis and insulin resistance. The gum resin of Boswellia species and its pharmacologically active compounds, including 11-keto-ß-boswellic acids have been shown to suppress the expression of proinflammatory cytokines in various immune-competent cells. PURPOSE To review the present evidence of the therapeutic effects of boswellic extracts (BE) and/or 11-keto-ß-boswellic acids in the prevention/treatment of diabetes mellitus and to provide comprehensive insights into the underlying molecular mechanisms. METHODS This review considers all available informations from preclinical and clinical studies concerning BEs, 11-keto-ß-boswellic acids, proinflammatory cytokines and diabetes mellitus collected via electronic search (PubMed) and related publications of the author. RESULTS Type 1 diabetes: Studies in mice with autoimmune diabetes revealed that in the model of multiple injections of low doses of streptozotocin (MLD-STZ), an extract of the gum resin of Boswellia serrata and 11-keto-ß-boswellic acid (KBA) suppressed the increase in proinflammatory cytokines in the blood, infiltration of lymphocytes into pancreatic islets and increase in blood glucose. In a second model, i.e. the nonobese diabetic (NOD) mouse, KBA prevented the infiltration of lymphocytes into pancreatic islets. Regarding the clinical effects, a case report provided evidence that BE suppressed the blood levels of tyrosine phosphatase antibody (IA2-A), a marker for insulitis, in a patient with late-onset autoimmune diabetes of the adult (LADA). Type 2 diabetes: In a preclinical study in rats where obesity was alimentary induced, the administration of BE significantly reduced food intake, overweight, proinflammatory cytokines such as interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) and ameliorated the parameters of glucose and lipid metabolism. Similar results were obtained in a second animal study, where type 2 diabetes was induced by a combination of a high-fat/high-fructose diet and a single dose of streptozotocin. Two clinical trials with patients with type 2 diabetes receiving the resin of Boswellia serrata demonstrated improvement in the blood glucose, HbA1c and lipid parameters. CONCLUSION Preclinical and clinical data suggest that BE and/or 11-keto-ß-boswellic acids by inhibiting the expression of proinflammatory cytokines from immune-competent cells, may prevent insulitis and insulin resistance in type 1 and type 2 diabetes, respectively, and therefore may be an option in the treatment/prevention of type 1 and type 2 diabetes. It is hypothesized that molecularly, BE and 11-keto-ß-boswellic acids act via interference with the IκB kinase/Nuclear Transcription Factor-κB (IKK/NF-κB) signaling pathway through inhibition of the phosphorylation activity of IKK. However, further investigations and well-designed clinical studies are required.
Collapse
Affiliation(s)
- H P T Ammon
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| |
Collapse
|
14
|
Ishtiaq SM, Rashid H, Hussain Z, Arshad MI, Khan JA. Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease. Rev Endocr Metab Disord 2019; 20:253-261. [PMID: 31656991 DOI: 10.1007/s11154-019-09510-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adiponectin, a soluble adipocytokine, plays an important role in the functioning of adipose tissue and in the regulation of inflammation, particularly hepatic inflammation. The adiponectin subsequently imparts a crucial role in metabolic and hepato-inflammatory diseases. The most recent evidences indicate that lipotoxicity-induced inflammation in the liver is associated with obesity-derived alterations and remolding in adipose tissue that culminates in most prevalent liver pathology named as non-alcoholic fatty liver disease (NAFLD). A comprehensive crosstalk of adiponectin and its cognate receptors, specifically adiponectin receptor-2 in the liver mediates ameliorative effects in obesity-induced NAFLD by interaction with hepatic peroxisome proliferator-activated receptors (PPARs). Recent studies highlight the implication of molecular mediators mainly involved in the pathogenesis of obesity and obesity-driven NAFLD, however, the plausible mechanisms remain elusive. The present review aimed at collating the data regarding mechanistic approaches of adiponectin and adiponectin-activated PPARs as well as PPAR-induced adiponectin levels in attenuation of hepatic lipoinflammation. Understanding the rapidly occurring adiponectin-mediated pathophysiological outcomes might be of importance in the development of new therapies that can potentially resolve obesity and obesity-associated NAFLD.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Haroon Rashid
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zulfia Hussain
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Junaid Ali Khan
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan.
| |
Collapse
|
15
|
Nistico S, Tamburi F, Bennardo L, Dastoli S, Schipani G, Caro G, Fortuna MC, Rossi A. Treatment of telogen effluvium using a dietary supplement containing Boswellia serrata, Curcuma longa, and Vitis vinifera: Results of an observational study. Dermatol Ther 2019; 32:e12842. [PMID: 30693615 DOI: 10.1111/dth.12842] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/14/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Steven Nistico
- Department of Dermatology, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Federica Tamburi
- Department of Dermatology, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Luigi Bennardo
- Department of Dermatology, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Stefano Dastoli
- Department of Dermatology, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Giusy Schipani
- Department of Dermatology, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Gemma Caro
- Department of Dermatology, La Sapienza University, Rome, Italy
| | - Maria C Fortuna
- Department of Dermatology, La Sapienza University, Rome, Italy
| | - Alfredo Rossi
- Department of Dermatology, La Sapienza University, Rome, Italy
| |
Collapse
|
16
|
Gomaa AA, Makboul RM, El-Mokhtar MA, Abdel-Rahman EA, Ahmed IA, Nicola MA. Terpenoid-rich Elettaria cardamomum extract prevents Alzheimer-like alterations induced in diabetic rats via inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Cytokine 2019; 113:405-416. [DOI: 10.1016/j.cyto.2018.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/24/2022]
|