1
|
Li S, Sampson C, Liu C, Piao HL, Liu HX. Integrin signaling in cancer: bidirectional mechanisms and therapeutic opportunities. Cell Commun Signal 2023; 21:266. [PMID: 37770930 PMCID: PMC10537162 DOI: 10.1186/s12964-023-01264-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
Integrins are transmembrane receptors that possess distinct ligand-binding specificities in the extracellular domain and signaling properties in the cytoplasmic domain. While most integrins have a short cytoplasmic tail, integrin β4 has a long cytoplasmic tail that can indirectly interact with the actin cytoskeleton. Additionally, 'inside-out' signals can induce integrins to adopt a high-affinity extended conformation for their appropriate ligands. These properties enable integrins to transmit bidirectional cellular signals, making it a critical regulator of various biological processes.Integrin expression and function are tightly linked to various aspects of tumor progression, including initiation, angiogenesis, cell motility, invasion, and metastasis. Certain integrins have been shown to drive tumorigenesis or amplify oncogenic signals by interacting with corresponding receptors, while others have marginal or even suppressive effects. Additionally, different α/β subtypes of integrins can exhibit opposite effects. Integrin-mediated signaling pathways including Ras- and Rho-GTPase, TGFβ, Hippo, Wnt, Notch, and sonic hedgehog (Shh) are involved in various stages of tumorigenesis. Therefore, understanding the complex regulatory mechanisms and molecular specificities of integrins are crucial to delaying cancer progression and suppressing tumorigenesis. Furthermore, the development of integrin-based therapeutics for cancer are of great importance.This review provides an overview of integrin-dependent bidirectional signaling mechanisms in cancer that can either support or oppose tumorigenesis by interacting with various signaling pathways. Finally, we focus on the future opportunities for emergent therapeutics based on integrin agonists. Video Abstract.
Collapse
Affiliation(s)
- Siyi Li
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chibuzo Sampson
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Changhao Liu
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Hai-Long Piao
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Research Institute, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
2
|
Antiviral activity of ouabain against a Brazilian Zika virus strain. Sci Rep 2022; 12:12598. [PMID: 35871157 PMCID: PMC9308787 DOI: 10.1038/s41598-022-14243-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is an emerging arbovirus associated with neurological disorders. Currently, no specific vaccines or antivirals are available to treat the ZIKV infection. Ouabain, a cardiotonic steroid known as Na+/K+-ATPase inhibitor, has been previously described as an immunomodulatory substance by our group. Here, we evaluated for the first time the antiviral activity of this promising substance against a Brazilian ZIKV strain. Vero cells were treated with different concentrations of ouabain before and after the infection with ZIKV. The antiviral effect was evaluated by the TCID50 method and RT-qPCR. Ouabain presented a dose-dependent inhibitory effect against ZIKV, mainly when added post infection. The reduction of infectious virus was accompanied by a decrease in ZIKV RNA levels, suggesting that the mechanism of ZIKV inhibition by ouabain occurred at the replication step. In addition, our in silico data demonstrated a conformational stability and favorable binding free energy of ouabain in the biding sites of the NS5-RdRp and NS3-helicase proteins, which could be related to its mechanism of action. Taken together, these data demonstrate the antiviral activity of ouabain against a Brazilian ZIKV strain and evidence the potential of cardiotonic steroids as promising antiviral agents.
Collapse
|
3
|
Galvão JGFM, Cavalcante-Silva LHA, de Almeida Lima É, Carvalho DC, Alves AF, Mascarenhas SR. Ouabain modulates airway remodeling caused by Th2-high asthma in mice. Int Immunopharmacol 2022; 109:108808. [DOI: 10.1016/j.intimp.2022.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
|
4
|
Leite JA, Cavalcante-Silva LHA, Ribeiro MR, de Morais Lima G, Scavone C, Rodrigues-Mascarenhas S. Neuroinflammation and Neutrophils: Modulation by Ouabain. Front Pharmacol 2022; 13:824907. [PMID: 35173621 PMCID: PMC8841582 DOI: 10.3389/fphar.2022.824907] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiotonic steroids are natural compounds that present many physiological and pharmacological functions. They bind Na+/K+-ATPase (NKA) modifying cellular ion concentration and trigger cell signaling mechanisms without altering ion balance. These steroids are known to modulate some immune responses, including cytokine production, neutrophil migration, and inflammation (peripherally and in the nervous system). Inflammation can occur in response to homeostasis perturbations and is related to the development of many diseases, including immune-mediated diseases and neurodegenerative disorders. Considering the neutrophils role in the general neuroinflammatory response and that these cells can be modulated by cardiac steroids, this work aims to review the possible regulation of neutrophilic neuroinflammation by the cardiac steroid ouabain.
Collapse
Affiliation(s)
- Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science, Federal University of Goiás, Goiânia, Brazil
| | | | - Martina Raissa Ribeiro
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Geovanni de Morais Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Cristoforo Scavone,
| | | |
Collapse
|
5
|
Cavalcante-Silva LHA, Carvalho DCM, de Almeida Lima É, Rodrigues-Mascarenhas S. Ouabain inhibits p38 activation in mice neutrophils. Inflammopharmacology 2021; 29:1829-1833. [PMID: 34792671 PMCID: PMC8600101 DOI: 10.1007/s10787-021-00882-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/10/2021] [Indexed: 12/28/2022]
Abstract
Ouabain is a cardiac steroid hormone with immunomodulatory effects. It inhibits neutrophils migration induced by different stimuli, but little is known about the mechanisms involved in this effect. Thus, the aim of this study was to evaluate the ouabain effect on chemotactic signaling pathways in neutrophils. For that, mice neutrophils were isolated from bone marrow, treated with ouabain (1, 10, and 100 nM) for 2 h, submitted to transwell chemotaxis assay and flow cytometry analysis of Akt, ERK, JNK, and p38 phosphorylation induced by zymosan. Ouabain treatment (1, 10 and, 100 nM) reduces neutrophil chemotaxis induced by chemotactic peptide fMLP, but this substance did not inhibit Akt, ERK, and JNK activation induced by zymosan. However, ouabain (1 and 10 nM) reduced p38 phosphorylation in zymosan-stimulated neutrophils. These results suggest that ouabain may interfere in neutrophil migration through p38 MAPK inhibition.
Collapse
Affiliation(s)
| | | | - Éssia de Almeida Lima
- Immunobiotechnology Laboratory, Biotechnology Center, Federal University of Paraíba, João Pessoa, 58051‑900, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Immunobiotechnology Laboratory, Biotechnology Center, Federal University of Paraíba, João Pessoa, 58051‑900, Brazil.
| |
Collapse
|
6
|
Souza E Souza KFC, Moraes BPT, Paixão ICNDP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na +/K +-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:624704. [PMID: 33935717 PMCID: PMC8085498 DOI: 10.3389/fphar.2021.624704] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from epidemic status to becoming a pandemic. Since its discovery in December 2019, there have been countless cases of mortality and morbidity due to this virus. Several compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir have been tested as potential therapies; however, no effective treatment is currently recommended by regulatory agencies. Some studies on respiratory non-enveloped viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites used to treat patients with cardiac insufficiency because they are the most potent inotropic agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine production. Interestingly, the antiviral effect of cardiac glycosides is associated with tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one of the main signaling targets of the NKA α-subunit, modulating other signaling factors that may also impair viral infection. These data suggest that Src-NFκB signaling modulated by NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2 pathology, cell signaling pathways, and NKA as a possible molecular target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kauê Francisco Corrêa Souza E Souza
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Neûrologia/Neurociências, Hospital Antônio Pedro Universidade Federal Fluminense, Niterói, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Biologia Celular e Molecular (PPGBMC), Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|