1
|
El Jemli M, Ezzat SM, Kharbach M, Mostafa ES, Radwan RA, El Jemli Y, El-Guourrami O, Ahid S, Cherrah Y, Zayed A, Alaoui K. Bioassay-guided isolation of anti-inflammatory and antinociceptive metabolites among three Moroccan Juniperus leaves extract supported with in vitro enzyme inhibitory assays. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118285. [PMID: 38703873 DOI: 10.1016/j.jep.2024.118285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbs of the genus Juniperus (family Cupressaceae) have been commonly used in ancestral folk medicine known as "Al'Araar" for treatment of rheumatism, diabetes, inflammation, pain, and fever. Bioassay-guided isolation of bioactives from medicinal plants is recognized as a potential approach for the discovery of novel drug candidates. In particular, non-addictive painkillers are of special interest among herbal phytochemicals. AIM OF THE STUDY The current study aimed to assess the safety of J. thurifera, J. phoenicea, and J. oxycedrus aqueous extracts in oral treatments; validating the traditionally reported anti-inflammatory and analgesic effects. Further phytochemical investigations, especially for the most bioactive species, may lead to isolation of bioactive metabolites responsible for such bioactivities supported with in vitro enzyme inhibition assays. MATERIALS AND METHODS Firstly, the acute toxicity study was investigated following the OECD Guidelines. Then, the antinociceptive, and anti-inflammatory bioactivities were evaluated based on chemical and mechanical trauma assays and investigated their underlying mechanisms. The most active J. thurifera n-butanol fraction was subjected to chromatographic studies for isolating the major anti-inflammatory metabolites. Moreover, several enzymatic inhibition assays (e.g., 5-lipoxygenase, protease, elastase, collagenase, and tyrosinase) were assessed for the crude extracts and isolated compounds. RESULTS The results showed that acute oral administration of the extracts (300-500 mg/kg, p. o.) inhibited both mechanically and chemically triggered inflammatory edema in mice (up to 70% in case of J. thurifera) with a dose-dependent antinociceptive (tail flick) and anti-inflammatory pain (formalin assay) activities. This effect was partially mediated by naloxone inhibition of the opioid receptor (2 mg/kg, i. p.). In addition, 3-methoxy gallic acid (1), quercetin (2), kaempferol (3), and ellagic acid (4) were successfully identified being involved most likely in J. thurifera extract bioactivities. Nevertheless, quercetin was found to be the most potent against 5-LOX, tyrosinase, and protease with IC50 of 1.52 ± 0.01, 192.90 ± 6.20, and 399 ± 9.05 μM, respectively. CONCLUSION J. thurifera extract with its major metabolites are prospective drug candidates for inflammatory pain supported with inhibition of inflammatory enzymes. Interestingly, antagonism of opioid and non-opioid receptors is potentially involved.
Collapse
Affiliation(s)
- Meryem El Jemli
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco; Faculty of Pharmacy, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October 12451, Egypt.
| | - Mourad Kharbach
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco; Circular Economy/Sustainable Solutions, LAB University of Applied Sciences, Mukkulankatu 19, 15101 Lahti, Finland
| | - Eman Sherien Mostafa
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October 12451, Egypt
| | - Rasha Ali Radwan
- Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Regional Ring Road, East Cairo, New Administrative Capital, Egypt
| | | | - Otman El-Guourrami
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Samir Ahid
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco; Faculty of Pharmacy, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Yahia Cherrah
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Ahmed Zayed
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, El Guish Street, Medical Campus, 31527, Tanta, Egypt
| | - Katim Alaoui
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
2
|
Liang S, Wang X, Zhu X. Insights from pharmacovigilance and pharmacodynamics on cardiovascular safety signals of NSAIDs. Front Pharmacol 2024; 15:1455212. [PMID: 39295938 PMCID: PMC11408209 DOI: 10.3389/fphar.2024.1455212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Background and Aim Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat fever, pain, and inflammation. Concerns regarding their cardiovascular safety have been raised. However, the underlying mechanism behind these events remains unknown. We aim to investigate the cardiovascular safety signals and receptor mechanisms of NSAIDs, employing a comprehensive approach that integrates pharmacovigilance and pharmacodynamics. Methods This study utilized a pharmacovigilance-pharmacodynamic approach to evaluate the cardiovascular safety of NSAIDs and explore potential receptor mechanisms involved. Data were analyzed using the OpenVigil 2.1 web application, which grants access to the FDA Adverse Event Reporting System (FAERS) database, in conjunction with the BindingDB database, which provides target information on the pharmacodynamic properties of NSAIDs. Disproportionality analysis employing the Empirical Bayes Geometric Mean (EBGM) and Reporting Odds Ratio (ROR) methods was conducted to identify signals for reporting cardiovascular-related adverse drug events (ADEs) associated with 13 NSAIDs. This analysis encompassed three System Organ Classes (SOCs) associated with the cardiovascular system: blood and lymphatic system disorders, cardiac disorders, and vascular disorders. The primary targets were identified through the receptor-NSAID interaction network. Ordinary least squares (OLS) regression models explored the relationship between pharmacovigilance signals and receptor occupancy rate. Results A total of 201,231 reports of cardiovascular-related ADEs were identified among the 13 NSAIDs. Dizziness, anemia, and hypertension were the most frequently reported Preferred Terms (PTs). Overall, nimesulide and parecoxib exhibited the strongest signal strengths of ADEs at SOC levels related to the cardiovascular system. On the other hand, our data presented naproxen and diclofenac as drugs of comparatively low signal strength. Cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) were identified as central targets. OLS regression analysis revealed that the normalized occupancy rate for either COX-1 or COX-2 was significantly inversely correlated with the log-transformed signal measures for blood and lymphatic system disorders and vascular disorders, and positively correlated with cardiac disorders and vascular disorders, respectively. This suggests that higher COX-2 receptor occupancy is associated with an increased cardiovascular risk from NSAIDs. Conclusion Cardiovascular safety of NSAIDs may depend on pharmacodynamic properties, specifically, the percentage of the occupied cyclooxygenase isoenzymes. More studies are needed to explore these relations and improve the prescription process.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Pharmacy, Hebei Medical University Third Hospital, Shijiazhuang, China
| | - Xianying Wang
- Department of Pharmacy, Hebei Medical University Third Hospital, Shijiazhuang, China
| | - Xiuqing Zhu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Ma CH, Tworek KB, Kung JY, Kilcommons S, Wheeler K, Parker A, Senaratne J, Macintyre E, Sligl W, Karvellas CJ, Zampieri FG, Kutsogiannis DJ, Basmaji J, Lewis K, Chaudhuri D, Sharif S, Rewa OG, Rochwerg B, Bagshaw SM, Lau VI. Systemic Nonsteroidal Anti-Inflammatories for Analgesia in Postoperative Critical Care Patients: A Systematic Review and Meta-Analysis of Randomized Control Trials. Crit Care Explor 2023; 5:e0938. [PMID: 37396930 PMCID: PMC10309528 DOI: 10.1097/cce.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
While opioids are part of usual care for analgesia in the ICU, there are concerns regarding excess use. This is a systematic review of nonsteroidal anti-inflammatory drugs (NSAIDs) use in postoperative critical care adult patients. DATA SOURCES We searched Medical Literature Analysis and Retrieval System Online, Excerpta Medica database, Cumulative Index to Nursing and Allied Health Literature, Cochrane Library, trial registries, Google Scholar, and relevant systematic reviews through March 2023. STUDY SELECTION Titles, abstracts, and full texts were reviewed independently and induplicate by two investigators to identify eligible studies. We included randomized control trials (RCTs) that compared NSAIDs alone or as an adjunct to opioids for systemic analgesia. The primary outcome was opioid utilization. DATA EXTRACTION In duplicate, investigators independently extracted study characteristics, patient demographics, intervention details, and outcomes of interest using predefined abstraction forms. Statistical analyses were conducted using Review Manager software Version 5.4. (The Cochrane Collaboration, Copenhagen, Denmark). DATA SYNTHESIS We included 15 RCTs (n = 1,621 patients) for admission to the ICU for postoperative management after elective procedures. Adjunctive NSAID therapy to opioids reduced 24-hour oral morphine equivalent consumption by 21.4 mg (95% CI, 11.8-31.0 mg reduction; high certainty) and probably reduced pain scores (measured by Visual Analog Scale) by 6.1 mm (95% CI, 12.2 decrease to 0.1 increase; moderate certainty). Adjunctive NSAID therapy probably had no impact on the duration of mechanical ventilation (1.6 hr reduction; 95% CI, 0.4 hr to 2.7 reduction; moderate certainty) and may have no impact on ICU length of stay (2.1 hr reduction; 95% CI, 6.1 hr reduction to 2.0 hr increase; low certainty). Variability in reporting adverse outcomes (e.g., gastrointestinal bleeding, acute kidney injury) precluded their meta-analysis. CONCLUSIONS In postoperative critical care adult patients, systemic NSAIDs reduced opioid use and probably reduced pain scores. However, the evidence is uncertain for the duration of mechanical ventilation or ICU length of stay. Further research is required to characterize the prevalence of NSAID-related adverse outcomes.
Collapse
Affiliation(s)
- Chen Hsiang Ma
- Department of Medicine, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Kimberly B Tworek
- Department of Medicine, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Janice Y Kung
- John W. Scott Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Sebastian Kilcommons
- Department of Medicine, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Kathleen Wheeler
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Arabesque Parker
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Janek Senaratne
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Erika Macintyre
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Constantine J Karvellas
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Fernando G Zampieri
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - Demetrios Jim Kutsogiannis
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| | - John Basmaji
- Department of Medicine, Division of Critical Care, Western University, London, ON, Canada
| | - Kimberley Lewis
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON, Canada
| | - Dipayan Chaudhuri
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON, Canada
| | - Sameer Sharif
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON, Canada
| | - Oleksa G Rewa
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Bram Rochwerg
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Department of Medicine, Division of Critical Care, McMaster University, Hamilton, ON, Canada
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Critical Care Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada
| | - Vincent I Lau
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, and Alberta Health Services, Edmonton, AB, Canada
| |
Collapse
|
4
|
Thai PN, Ren L, Xu W, Overton J, Timofeyev V, Nader CE, Haddad M, Yang J, Gomes AV, Hammock BD, Chiamvimonvat N, Sirish P. Chronic Diclofenac Exposure Increases Mitochondrial Oxidative Stress, Inflammatory Mediators, and Cardiac Dysfunction. Cardiovasc Drugs Ther 2023; 37:25-37. [PMID: 34499283 PMCID: PMC8904649 DOI: 10.1007/s10557-021-07253-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE Nonsteroidal anti-inflammatory drugs (NSAIDs) are among one of the most commonly prescribed medications for pain and inflammation. Diclofenac (DIC) is a commonly prescribed NSAID that is known to increase the risk of cardiovascular diseases. However, the mechanisms underlying its cardiotoxic effects remain largely unknown. In this study, we tested the hypothesis that chronic exposure to DIC increases oxidative stress, which ultimately impairs cardiovascular function. METHODS AND RESULTS Mice were treated with DIC for 4 weeks and subsequently subjected to in vivo and in vitro functional assessments. Chronic DIC exposure resulted in not only systolic but also diastolic dysfunction. DIC treatment, however, did not alter blood pressure or electrocardiographic recordings. Importantly, treatment with DIC significantly increased inflammatory cytokines and chemokines as well as cardiac fibroblast activation and proliferation. There was increased reactive oxygen species (ROS) production in cardiomyocytes from DIC-treated mice, which may contribute to the more depolarized mitochondrial membrane potential and reduced energy production, leading to a significant decrease in sarcoplasmic reticulum (SR) Ca2+ load, Ca2+ transients, and sarcomere shortening. Using unbiased metabolomic analyses, we demonstrated significant alterations in oxylipin profiles towards inflammatory features in chronic DIC treatment. CONCLUSIONS Together, chronic treatment with DIC resulted in severe cardiotoxicity, which was mediated, in part, by an increase in mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Lu Ren
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Wilson Xu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - James Overton
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Carol E Nader
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Michael Haddad
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Aldrin V Gomes
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA.
- Department of Pharmacology, University of California, Davis, CA, USA.
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA.
| | - Padmini Sirish
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA.
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA.
| |
Collapse
|
5
|
El-Ashmawy IM, Ebeid MA, Aljohani MSM, Alhumaydhi FA, Aljohani ASM. Assessment of the hepatorenal and hematological parameters of rats exposed to graded doses of lysine acetylsalicylate. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2021.2021054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ibrahim M. El-Ashmawy
- Department of Veterinary Medicine, College of Agricultural and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa A. Ebeid
- Department of Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Moath S. M. Aljohani
- Department of Family and Community Medicine, College of Medicine and Medical Sciences, Qassim University, Unizah, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agricultural and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
6
|
Sadeghi A, Bastin AR, Ghahremani H, Doustimotlagh AH. The effects of rosmarinic acid on oxidative stress parameters and inflammatory cytokines in lipopolysaccharide-induced peripheral blood mononuclear cells. Mol Biol Rep 2020; 47:3557-3566. [PMID: 32350743 DOI: 10.1007/s11033-020-05447-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Rosmarinic acid (RA) is a potential herbal medicine and has received considerable attention due to its strong antioxidant properties. The aim of this study is to investigate the impact of RA on inflammation and oxidative stress induced by lipopolysaccharide (LPS) in peripheral blood mononuclear cells (PBMCs). PBMCs were pre-treated with various contents of RA (20, 40, 80 µM) for 24 h, then, stimulated with LPS (10 ng/ml) for more 6 h. ELISA and Real-time PCR were done to detect the levels of IL-6, TNF-α, COX-2, IL-1β and IL-10. Western blot was done to investigate the phosphorylated amounts of P65-NF-κB and JNK. Inflammatory cytokines and oxidant-antioxidant parameters were determined by colorimetric and ELISA methods. The results indicated that LPS augmented the protein levels of IL-6, TNF-α, and IL-1β cytokines as well as the mRNA levels of IL-6, TNF-α, IL-1β, COX-2, and IL-10 cytokines in in PBMCs. However, pretreatment with RA could reduce the impact of LPS on inflammatory markers. In addition, RA inhibited P65-NF-κB and JNK phosphorylation. LPS also caused a decrease in antioxidant enzymes, total thiol, and total antioxidant capacity as well as an increment in malondialdehyde and nitric oxide metabolite contents that RA abrogated them. Collectively, our finding demonstrated that RA ameliorates LPS-induced inflammation in PBMCs. RA reduces oxidative stress by preventing lipid peroxidation and nitric oxide production as well as restarting the activity of the GPx and SOD enzymes. Furthermore, our findings indicated that RA was able to protect PBMCs from inflammation via inhibiting the NF-κB and JNK MAPK pathways. This evidence shows a promising therapeutic role for RA in inflammatory status.
Collapse
Affiliation(s)
- Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Reza Bastin
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Ghahremani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
7
|
Arora M, Choudhary S, Singh PK, Sapra B, Silakari O. Structural investigation on the selective COX-2 inhibitors mediated cardiotoxicity: A review. Life Sci 2020; 251:117631. [PMID: 32251635 DOI: 10.1016/j.lfs.2020.117631] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/31/2020] [Indexed: 01/30/2023]
Abstract
Initially, the selective COX-2 inhibitors were developed as safer alternatives to the conventional NSAIDs, but later on, most of them were withdrawn from the market due to the risk of heart attack and stroke. Celecoxib, the first selective COX-2 inhibitor, was approved by the Food and Drug Administration (FDA) in December 1998 and was taken back from the market in 2004. Since then, many coxibs have been discontinued one by one due to adverse cardiovascular events. United States (US), Australian and European authorities related to Therapeutic Goods Administration (TGA) implemented the requirements to carry the "Black box" warning on the labels of COX-2 drugs highlighting the risks of serious cardiovascular events. These facts encouraged the researchers to explore them well and find out the biochemical basis behind the cardiotoxicity. From the last few decades, the molecular mechanisms behind the coxibs have regained the attention, especially the specific structural features of the selective COX-2 inhibitors that are associated with cardiotoxicity. This review discusses the key structural features of the selective COX-2 inhibitors and underlying mechanisms that are responsible for the cardiotoxicity. This report also unfolds different strategies that have been reported in the last 10 years to combat the problem of selective COX-2 inhibitors mediated cardiotoxicity.
Collapse
Affiliation(s)
- Mohit Arora
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Shalki Choudhary
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Pankaj Kumar Singh
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Bharti Sapra
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India.
| |
Collapse
|
8
|
Al-Lawati H, Vakili MR, Lavasanifar A, Ahmed S, Jamali F. Reduced Heart Exposure of Diclofenac by Its Polymeric Micellar Formulation Normalizes CYP-Mediated Metabolism of Arachidonic Acid Imbalance in An Adjuvant Arthritis Rat Model: Implications in Reduced Cardiovascular Side Effects of Diclofenac by Nanodrug Delivery. Mol Pharm 2020; 17:1377-1386. [DOI: 10.1021/acs.molpharmaceut.0c00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanan Al-Lawati
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Surur Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Fakhreddin Jamali
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|