1
|
Shubina VS, Kobyakova MI, Penkov NV, Mitenko GV, Udaltsov SN, Shatalin YV. Two Novel Membranes Based on Collagen and Polyphenols for Enhanced Wound Healing. Int J Mol Sci 2024; 25:12353. [PMID: 39596422 PMCID: PMC11594507 DOI: 10.3390/ijms252212353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Two novel membranes based on collagen and two polyphenols, taxifolin pentaglutarate (TfG5) and a conjugate of taxifolin with glyoxylic acid (DfTf), were prepared. Fourier transform infrared spectroscopy examination confirmed the preservation of the triple helical structure of collagen. A scanning electron microscopy study showed that both materials had a porous structure. The incorporation of DfTf into the freeze-dried collagen matrix increased the aggregation of collagen fibers to a higher extent than the incorporation of TfG5, resulting in a more compact structure of the material containing DfTf. It was found that NIH/3T3 mouse fibroblasts were attached to, and relatively evenly spread out on, the surface of both newly obtained membranes. In addition, it was shown that the membranes enhanced skin wound healing in rats with a chemical burn induced by acetic acid. The treatment with the materials led to a faster reepithelization and granulation tissue formation compared with the use of other agents (collagen without polyphenols and buffer saline). It was also found that, in the wound tissue, the level of thiobarbituric acid reactive substances (TBARS) was significantly higher and the level of low-molecular-weight SH-containing compounds (RSH) was significantly lower than those in healthy skin, indicating a rise in oxidative stress at the site of injury. The treatment with collagen membranes containing polyphenols significantly decreased the TBARS level and increased the RSH level, suggesting the antioxidant/anti-inflammatory effect of the materials. The membrane containing TfG5 was more effective than other ones (the collagen membrane containing DfTf and collagen without polyphenols). On the whole, the data obtained indicate that collagen materials containing DfTf and TfG5 have potential as powerful therapeutic agents for the treatment of burn wounds.
Collapse
Affiliation(s)
- Victoria S. Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | - Nikita V. Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 3, 142290 Pushchino, Russia;
| | - Gennady V. Mitenko
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 2, 142290 Pushchino, Russia; (G.V.M.); (S.N.U.)
| | - Sergey N. Udaltsov
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 2, 142290 Pushchino, Russia; (G.V.M.); (S.N.U.)
| | - Yuri V. Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| |
Collapse
|
2
|
Wu W, Zhang B, Wang W, Bu Q, Li Y, Zhang P, Zeng L. Plant-Derived Exosome-Like Nanovesicles in Chronic Wound Healing. Int J Nanomedicine 2024; 19:11293-11303. [PMID: 39524918 PMCID: PMC11549884 DOI: 10.2147/ijn.s485441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The incidence of chronic wounds is steadily increasing each year, yet conventional treatments for chronic wounds yield unsatisfactory results. The delayed healing of chronic wounds significantly affects patient quality of life, placing a heavy burden on patients, their families, and the healthcare system. Therefore, there is an urgent need to find new treatment methods for chronic wounds. Plant-derived exosome-like nanovesicles (PELNs) may be able to accelerate chronic wound healing. PELNs possess advantages such as good accessibility (due in part to high isolation yields), low immunogenicity, and good stability. Currently, there are limited reports regarding the role of PELNs in chronic wound healing and their associated mechanisms, highlighting their novelty and the necessity for further research. This review aims to provide an overview of PELNs, discussing isolation methods, composition, and their mechanisms of action in chronic wound healing. Finally, we summarize future opportunities and challenges related to the use of PELNs for the treatment of chronic wounds, and offer some new insights and solutions.
Collapse
Affiliation(s)
- Weiquan Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Bing Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Weiqi Wang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Qiujin Bu
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuange Li
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Peihua Zhang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| |
Collapse
|
3
|
Miraldi E, Giordano A, Cappellucci G, Vaccaro F, Biagi M, Baini G. Phytochemical Characterization and Assessment of the Wound Healing Properties of Three Eurasian Propolis. Pharmaceuticals (Basel) 2024; 17:1412. [PMID: 39598324 PMCID: PMC11597152 DOI: 10.3390/ph17111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES The objective of this study is to evaluate the wound healing potential of Eurasian propolis by analyzing the phytochemical profile and the biological effects of three representative propolis samples. METHODS Specific colorimetric assays were used to estimate the total phenolic and flavonoid contents and the triterpenoids content. Some of the main components of Eurasian propolis (pinocembrin, pinobanksin, CAPE, chrysin and galangin) were analyzed using HPLC-DAD. Scavenging activity and total antioxidant capacity were assessed through DPPH and ORAC assays, respectively. Human keratinocyte, fibroblast, and monocytic cell lines were used for the biological in vitro analyses. The direct wound healing properties were tested through scratching assays and ELISA kits for the assessment of the production of growth factors (FGF-7, Latency Associated Peptide-LAP), while the indirect effects were evaluated through the estimation of the levels of MMP9, IL-1β, IL-8, and TNF-α using ELISA kits together with a cell-free test on the inhibition capacity on collagenases. Network Pharmacology analysis was employed to further explore possible mechanisms of the action of propolis on the healing process. RESULTS The analyses confirmed the high phenolic content of Eurasian propolis (142.50-211.30 mg GAE/g), dominated by flavonoids (95.50-196.80 mg Galangin Equivalents/g), and terpenes (431.50-650.00 mg β-sitosterol Equivalents/g), while also verifying the significant antioxidant (4.9-8.9 mM/g Trolox Equivalents) and antiradical (DPPH IC50 26.1-54.4 μg/mL) activities. The samples showed indirect wound healing properties by mitigating inflammation and remodeling (reduced IL-1β and MMP9) and potentially modulating the immune response (upregulated IL-8). In vitro studies confirmed these effects, demonstrating decreased MMP9 production and collagenase inhibition when cells were co-treated with propolis and a stressor. Propolis also suppressed IL-1β release in fibroblasts, although its impact on TNF-α was inconclusive. Notably, co-treatment upregulated IL-8 in monocytes, suggesting a potential immunomodulatory role. CONCLUSIONS Eurasian propolis may not directly stimulate cell proliferation during wound healing. Its anti-inflammatory and immunomodulatory properties could indicate an indirect contribution in helping the process.
Collapse
Affiliation(s)
- Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (A.G.); (G.C.); (F.V.); (G.B.)
| | - Alessandro Giordano
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (A.G.); (G.C.); (F.V.); (G.B.)
| | - Giorgio Cappellucci
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (A.G.); (G.C.); (F.V.); (G.B.)
| | - Federica Vaccaro
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (A.G.); (G.C.); (F.V.); (G.B.)
| | - Marco Biagi
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (A.G.); (G.C.); (F.V.); (G.B.)
| |
Collapse
|
4
|
Nasra S, Pramanik S, Oza V, Kansara K, Kumar A. Advancements in wound management: integrating nanotechnology and smart materials for enhanced therapeutic interventions. DISCOVER NANO 2024; 19:159. [PMID: 39354172 PMCID: PMC11445205 DOI: 10.1186/s11671-024-04116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Wound management spans various techniques and materials tailored to address acute and chronic non-healing wounds, with the primary objective of achieving successful wound closure. Chronic wounds pose additional challenges, often necessitating dressings to prepare the wound bed for subsequent surgical procedures like skin grafting. Ideal dressing materials should not only expedite wound healing but also mitigate protein, electrolyte, and fluid loss while minimizing pain and infection risk. Nanotechnology has emerged as a transformative tool in wound care, revolutionizing the landscape of biomedical dressings. Its application offers remarkable efficacy in accelerating wound healing and combating bacterial infections, representing a significant advancement in wound care practices. Integration of nanotechnology into dressings has resulted in enhanced properties, including improved mechanical strength and controlled drug release, facilitating tailored therapeutic interventions. This review article comprehensively explores recent breakthroughs in wound healing therapies, with a focus on innovative medical dressings such as nano-enzymes. Additionally, the utilization of smart materials, like hydrogels and electroactive polymers, in wound dressings offers dynamic functionalities to promote tissue regeneration. Emerging concepts such as bio-fabrication, microfluidic systems, bio-responsive scaffolds, and personalized therapeutics show promise in expediting wound healing and minimizing scarring. Through an in-depth exploration of these advancements, this review aims to catalyze a paradigm shift in wound care strategies, promoting a patient-centric approach to therapeutic interventions.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sanjali Pramanik
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Vidhi Oza
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Krupa Kansara
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
5
|
Sharifi M, Bahrami SH. Review on application of herbal extracts in biomacromolecules-based nanofibers as wound dressings and skin tissue engineering. Int J Biol Macromol 2024; 277:133666. [PMID: 38971295 DOI: 10.1016/j.ijbiomac.2024.133666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The skin, which covers an area of 2 square meters of an adult human, accounts for about 15 % of the total body weight and is the body's largest organ. It protects internal organs from external physical, chemical, and biological attacks, prevents excess water loss from the body, and plays a role in thermoregulation. The skin is constantly exposed to various damages so that wounds can be acute or chronic. Although wound healing includes hemostasis, inflammatory, proliferation, and remodeling, chronic wounds face different treatment problems due to the prolonged inflammatory phase. Herbal extracts such as Nigella Sativa, curcumin, chamomile, neem, nettle, etc., with varying properties, including antibacterial, antioxidant, anti-inflammatory, antifungal, and anticancer, are used for wound healing. Due to their instability, herbal extracts are loaded in wound dressings to facilitate skin wounds. To promote skin wounds, skin tissue engineering was developed using polymers, bioactive molecules, and biomaterials in wound dressing. Conventional wound dressings, such as bandages, gauzes, and films, can't efficiently respond to wound healing. Adhesion to the wounds can worsen the wound conditions, increase inflammation, and cause pain while removing the scars. Ideal wound dressings have good biocompatibility, moisture retention, appropriate mechanical properties, and non-adherent and proper exudate management. Therefore, by electrospinning for wound healing applications, natural and synthesis polymers are utilized to fabricate nanofibers with high porosity, high surface area, and suitable mechanical and physical properties. This review explains the application of different herbal extracts with different chemical structures in nanofibrous webs used for wound care.
Collapse
Affiliation(s)
- Mohaddeseh Sharifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2024:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
7
|
Demyashkin G, Sataieva T, Shevkoplyas L, Kuevda T, Ahrameeva M, Parshenkov M, Mimuni A, Pimkin G, Atiakshin D, Shchekin V, Shegay P, Kaprin A. Burn Wound Healing Activity of Hydroxyethylcellulose Gels with Different Water Extracts Obtained from Various Medicinal Plants in Pseudomonas aeruginosa-Infected Rabbits. Int J Mol Sci 2024; 25:8990. [PMID: 39201676 PMCID: PMC11354801 DOI: 10.3390/ijms25168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Burn injuries represent a significant problem in clinical practice due to the high risk of infection and the prolonged healing process. Recently, more attention has been given to natural remedies such as water extracts of various medicinal plants, which possess anti-inflammatory and wound healing properties. The aim of this study is to evaluate the efficacy and safety of Satureja montana L. and other water extracts in a burn wound model. The study involved male Californian rabbits (n = 52) divided into eight groups. Burn wounds were modeled on the animals and subsequently treated with gels based on Satureja montana L. and other water extracts. The reparative potential of the epidermis (assessed by Ki-67 expression), the state of local immunity (measured by the number of CD-45 cells), and the anti-inflammatory role of mast cells (measured by tryptase levels) were evaluated. Bacteriological and morphological studies were conducted. The most pronounced bactericidal, reparative, and immunostimulatory effects were observed after the treatment using a gel mixture of water extracts from Satureja montana L., Salvia sclarea, Coriandrum sativum L., and Lavandula angustifolia in equal proportions (1:1:1:1). The other gels also demonstrated high efficacy in treating burn wounds, especially when using a strain of Pseudomonas aeruginosa resistant to several antibiotics. Immunohistochemical studies showed a significant increase in the number of Ki-67-positive cells in the basal layer of the epidermis and a decrease in the number of CD-45-positive cells, indicating improved proliferative activity and reduced inflammation. This study confirms the hypothesis that the use of water extract mixtures significantly enhances the reparative potential, improves the immune response in the treatment of burns, and promotes wound healing. These findings pave the way for further research and the application of complex phytotherapeutic agents, specifically water extracts of medicinal plants containing phenols and antioxidants in burn wound therapy.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, Moscow 125284, Russia; (V.S.); (P.S.); (A.K.)
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, Moscow 119048, Russia; (M.P.); (A.M.); (G.P.)
| | - Tatiana Sataieva
- Department of Microbiology, Virology and Immunology, Crimean Federal University Named after V.I. Vernadsky, Order of the Red Banner of Labor Medical Institute Named after. S. I. Georgievsky, Lenina Blvd, 5/7, Simferopol 295006, Russia; (T.S.); (L.S.)
| | - Ludmila Shevkoplyas
- Department of Microbiology, Virology and Immunology, Crimean Federal University Named after V.I. Vernadsky, Order of the Red Banner of Labor Medical Institute Named after. S. I. Georgievsky, Lenina Blvd, 5/7, Simferopol 295006, Russia; (T.S.); (L.S.)
| | - Tatyana Kuevda
- Department Field of Crop/Laboratory of Processing and Standardization of Essential oil Raw Materials, Research Institute of Agriculture of Crimea, Kievskaya St., 150, Simferopol 295043, Russia; (T.K.); (M.A.)
| | - Maria Ahrameeva
- Department Field of Crop/Laboratory of Processing and Standardization of Essential oil Raw Materials, Research Institute of Agriculture of Crimea, Kievskaya St., 150, Simferopol 295043, Russia; (T.K.); (M.A.)
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, Moscow 119048, Russia; (M.P.); (A.M.); (G.P.)
| | - Alexander Mimuni
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, Moscow 119048, Russia; (M.P.); (A.M.); (G.P.)
| | - Georgy Pimkin
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, Moscow 119048, Russia; (M.P.); (A.M.); (G.P.)
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str.6, Moscow 117198, Russia;
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, Moscow 125284, Russia; (V.S.); (P.S.); (A.K.)
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str.6, Moscow 117198, Russia;
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, Moscow 125284, Russia; (V.S.); (P.S.); (A.K.)
| | - Andrei Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, Moscow 125284, Russia; (V.S.); (P.S.); (A.K.)
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str.6, Moscow 117198, Russia
| |
Collapse
|
8
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
9
|
Eichenauer E, Saukel J, Glasl S. VOLKSMED Database: A Source for Forgotten Wound Healing Plants in Austrian Folk Medicine. PLANTA MEDICA 2024; 90:498-511. [PMID: 38843790 DOI: 10.1055/a-2225-7545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The global increase in the incidence of wounds is concerning and fuels the search for new treatment options. The use of traditional medicinal plants in wound healing represents an appreciated available therapeutic possibility. This work introduces the VOLKSMED database, which contains plants and other materials used in Austrian folk medicine, either as monographs or mixtures. This work focuses on the monographs of the database. Concerning wound healing, Hypericum sp., Arnica montana, Calendula officinalis, Plantago sp., and Malva sp. are the most commonly used plants. The focus of this paper is set on selected lesser-known plants (Abies alba, Anthyllis vulneraria, Brassica sp., Gentiana sp., Larix decidua, Picea abies, Sambucus sp., Sanicula europaea) and their status quo in literature concerning wound healing. A systematic search using the databases SciFinder, SCOPUS, and PubMed yielded substantial evidence for the wound healing potential of Brassica sp., Gentiana sp., the Pinaceae A. abies, L. decidua, and P. abies, as well as Sambucus nigra. In vivo and clinical studies substantiate their use in Austrian folk medicine. According to the literature, especially A. vulneraria, Sambucus racemosa, and S. europaea would be worth investigating in-depth since data concerning their wound healing effects - even though scarce - are convincing. In conclusion, the VOLKSMED database contains promising opportunities for further treatment options in the field of wound healing. Future research should consider the listed plants to support their traditional use in Austrian folk medicine and possibly promote the implementation of old knowledge in modern medicine.
Collapse
Affiliation(s)
- Elisabeth Eichenauer
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Austria
| | - Johannes Saukel
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Austria
| | - Sabine Glasl
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Austria
| |
Collapse
|
10
|
Poddar N, Chonzom D, Sen S, Malsawmtluangi, Parihar N, Patil PM, Balani J, Upadhyayula SM, Pemmaraju DB. Biocompatible arabinogalactan-chitosan scaffolds for photothermal pharmacology in wound healing and tissue regeneration. Int J Biol Macromol 2024; 268:131837. [PMID: 38663707 DOI: 10.1016/j.ijbiomac.2024.131837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Delayed wound healing is often caused by bacterial infections and persistent inflammation. Multifunctional materials with anti-bacterial, anti-inflammatory, and hemostatic properties are crucial for accelerated wound healing. In this study, we report a biomacromolecule-based scaffold (ArCh) by uniquely combining arabinogalactan (Ar) and chitosan (Ch) using a Schiff-based reaction. Further, the optimized ArCh scaffolds were loaded with Glycyrrhizin (GA: anti-inflammatory molecule) conjugated NIR light-absorbing Copper sulfide (CuS) nanoparticles. The resultant GACuS ArCh scaffolds were characterized for different wound healing parameters in in-vitro and in-vivo models. Our results indicated that GACuS ArCh scaffolds showed excellent swelling, biodegradation, and biocompatibility in vitro. Further results obtained indicated that GACuS ArCh scaffolds demonstrated mild hyperthermia and enhanced hemostatic, anti-oxidant, anti-bacterial, and wound-healing effects when exposed to NIR light. The scaffolds, upon further validation, may be beneficial in accelerating wound healing and tissue regeneration response.
Collapse
Affiliation(s)
- Nidhi Poddar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Donker Chonzom
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Santimoy Sen
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Malsawmtluangi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Nidhi Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Prathamesh Mahadev Patil
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Jagdish Balani
- Central Animal house facility (CAF), National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Suryanarayana Murty Upadhyayula
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Deepak B Pemmaraju
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India.
| |
Collapse
|
11
|
Alavi SE, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing Wound Healing: Exploring Scarless Solutions through Drug Delivery Innovations. Mol Pharm 2024; 21:1056-1076. [PMID: 38288723 DOI: 10.1021/acs.molpharmaceut.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales. Therefore, there is a need for effective drug delivery systems (DDSs) to address these issues. The objective of this review is to provide a comprehensive exposition of the mechanisms underlying the skin healing process, the factors and materials used in engineering DDSs, and the different DDSs used in wound care. Furthermore, this investigation will delve into the examination of emergent technologies and potential avenues for enhancing the efficacy of wound care devices.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| |
Collapse
|
12
|
Škovranová G, Molčanová L, Jug B, Jug D, Klančnik A, Smole-Možina S, Treml J, Tušek Žnidarič M, Sychrová A. Perspectives on antimicrobial properties of Paulownia tomentosa Steud. fruit products in the control of Staphylococcus aureus infections. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117461. [PMID: 37979817 DOI: 10.1016/j.jep.2023.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paulownia tomentosa Steud. (P. tomentosa) is a medium-sized tree traditionally used in Chinese folk medicine for the treatment of infectious diseases. It is a rich source of prenylated phenolic compounds that have been extensively studied for their promising biological activities. AIM OF THE STUDY Due to the increasing development of antibiotic resistance, our study investigated plant-derived natural products from the fruits of P. tomentosa that could control Staphylococcus aureus infections with novel targets/modes of action and reduce antimicrobial resistance. MATERIALS AND METHODS The ethanolic extract was fractionated and detected by liquid chromatography. The antistaphylococcal effects of the plant formulations were studied in detail in vitro by various biological methods, including microdilution methods for minimum inhibitory concentration (MIC), the checkerboard titration technique for synergy assay, fluorescence measurements for membrane disruption experiments, autoinducer-2-mediated bioassay for quorum sensing inhibition, and counting of colony-forming units for relative adhesion. Morphology was examined by transmission electron microscopy. RESULTS Total ethanolic extract and chloroform fraction showed MICs of 128 and 32 μg/mL, respectively. Diplacol, diplacone, and 3'-O-methyl-5'-hydroxydiplacone inhibited S. aureus growth in the range of 8-16 μg/mL. Synergistic potential was shown in combination with mupirocin and fusidic acid. The ethanolic extract and the chloroform fraction destroyed the cell membranes by 91.61% and 79.46%, respectively, while the pure compounds were less active. The ethanolic extract and the pure compounds reduced the number of adhered cells to 47.33-10.26% compared to the untreated control. All tested plant formulations, except diplacone, inhibited quorum sensing of S. aureus. Transmission electron microscopy showed deformation of S. aureus cells. CONCLUSIONS The products from the fruit of P. tomentosa showed antimicrobial properties against S. aureus alone and in combination with antibiotics. By affecting intracellular targets, geranylated flavonoids proposed novel approaches in the control of staphylococcal infections.
Collapse
Affiliation(s)
- Gabriela Škovranová
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, 612 00, Brno, Czech Republic.
| | - Lenka Molčanová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 00, Brno, Czech Republic
| | - Blaž Jug
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Dina Jug
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Sonja Smole-Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, 612 00, Brno, Czech Republic
| | - Magda Tušek Žnidarič
- Department of Biotechnology and System Biology, National Institute of Biology, 1000, Ljubljana, Slovenia
| | - Alice Sychrová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 00, Brno, Czech Republic.
| |
Collapse
|
13
|
Li H, Tian J, Cao H, Tang Y, Huang F, Yang Z. Preparation of Enzyme-Soluble Swim Bladder Collagen from Sea Eel ( Muraenesox cinereus) and Evaluation Its Wound Healing Capacity. Mar Drugs 2023; 21:525. [PMID: 37888460 PMCID: PMC10608547 DOI: 10.3390/md21100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
In the present research, the enzyme-facilitated collagen from sea eel (Muraenesox cinereus) swim bladder was isolated, and the collagen characteristics were analyzed. Then, the collagen sponge was prepared and its potential mechanism in promoting skin wound healing in mice was further investigated. Collagen was obtained from the swim bladder of sea eels employing the pepsin extraction technique. Single-factor experiments served as the basis for the response surface method (RSM) to optimize pepsin concentration, solid-liquid ratio, and hydrolysis period. With a pepsin concentration of 2067 U/g, a solid-liquid ratio of 1:83 g/mL, and a hydrolysis period of 10 h, collagen extraction achieved a yield of 93.76%. The physicochemical analysis revealed that the extracted collagen belonged to type I collagen, and the collagen sponge displayed a fibrous structure under electron microscopy. Furthermore, in comparison to the control group, mice treated with collagen sponge dressing exhibited elevated activities of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-Px), and decreased levels of malondialdehyde (MDA), interleukin (IL)-1β, interleukin (IL)-6, and tumor necrosis factor (TNF)-α. The collagen sponge dressing effectively alleviated inflammation in the wound area, facilitating efficient repair and rapid healing of the skin tissue. During the initial phase of wound healing, the group treated with collagen sponge dressing exhibited an enhancement in the expressions of cluster of differentiation (CD)31, epidermal growth factor (EGF), transforming growth factor (TGF)-β1, and type I collagen, leading to an accelerated rate of wound healing. In addition, this collagen sponge dressing could also downregulate the expressions of CD31, EGF, and type I collagen to prevent scar formation in the later stage. Moreover, this collagen treatment minimized oxidative damage and inflammation during skin wound healing and facilitated blood vessel formation in the wound. Consequently, it exhibits significant potential as an ideal material for the development of a skin wound dressing.
Collapse
Affiliation(s)
| | | | | | | | - Fangfang Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (H.L.); (J.T.); (H.C.); (Y.T.)
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (H.L.); (J.T.); (H.C.); (Y.T.)
| |
Collapse
|
14
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
15
|
Lakkim V, Reddy MC, Lekkala VVV, Lebaka VR, Korivi M, Lomada D. Antioxidant Efficacy of Green-Synthesized Silver Nanoparticles Promotes Wound Healing in Mice. Pharmaceutics 2023; 15:pharmaceutics15051517. [PMID: 37242759 DOI: 10.3390/pharmaceutics15051517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Developing an efficient and cost-effective wound-healing substance to treat wounds and regenerate skin is desperately needed in the current world. Antioxidant substances are gaining interest in wound healing, and green-synthesized silver nanoparticles have drawn considerable attention in biomedical applications due to their efficient, cost-effective, and non-toxic nature. The present study evaluated in vivo wound healing and antioxidant activities of silver nanoparticles from Azadirachta indica (AAgNPs) and Catharanthus roseus (CAgNPs) leaf extracts in BALB/c mice. We found rapid wound healing, higher collagen deposition, and increased DNA and protein content in AAgNPs- and CAgNPs (1% w/w)-treated wounds than in control and vehicle control wounds. Skin antioxidant enzyme activities (SOD, catalase, GPx, GR) were significantly (p < 0.05) increased after 11 days CAgNPs and AAgNPs treatment. Furthermore, the topical application of CAgNPs and AAgNPs tends to suppress lipid peroxidation in wounded skin samples. Histopathological images evidenced decreased scar width, epithelium restoration, fine collagen deposition, and fewer inflammatory cells in CAgNPs and AAgNPs applied wounds. In vitro, the free radical scavenging activity of CAgNPs and AAgNPs was demonstrated by DPPH and ABTS radical scavenging assays. Our findings suggest that silver nanoparticles prepared from C. roseus and A. indica leaf extracts increased antioxidant status and improved the wound-healing process in mice. Therefore, these silver nanoparticles could be potential natural antioxidants to treat wounds.
Collapse
Affiliation(s)
- Vajravathi Lakkim
- Department of Genetics, Yogi Vemana University, Kadapa 516005, AP, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, AP, India
| | | | | | - Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Dakshayani Lomada
- Department of Genetics, Yogi Vemana University, Kadapa 516005, AP, India
| |
Collapse
|