1
|
Suh A, Ong J, Kamran SA, Waisberg E, Paladugu P, Zaman N, Sarker P, Tavakkoli A, Lee AG. Retina Oculomics in Neurodegenerative Disease. Ann Biomed Eng 2023; 51:2708-2721. [PMID: 37855949 DOI: 10.1007/s10439-023-03365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023]
Abstract
Ophthalmic biomarkers have long played a critical role in diagnosing and managing ocular diseases. Oculomics has emerged as a field that utilizes ocular imaging biomarkers to provide insights into systemic diseases. Advances in diagnostic and imaging technologies including electroretinography, optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy, fluorescence lifetime imaging ophthalmoscopy, and OCT angiography have revolutionized the ability to understand systemic diseases and even detect them earlier than clinical manifestations for earlier intervention. With the advent of increasingly large ophthalmic imaging datasets, machine learning models can be integrated into these ocular imaging biomarkers to provide further insights and prognostic predictions of neurodegenerative disease. In this manuscript, we review the use of ophthalmic imaging to provide insights into neurodegenerative diseases including Alzheimer Disease, Parkinson Disease, Amyotrophic Lateral Sclerosis, and Huntington Disease. We discuss recent advances in ophthalmic technology including eye-tracking technology and integration of artificial intelligence techniques to further provide insights into these neurodegenerative diseases. Ultimately, oculomics opens the opportunity to detect and monitor systemic diseases at a higher acuity. Thus, earlier detection of systemic diseases may allow for timely intervention for improving the quality of life in patients with neurodegenerative disease.
Collapse
Affiliation(s)
- Alex Suh
- Tulane University School of Medicine, New Orleans, LA, USA.
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sharif Amit Kamran
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Ethan Waisberg
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Phani Paladugu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Prithul Sarker
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, 6560 Fannin St #450, Houston, TX, 77030, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
2
|
Wang MD, Zhang S, Liu XY, Wang PP, Zhu YF, Zhu JR, Lv CS, Li SY, Liu SF, Wen L. Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer's disease mouse model through downregulating BACE1 and Aβ generation. Acta Pharmacol Sin 2023; 44:2151-2168. [PMID: 37420104 PMCID: PMC10618533 DOI: 10.1038/s41401-023-01125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with subtle onset, early diagnosis remains challenging. Accumulating evidence suggests that the emergence of retinal damage in AD precedes cognitive impairment, and may serve as a critical indicator for early diagnosis and disease progression. Salvianolic acid B (Sal B), a bioactive compound isolated from the traditional Chinese medicinal herb Salvia miltiorrhiza, has been shown promise in treating neurodegenerative diseases, such as AD and Parkinson's disease. In this study we investigated the therapeutic effects of Sal B on retinopathy in early-stage AD. One-month-old transgenic mice carrying five familial AD mutations (5×FAD) were treated with Sal B (20 mg·kg-1·d-1, i.g.) for 3 months. At the end of treatment, retinal function and structure were assessed, cognitive function was evaluated in Morris water maze test. We showed that 4-month-old 5×FAD mice displayed distinct structural and functional deficits in the retinas, which were significantly ameliorated by Sal B treatment. In contrast, untreated, 4-month-old 5×FAD mice did not exhibit cognitive impairment compared to wild-type mice. In SH-SY5Y-APP751 cells, we demonstrated that Sal B (10 μM) significantly decreased BACE1 expression and sorting into the Golgi apparatus, thereby reducing Aβ generation by inhibiting the β-cleavage of APP. Moreover, we found that Sal B effectively attenuated microglial activation and the associated inflammatory cytokine release induced by Aβ plaque deposition in the retinas of 5×FAD mice. Taken together, our results demonstrate that functional impairments in the retina occur before cognitive decline, suggesting that the retina is a valuable reference for early diagnosis of AD. Sal B ameliorates retinal deficits by regulating APP processing and Aβ generation in early AD, which is a potential therapeutic intervention for early AD treatment.
Collapse
Affiliation(s)
- Meng-Dan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xing-Yang Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Pan-Pan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yi-Fan Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jun-Rong Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Chong-Shan Lv
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shi-Ying Li
- Eye Institute of Xiamen University, Department of Ophthalmology, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Sui-Feng Liu
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| | - Lei Wen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Martucci A, Di Giuliano F, Minosse S, Pocobelli G, Nucci C, Garaci F. MRI and Clinical Biomarkers Overlap between Glaucoma and Alzheimer's Disease. Int J Mol Sci 2023; 24:14932. [PMID: 37834380 PMCID: PMC10573932 DOI: 10.3390/ijms241914932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Glaucoma is the leading cause of blindness worldwide. It is classically associated with structural and functional changes in the optic nerve head and retinal nerve fiber layer, but the damage is not limited to the eye. The involvement of the central visual pathways and disruption of brain network organization have been reported using advanced neuroimaging techniques. The brain structural changes at the level of the areas implied in processing visual information could justify the discrepancy between signs and symptoms and underlie the analogy of this disease with neurodegenerative dementias, such as Alzheimer's disease, and with the complex group of pathologies commonly referred to as "disconnection syndromes." This review aims to summarize the current state of the art on the use of advanced neuroimaging techniques in glaucoma and Alzheimer's disease, highlighting the emerging biomarkers shared by both diseases.
Collapse
Affiliation(s)
- Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.M.); (G.P.)
| | - Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Silvia Minosse
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (S.M.); (F.G.)
| | - Giulio Pocobelli
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.M.); (G.P.)
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.M.); (G.P.)
| | - Francesco Garaci
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (S.M.); (F.G.)
- San Raffaele Cassino, 03043 Frosinone, Italy
| |
Collapse
|
4
|
Vij R, Arora S. A systematic survey of advances in retinal imaging modalities for Alzheimer's disease diagnosis. Metab Brain Dis 2022; 37:2213-2243. [PMID: 35290546 DOI: 10.1007/s11011-022-00927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Recent advances in retinal imaging pathophysiology have shown a new function for biomarkers in Alzheimer's disease diagnosis and prognosis. The significant improvements in Optical coherence tomography (OCT) retinal imaging have led to significant clinical translation, particularly in Alzheimer's disease detection. This systematic review will provide a comprehensive overview of retinal imaging in clinical applications, with a special focus on biomarker analysis for use in Alzheimer's disease detection. Articles on OCT retinal imaging in Alzheimer's disease diagnosis were identified in PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until March 2021. Those studies using simultaneous retinal imaging acquisition were chosen, while those using sequential techniques were rejected. "Alzheimer's disease" and "Dementia" were searched alone and in combination with "OCT" and "retinal imaging". Approximately 1000 publications were searched, and after deleting duplicate articles, 145 relevant studies focused on the diagnosis of Alzheimer's disease utilizing retinal imaging were chosen for study. OCT has recently been demonstrated to be a valuable technique in clinical practice as according to this survey, 57% of the researchers employed optical coherence tomography, 19% used ocular fundus imaging, 13% used scanning laser ophthalmoscopy, and 11% have used multimodal imaging to diagnose Alzheimer disease. Retinal imaging has become an important diagnostic technique for Alzheimer's disease. Given the scarcity of available literature, it is clear that future prospective trials involving larger and more homogeneous groups are necessary, and the work can be expanded by evaluating its significance utilizing a machine-learning platform rather than simply using statistical methodologies.
Collapse
Affiliation(s)
- Richa Vij
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Sakshi Arora
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India.
| |
Collapse
|
5
|
Liao C, Xu J, Chen Y, Ip NY. Retinal Dysfunction in Alzheimer's Disease and Implications for Biomarkers. Biomolecules 2021; 11:biom11081215. [PMID: 34439882 PMCID: PMC8394950 DOI: 10.3390/biom11081215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that manifests as cognitive deficits and memory decline, especially in old age. Several biomarkers have been developed to monitor AD progression. Given that the retina and brain share some similarities including features related to anatomical composition and neurological functions, the retina is closely associated with the progression of AD. Herein, we review the evidence of retinal dysfunction in AD, particularly at the early stage, together with the underlying molecular mechanisms. Furthermore, we compared the retinal pathologies of AD and other ophthalmological diseases and summarized potential retinal biomarkers measurable by existing technologies for detecting AD, providing insights for the future development of diagnostic tools.
Collapse
Affiliation(s)
- Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Jinying Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Division of Life Science, Molecular Neuroscience Center, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| |
Collapse
|
6
|
The Effect of the Idiopathic Epiretinal Membrane and Surgically Induced Posterior Vitreous Detachment on the Retinal Nerve Fiber Layer. J Ophthalmol 2021; 2020:5217645. [PMID: 33824761 PMCID: PMC8006755 DOI: 10.1155/2020/5217645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/01/2022] Open
Abstract
Aim To investigate the changes in the retinal nerve fiber layer (RNFL) following pars plana vitrectomy (PPV) with surgically induced posterior vitreous detachment (PVD) and idiopathic epiretinal membrane (ERM) and internal limiting membrane (ILM) peeling. Methods Patients with unilateral ERM with vitreomacular traction were included in this prospective, randomized, and controlled clinical trial. The control group (Group 1) was formed with the nonoperated fellow eyes of the patients, and the study group (Group 2) was formed with the eyes that underwent PPV including idiopathic ERM and ILM peeling. In the preoperative and postoperative periods (1st, 2nd, 3rd, 6th, and 12th months), complete ophthalmological examination of the eyes was performed and RNFL measurements were examined in 4 different quadrants (superior, temporal, inferior, and nasal) with the help of spectral domain optical coherence tomography (OCT). Results There was no statistically significant change in Group 1 during the follow-up period in all quadrants (p > 0.05). The mean RNFL thickness in Group 2 was statistically significantly higher than in Group 1 in superior, inferior, and temporal quadrants (p < 0.01), preoperatively. The mean RNFL in Group 2 was higher in the 1st, 2nd, 3rd, and 6th months and lower in the 12th month in superior, inferior, and temporal quadrants (p < 0.01) when compared to the preoperative period. The mean RNFL thickness in the nasal quadrant in Group 2 was higher in the 1st, 2nd, and 3rd (p < 0.01) months, same in the 6th month (p > 0.05), and lower in the 12th (p < 0.01) month when compared to the preoperative period. Conclusion Idiopathic ERM may cause an increase in RNFL thickness in superior, inferior, and temporal quadrants with possible tractional effect. PPV with PVD induction and ERM and ILM peeling may cause these RNFL changes.
Collapse
|
7
|
Song A, Johnson N, Ayala A, Thompson AC. Optical Coherence Tomography in Patients with Alzheimer's Disease: What Can It Tell Us? Eye Brain 2021; 13:1-20. [PMID: 33447120 PMCID: PMC7802785 DOI: 10.2147/eb.s235238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Although Alzheimer's disease (AD) is a leading cause of dementia worldwide, its clinical diagnosis remains a challenge. Optical coherence tomography (OCT) and OCT with angiography (OCTA) are non-invasive ophthalmic imaging tools with the potential to detect retinal structural and microvascular changes in patients with AD, which may serve as biomarkers for the disease. In this systematic review, we evaluate whether certain OCT and OCTA parameters are significantly associated with AD and mild cognitive impairment (MCI). METHODS PubMed database was searched using a combination of MeSH terms to identify studies for review. Studies were organized by participant diagnostic groups, type of imaging modality, and OCT/OCTA parameters of interest. Participant demographic data was also collected and baseline descriptive statistics were calculated for the included studies. RESULTS Seventy-one studies were included for review, representing a total of 6757 patients (2350 AD, 793 MCI, 2902 healthy controls (HC), and 841 others with a range of other neurodegenerative diagnoses). The mean baseline ages were 72.78±3.69, 71.52±2.88, 70.55±3.85 years for AD, MCI and HC groups, respectively. The majority of studies noted significant structural and functional decline in AD patients when compared to HC. Although analysis of MCI groups yielded more mixed results, a similar pattern of decline was often noted amongst patients with MCI relative to HC. OCT and OCTA measurements were also shown to correlate with established measures of AD such as neuropsychological testing or neuroimaging. CONCLUSION OCT and OCTA show great potential as non-invasive technologies for the diagnosis of AD. However, further research is needed to determine whether there are AD-specific patterns of structural or microvascular change in the retina and optic nerve that distinguish AD from other neurodegenerative diseases. Development of sensitive and specific OCT/OCTA parameters will be necessary before they can be used to detect AD in clinical settings.
Collapse
Affiliation(s)
- Ailin Song
- Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
8
|
The Retinal Inner Plexiform Synaptic Layer Mirrors Grey Matter Thickness of Primary Visual Cortex with Increased Amyloid β Load in Early Alzheimer's Disease. Neural Plast 2020; 2020:8826087. [PMID: 33014034 PMCID: PMC7525303 DOI: 10.1155/2020/8826087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
The retina may serve as putative window into neuropathology of synaptic loss in Alzheimer's disease (AD). Here, we investigated synapse-rich layers versus layers composed by nuclei/cell bodies in an early stage of AD. In addition, we examined the associations between retinal changes and molecular and structural markers of cortical damage. We recruited 20 AD patients and 17 healthy controls (HC). Combining optical coherence tomography (OCT), magnetic resonance (MR), and positron emission tomography (PET) imaging, we measured retinal and primary visual cortex (V1) thicknesses, along with V1 amyloid β (Aβ) retention ([11C]-PiB PET tracer) and neuroinflammation ([11C]-PK11195 PET tracer). We found that V1 showed increased amyloid-binding potential, in the absence of neuroinflammation. Although thickness changes were still absent, we identified a positive association between the synapse-rich inner plexiform layer (IPL) and V1 in AD. This retinocortical interplay might reflect changes in synaptic function resulting from Aβ deposition, contributing to early visual loss.
Collapse
|
9
|
Mavilio A, Sisto D, Prete F, Guadalupi V, Dammacco R, Alessio G. RE-PERG in early-onset Alzheimer's disease: A double-blind, electrophysiological pilot study. PLoS One 2020; 15:e0236568. [PMID: 32790788 PMCID: PMC7425894 DOI: 10.1371/journal.pone.0236568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To evaluate the ability of re-test pattern electroretinogram (RE-PERG), a non-invasive and fast steady-state PERG, to detect inner retinal bioelectric function anomalies in patients with early-onset Alzheimer's disease (AD). METHODS The study population consisted of 17 patients with AD-related mild cognitive impairment (MCI), 16 patients with vascular dementia (VD)-related MCI, both assessed using the neuropsychological Mini-Mental State Examination (MMSE) and by structural magnetic resonance imaging, and 19 healthy, age-matched normal controls (NC). All participants were visually asymptomatic, had normal or near-normal general cognitive functioning and no or minimal impairments in daily life activities. Visual field (VF) test, optical coherence tomography (OCT) and RE-PERG, sampled in five consecutive blocks of 130 events, were performed. RESULTS There was no statistically significant difference among the three groups with respect to age, VF parameters (mean and pattern standard deviations) and OCT parameters (ganglion cell complex thickness and retinal nerve fiber layer thickness). The mean amplitude in the RE-PERG was significantly lower, but only weakly in the AD group than in NC (p = 0.1) whereas the intrinsic variability of the 2nd harmonic phase was significantly higher in the AD group than in either the VD or NC group (p<0.001). CONCLUSIONS RE-PERG is altered in early-stage AD, showing a reduced amplitude with high intrinsic phase variability. It also allows the discrimination of AD from VD. A high intrinsic variability in the PERG signal, determined using RE-PERG, may thus be a new promising test for neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Mavilio
- Social Health District, Glaucoma Center, Azienda Sanitaria Locale–Brindisi, Brindisi, Italy
| | - Dario Sisto
- Department of Neurosciences, Institute of Ophthalmology, University of Bari, Bari, Italy
| | - Florenza Prete
- Social Health District, Alzheimer Evaluation Units, Azienda Sanitaria Locale—Brindisi, Brindisi, Italy
| | - Viviana Guadalupi
- Social Health District, Alzheimer Evaluation Units, Azienda Sanitaria Locale—Brindisi, Brindisi, Italy
| | - Rosanna Dammacco
- Department of Neurosciences, Institute of Ophthalmology, University of Bari, Bari, Italy
| | - Giovanni Alessio
- Department of Neurosciences, Institute of Ophthalmology, University of Bari, Bari, Italy
| |
Collapse
|
10
|
Abstract
PURPOSE To assess the thickness of the retinal nerve fiber layer and its morphometric parameters using optical coherent tomography in Alzheimer's disease (AD). MATERIAL AND METHODS The study included 105 patients, among which 45 were with AD and 60 patients without AD (control group). Visual acuity of each eye was measured using Snellen chart, intraocular pressure according to Goldman, and cognitive state on the MMSE scale. All patients underwent optical coherence tomography. RESULTS The average thickness of the nerve fibers of the retina in patients with AD was lower by 27.0%, in the temporal, upper and lower quadrants - by 24.0, 17.9 and 24.9%, respectively. The thickness in the nasal quadrant with AD was reduced by 15.4%. Excavation to diameter ratio, as well as vertical and horizontal excavation to diameter ratios on average exceeded the benchmark by 12.5%, 23.4% and 30.8% (p<0.05), respectively. There was a decrease in the size of the area of the neuroretinal belt and the area of the disk by an average of 28.5% (p<0.05) and 8.8%, respectively. The average thickness, the thickness in the upper and lower segments of the ganglion cell complex is reduced, the indices of focal and global loss of the volume of retinal ganglion cells complex are increased respectively by 1.7 (p<0.05) and 2.8 times (p<0.01). CONCLUSION In patients with moderate AD, the thickness of retinal nerve fibers (RNFL) in the temporal, upper, and lower segments decreases significantly (p<0.001); a statistically significant (p<0.05) increase in the excavation to diameter ratio of the optic nerve head and a decrease in the area of the neuroretinal belt is observed; the increase in the indices of focal and global loss of the volume of ganglion cells complex is statistically significant (p<0.01).
Collapse
Affiliation(s)
- R N Guliyeva
- National Ophthalmology Center named after Zarifa Aliyeva, Baku, Republic of Azerbaijan
| |
Collapse
|
11
|
Zmyslowska A, Waszczykowska A, Baranska D, Stawiski K, Borowiec M, Jurowski P, Fendler W, Mlynarski W. Optical coherence tomography and magnetic resonance imaging visual pathway evaluation in Wolfram syndrome. Dev Med Child Neurol 2019; 61:359-365. [PMID: 30246501 DOI: 10.1111/dmcn.14040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to assess parameters of retinal morphology by using high-definition optical coherence tomography (OCT) in patients with Wolfram syndrome (WFS) and their relation to optic tract atrophy in magnetic resonance imaging (MRI). METHOD High-definition OCT and MRI parameters were evaluated in 12 patients with WFS (three males, nine females; median age at examination 12y 8mo, range 10y 2mo-15y 11mo) and referred to 30 individuals with type 1 diabetes (T1D) (12 males, 18 females; median age at examination 20y 5mo, range 16y 8mo-21y 4mo) and 33 typically developing comparison participants (10 males, 23 females; median age at examination 20y 7mo, range 13y-22y 4mo). RESULTS Total thickness and quadrant thickness of the retinal nerve fibre layer (RNFL), macular full-thickness parameters and macular ganglion cell layer/inner plexiform layer, intraorbital and intracranial thickness of the optical nerve, as well as the optic chiasm and visual tracts were significantly reduced in patients with WFS compared with those having T1D and the typically developing comparison participants. Optic chiasm thickness correlated negatively in patients with WFS with both age (r=-0.79; p=0.002) and duration of diabetes (r=-0.62; p=0.032). Thickness of the intraorbital parts of the optic nerves in patients with WFS correlated positively with thickness of the superior RNFL (r=0.73; p=0.006). INTERPRETATION High-definition OCT in combination with MRI could become an important tool for evaluating the effectiveness of therapeutic trials in patients with WFS. WHAT THIS PAPER ADDS Provides evidence of significant reduction of retinal parameters and optic nerves in patients with Wolfram syndrome (WFS). Shows correlations between magnetic resonance imaging parameters and retinal morphology parameters in patients with WFS.
Collapse
Affiliation(s)
- Agnieszka Zmyslowska
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Łódź, Łódź, Poland
| | - Arleta Waszczykowska
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Łódź, Łódź, Poland
| | - Dobromila Baranska
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | - Piotr Jurowski
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Łódź, Łódź, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
12
|
Chiquita S, Rodrigues-Neves AC, Baptista FI, Carecho R, Moreira PI, Castelo-Branco M, Ambrósio AF. The Retina as a Window or Mirror of the Brain Changes Detected in Alzheimer's Disease: Critical Aspects to Unravel. Mol Neurobiol 2019; 56:5416-5435. [PMID: 30612332 DOI: 10.1007/s12035-018-1461-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease is the most frequent cause of dementia worldwide, representing a global health challenge, with a massive impact on the quality of life of Alzheimer's disease patients and their relatives. The diagnosis of Alzheimer's disease constitutes a real challenge, because the symptoms manifest years after the first degenerative changes occurring in the brain and the diagnosis is based on invasive and/or expensive techniques. Therefore, there is an urgent need to identify new reliable biomarkers to detect Alzheimer's disease at an early stage. Taking into account the evidence for visual deficits in Alzheimer's disease patients, sometimes even before the appearance of the first disease symptoms, and that the retina is an extension of the brain, the concept of the retina as a window to look into the brain or a mirror of the brain has received increasing interest in recent years. However, only a few studies have assessed the changes occurring in the retina and the brain at the same time points. Unlike previous reviews on this subject, which are mainly focused on brain changes, we organized this review by comprehensively summarizing findings related with structural, functional, cellular, and molecular parameters in the retina reported in both Alzheimer's disease patients and animal models. Moreover, we separated the studies that assessed only the retina, and those that assessed both the retina and brain, which are few but allow establishing correlations between the retina and brain. This review also highlights some inconsistent results in the literature as well as relevant missing gaps in this field.
Collapse
Affiliation(s)
- Samuel Chiquita
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana C Rodrigues-Neves
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Rafael Carecho
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
- CIBIT, Coimbra Institute for Biomedical Imaging and Translational Research, ICNAS, Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Mancino R, Martucci A, Cesareo M, Giannini C, Corasaniti MT, Bagetta G, Nucci C. Glaucoma and Alzheimer Disease: One Age-Related Neurodegenerative Disease of the Brain. Curr Neuropharmacol 2018; 16:971-977. [PMID: 29210654 PMCID: PMC6120118 DOI: 10.2174/1570159x16666171206144045] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 01/20/2023] Open
Abstract
Background: Open Angle Glaucoma (POAG) is the leading causes of irreversible blindness worldwide. Elevated intraocular pressure is considered an important risk factor for glaucoma; however, a subset of patients experiences a progression of the disease even in presence of normal intraocular pressure values. This implies that risk factors other than intraocular pressure are involved in the pathogenesis of glaucoma. A possible relationship between glaucoma and neurodegenerative diseases such as Alzheimer Disease has been suggested. In this regard, we recently described a high prevalence of alterations typical of glaucoma, using Heidelberg Retinal Tomograph-3, in a group of patients with Alzheimer Disease. Interestingly, these alterations were not associated with elevated intraocular pressure or abnormal Central Corneal Thickness values. Alzheimer Disease is the most common form of dementia with progressive deterioration of memory and cognition. Complaints related to vision are common among Alzheimer Disease patients. Methods: In this paper researches related to glaucoma and Alzheimer disease are reviewed. Results: Diseases characteristics, i.e. common features, risk factors and pathophysiological mechanisms gathered in the recent literature do suggest that Alzheimer Disease and glaucoma can be considered both age-related neurodegenerative diseases that may co-exist in the elderly. Conclusion: In conclusion, preclinical and clinical evidence gathered so far support the notion that glaucoma is a widespread neurodegenerative condition whose common pathogenetic mechanisms with other diseases, i.e. Alzheimer Disease, should be further investigated as they may shed new light on these diseases improving both diagnosis and treatments.
Collapse
Affiliation(s)
- Raffaele Mancino
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Clarissa Giannini
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | | | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036 Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
14
|
Liao H, Zhu Z, Peng Y. Potential Utility of Retinal Imaging for Alzheimer's Disease: A Review. Front Aging Neurosci 2018; 10:188. [PMID: 29988470 PMCID: PMC6024140 DOI: 10.3389/fnagi.2018.00188] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/05/2018] [Indexed: 01/18/2023] Open
Abstract
The ensuing upward shift in demographic distribution due to the increase in life expectancy has resulted in a rising prevalence of Alzheimer's disease (AD). The heavy public burden of AD, along with the urgent to prevent and treat the disease before the irreversible damage to the brain, calls for a sensitive and specific screening technology to identify high-risk individuals before cognitive symptoms arise. Even though current modalities, such as positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarker, showed their potential clinical uses in early detection of AD, the high cost, narrow isotope availability of PET probes and invasive characteristics of CSF biomarker limited their broad utility. Therefore, additional tools for detection of AD are needed. As a projection of the central nervous system (CNS), the retina has been described as a "window to the brain" and a novel marker for AD. Low cost, easy accessibility and non-invasive features make retina tests suitable for large-scale population screening and investigations of preclinical AD. Furthermore, a number of novel approaches in retina imaging, such as optical coherence tomography (OCT), have been developed and made it possible to visualize changes in the retina at a very fine resolution. In this review, we outline the background for AD to accelerate the adoption of retina imaging for the diagnosis and management of AD in clinical practice. Then, we focus on recent findings on the application of retina imaging to investigate AD and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Huan Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Hart NJ, Koronyo Y, Black KL, Koronyo-Hamaoui M. Ocular indicators of Alzheimer's: exploring disease in the retina. Acta Neuropathol 2016; 132:767-787. [PMID: 27645291 PMCID: PMC5106496 DOI: 10.1007/s00401-016-1613-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Abstract
Although historically perceived as a disorder confined to the brain, our understanding of Alzheimer's disease (AD) has expanded to include extra-cerebral manifestation, with mounting evidence of abnormalities in the eye. Among ocular tissues, the retina, a developmental outgrowth of the brain, is marked by an array of pathologies in patients suffering from AD, including nerve fiber layer thinning, degeneration of retinal ganglion cells, and changes to vascular parameters. While the hallmark pathological signs of AD, amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFT) comprising hyperphosphorylated tau (pTau) protein, have long been described in the brain, identification of these characteristic biomarkers in the retina has only recently been reported. In particular, Aβ deposits were discovered in post-mortem retinas of advanced and early stage cases of AD, in stark contrast to non-AD controls. Subsequent studies have reported elevated Aβ42/40 peptides, morphologically diverse Aβ plaques, and pTau in the retina. In line with the above findings, animal model studies have reported retinal Aβ deposits and tauopathy, often correlated with local inflammation, retinal ganglion cell degeneration, and functional deficits. This review highlights the converging evidence that AD manifests in the eye, especially in the retina, which can be imaged directly and non-invasively. Visual dysfunction in AD patients, traditionally attributed to well-documented cerebral pathology, can now be reexamined as a direct outcome of retinal abnormalities. As we continue to study the disease in the brain, the emerging field of ocular AD warrants further investigation of how the retina may faithfully reflect the neurological disease. Indeed, detection of retinal AD pathology, particularly the early presenting amyloid biomarkers, using advanced high-resolution imaging techniques may allow large-scale screening and monitoring of at-risk populations.
Collapse
Affiliation(s)
- Nadav J Hart
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, 90048, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, 90048, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, 90048, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, 90048, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 110 George Burns Rd., Los Angeles, CA, 90048, USA.
| |
Collapse
|
16
|
Cesareo M, Martucci A, Ciuffoletti E, Mancino R, Cerulli A, Sorge RP, Martorana A, Sancesario G, Nucci C. Association Between Alzheimer's Disease and Glaucoma: A Study Based on Heidelberg Retinal Tomography and Frequency Doubling Technology Perimetry. Front Neurosci 2015; 9:479. [PMID: 26733792 PMCID: PMC4683203 DOI: 10.3389/fnins.2015.00479] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/30/2015] [Indexed: 11/30/2022] Open
Abstract
Aim: To assess the frequency of glaucoma-like alterations in Alzheimer's disease (AD) patients using Heidelberg Retinal Tomograph III (HRT-3) and Frequency Doubling Technology (FDT) perimetry. Methods: The study included 51 eyes of 51 AD subjects and 67 eyes of 67 age- and sex-matched controls. Subjects underwent an ophthalmological examination including measurements of intraocular pressure (IOP), Matrix FDT visual field testing, optic nerve head morphology and retinal nerve fiber layer thickness (RNFLt) assessment by slit-lamp biomicroscopy and HRT-3. Results: The frequency of alterations was significantly higher in the AD group (27.5 vs. 7.5%; p = 0.003; OR = 4.69). AD patients showed lower IOP (p = 0.000) despite not significantly different values of central corneal thickness (CCT) between the groups (p = 0.336). Of all the stereometric parameters measured by HRT-3, RNFLt was significantly lower in AD patients (p = 0.013). This group also had significantly worse results in terms of Moorfields Regression Analysis (p = 0.027). Matrix showed significantly worse Mean Deviation (MD) (p = 0.000) and Pattern Standard Deviation (PSD) (p = 0.000) values and more altered Glaucoma Hemifield Test (p = 0.006) in AD patients. Pearson's R correlation test showed that Mini Mental State Examination is directly correlated with MD (R = 0.349; p = 0.034) and inversely correlated with PSD (R = −0.357; p = 0.030). Conclusion: Patients with AD have a higher frequency of glaucoma-like alterations, as detected by the use of HRT-3. These alterations were not associated with elevated IOP or abnormal CCT values.
Collapse
Affiliation(s)
- Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata Rome, Italy
| | - Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata Rome, Italy
| | - Elena Ciuffoletti
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata Rome, Italy
| | - Raffaele Mancino
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata Rome, Italy
| | - Angelica Cerulli
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata Rome, Italy
| | - Roberto P Sorge
- Laboratory of Biometry, Department of Systems Medicine, University of Rome Tor Vergata Rome, Italy
| | - Alessandro Martorana
- Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata Rome, Italy
| | - Giuseppe Sancesario
- Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata Rome, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata Rome, Italy
| |
Collapse
|
17
|
Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma. Eye (Lond) 2015; 29:1242-50. [PMID: 26183286 PMCID: PMC4815687 DOI: 10.1038/eye.2015.127] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/10/2015] [Indexed: 01/28/2023] Open
Abstract
There is increasing evidence in the literature regarding translaminar pressure difference's (TPD) role in the pathophysiology of glaucoma. The optic nerve is exposed not only to intraocular pressure in the eye, but also to intracranial pressure (ICP), as it is surrounded by cerebrospinal fluid in the subarachnoid space. Although pilot studies have identified the potential importance of TPD in glaucoma, limited available data currently prevent a comprehensive description of the role that TPD may have in glaucomatous pathophysiology. In this review, we present all available qualified data from a systematic review of the literature of the role of TPD in open-angle glaucoma (OAG). PubMed (Medline), OVID Medline, ScienceDirect, SpringerLink, and all available library databases were reviewed and subsequent meta-analysis of pooled mean differences are presented where appropriate. Five papers including 396 patients met criteria for inclusion to the analysis. Importantly, we included all observational studies despite differences in ICP measurement methods, as there is no consensus regarding best-practice ICP measurements in glaucoma. Our results show that not only TPD is higher in glaucoma patients compared with healthy subjects, it is related to structural glaucomatous changes of the optic disc. Our analysis suggests further longitudinal prospective studies are needed to investigate the influence of TPD in OAG, with a goal of overcoming methodological weaknesses of previous studies.
Collapse
|