1
|
Kiss L. Studies on Square Wave and Cyclic Voltammetric Behavior of 1,2- and 1,4-Dihydroxybenzenes and Their Derivatives in Acetic Acid, Ethyl Acetate and Mixtures of the Two. Methods Protoc 2024; 7:102. [PMID: 39728622 DOI: 10.3390/mps7060102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
An electrochemical investigation of 1,2- and 1,4-dihydroxybenzenes was carried out with platinum macro- and microelectrodes using square wave and cyclic voltammetry techniques. Furthermore, the effect of the two solvents-acetic acid and ethyl acetate-was compared. When using square wave voltammetry, signals only appeared at lower frequencies and only when the supporting electrolyte was in excess, as expected due to the relatively low permittivity of the used solvents. The behavior of hydroquinone and catechol did not differ significantly from that of their derivatives (dihydroxybenzaldehydes, dihydroxybenzoic acids and 2',5'-dihydroxyacetophenone). When the cyclic voltammetric experiments using a microelectrode were extended to higher anodic potentials, electrode fouling was very significant in ethyl acetate after the potential region where steady-state oxidation to the corresponding quinone occurs. The substituent effect was not significant here either, which was proven by using different functional groups in different positions. In contrast, the position had a dramatic influence on the susceptibility to electropolymerization, as 1,2-dihydroxybenzenes-independent of the nature of the substituent on the benzene ring-deactivated the electrode, while 1,4-dihydroxybenzenes did not, possibly due to the different solubilities of the polymers formed from the primary oxidation product (quinones). A user-friendly analytical procedure is also proposed that uses an electropolymerization reaction and does not require frequent cleaning of the electrode via polishing, which is required usually especially with a microelectrode.
Collapse
Affiliation(s)
- László Kiss
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, H-7624 Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Ifjúság Street 20, H-7624 Pécs, Hungary
| |
Collapse
|
2
|
Disposable screen-printed carbon-based electrodes in amperometric detection for simultaneous determination of parabens in complex-matrix personal care products by HPLC. Talanta 2022; 245:123459. [DOI: 10.1016/j.talanta.2022.123459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/31/2022] [Accepted: 04/03/2022] [Indexed: 01/02/2023]
|
3
|
Evtyugin GA, Porfir’eva AV. Determination of Organic Compounds in Aqueous–Organic and Dispersed Media Using Electrochemical Methods of Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Hatami E, Ashraf N, Arbab-Zavar MH. Construction of β-Cyclodextrin-phosphomolybdate grafted polypyrrole composite: Application as a disposable electrochemical sensor for detection of propylparaben. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Abidi J, Samet Y, Panizza M, Martinez‐Huitle CA, Carpanese MP, Clematis D. A Boron‐Doped Diamond Anode for the Electrochemical Removal of Parabens in Low‐Conductive Solution: From a Conventional Flow Cell to a Solid Polymer Electrolyte System. ChemElectroChem 2020. [DOI: 10.1002/celc.201901909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jihen Abidi
- Laboratory Research of Toxicology-Microbiology Environmental and Health (LR17ES06) Science Faculty of SFAXUniversity of SFAX Road of Soukra km 4 3038 Sfax Tunisia
| | - Youssef Samet
- Laboratory Research of Toxicology-Microbiology Environmental and Health (LR17ES06) Science Faculty of SFAXUniversity of SFAX Road of Soukra km 4 3038 Sfax Tunisia
| | - Marco Panizza
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via all'Opera Pia 15 16145 Genova Italy
| | - Carlos A. Martinez‐Huitle
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM)Institute of Chemistry, P.O. Box 355 14800-900 Araraquara, SP Brazil
| | - M. Paola Carpanese
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via all'Opera Pia 15 16145 Genova Italy
| | - Davide Clematis
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via all'Opera Pia 15 16145 Genova Italy
| |
Collapse
|
6
|
Ultrasonic and volumetric behaviour of glycols with sodium ethylparaben in aqueous medium from T = 293.15 to 308.15 K at atmospheric pressure. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Flasiński M, Kowal S, Broniatowski M, Wydro P. Influence of Parabens on Bacteria and Fungi Cellular Membranes: Studies in Model Two-Dimensional Lipid Systems. J Phys Chem B 2018; 122:2332-2340. [DOI: 10.1021/acs.jpcb.7b10152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michał Flasiński
- Department
of Environmental Chemistry, Faculty of Chemistry and ‡Department of Physical
Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sara Kowal
- Department
of Environmental Chemistry, Faculty of Chemistry and ‡Department of Physical
Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department
of Environmental Chemistry, Faculty of Chemistry and ‡Department of Physical
Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Wydro
- Department
of Environmental Chemistry, Faculty of Chemistry and ‡Department of Physical
Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Hicks MB, Salituro L, Mangion I, Schafer W, Xiang R, Gong X, Welch CJ. Assessment of coulometric array electrochemical detection coupled with HPLC-UV for the absolute quantitation of pharmaceuticals. Analyst 2017; 142:525-536. [PMID: 28098264 DOI: 10.1039/c6an02432g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of a coulometric array detector in tandem with HPLC-UV was evaluated for the absolute quantitation of pharmaceutical compounds without standards, an important capability gap in contemporary pharmaceutical research and development. The high-efficiency LC flow-through electrochemical detector system allows for the rapid evaluation of up to 16 different potentials, aiding in the identification and quantitation of electrochemically reactive species. By quantifying the number of electrons added or removed from an analyte during its passage through the detector, the number of moles of the analyte can be established. Herein we demonstrate that molecules containing common electroactive functional groups (e.g. anilines, phenols, parabens and tertiary alkyl amines) can in some cases be reliably quantified in HPLC-EC-UV without the need for authentic standards. Furthermore, the multichannel nature of the CoulArray detector makes it well suited for optimizing the conditions for electrochemical reaction, allowing the impact of changes in potential, flow rate, temperature and pH to be conveniently studied. The electrochemical oxidation of albacivir, zomepirac, diclofenac, rosiglitazone and several other marketed drugs resulted in large linear ranges, predictable recoveries and excellent quantitation using the total moles of electrons and back-calculating using Faraday's law. Importantly, we observed several instances where subtle structural changes within a given class of molecules (e.g. aromatic ring isomers) led to unanticipated changes in electrochemical behavior. Consequently, some care should be taken when applying the technique to the routine quantitation of compound libraries where standards are not available.
Collapse
Affiliation(s)
- Michael B Hicks
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Leah Salituro
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Ian Mangion
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Wes Schafer
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Rong Xiang
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Xiaoyi Gong
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Christopher J Welch
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
9
|
Domínguez JR, Muñoz-Peña MJ, González T, Palo P, Cuerda-Correa EM. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20315-20330. [PMID: 27449015 DOI: 10.1007/s11356-016-7175-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO -. The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.
Collapse
Affiliation(s)
- Joaquín R Domínguez
- Department of Organic and Inorganic Chemistry. Faculty of Sciences, University of Extremadura, Avda de Elvas S/N., E-06006, Badajoz, Spain
| | - Maria J Muñoz-Peña
- Department of Organic and Inorganic Chemistry. Faculty of Sciences, University of Extremadura, Avda de Elvas S/N., E-06006, Badajoz, Spain
| | - Teresa González
- Department of Organic and Inorganic Chemistry. Faculty of Sciences, University of Extremadura, Avda de Elvas S/N., E-06006, Badajoz, Spain
| | - Patricia Palo
- Department of Organic and Inorganic Chemistry. Faculty of Sciences, University of Extremadura, Avda de Elvas S/N., E-06006, Badajoz, Spain
| | - Eduardo M Cuerda-Correa
- Department of Organic and Inorganic Chemistry. Faculty of Sciences, University of Extremadura, Avda de Elvas S/N., E-06006, Badajoz, Spain.
| |
Collapse
|
10
|
Electrochemical degradation of butyl paraben on platinum and glassy carbon electrodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Studies on the interactions between parabens and lipid membrane components in monolayers at the air/aqueous solution interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:836-44. [DOI: 10.1016/j.bbamem.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
|
12
|
Ghoneim MM, El-Desoky HS, Matsuda A, Hattori T, Abdel-Galeil MM. Voltammetric analysis of nitroxoline in tablets and human serum using modified carbon paste electrodes incorporating mesoporous carbon or multiwalled carbon nanotubes. RSC Adv 2015. [DOI: 10.1039/c5ra05086c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mesoporous carbon (MC) was synthesized using mesoporous SiO2 template material (SBA-15) and sucrose as the carbon source. SBA-15, MC and multi-walled carbon nanotubes (MWCNTs) were used as sensors for determination of nitroxoline drug.
Collapse
Affiliation(s)
- Mohamed M. Ghoneim
- Analytical and Electrochemistry Research Unit
- Department of Chemistry
- Faculty of Science
- Tanta University
- 31527-Tanta
| | - Hanaa S. El-Desoky
- Analytical and Electrochemistry Research Unit
- Department of Chemistry
- Faculty of Science
- Tanta University
- 31527-Tanta
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Toshiaki Hattori
- Department of Electrical and Electronic Information Engineering
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Mohamed M. Abdel-Galeil
- Analytical and Electrochemistry Research Unit
- Department of Chemistry
- Faculty of Science
- Tanta University
- 31527-Tanta
| |
Collapse
|