1
|
Feng S, Zhang H, Wang H, Zhao R, Ding X, Su H, Zhai F, Li T, Ma M, Ma Y. Fabrication of cobalt-zinc bimetallic oxides@polypyrrole composites for high-performance electromagnetic wave absorption. J Colloid Interface Sci 2023; 652:1631-1644. [PMID: 37666195 DOI: 10.1016/j.jcis.2023.08.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Composite materials that combine magnetic and dielectric losses offer a potential solution to enhance impedance match and significantly improve microwave absorption. In this study, Co3O4/ZnCo2O4 and ZnCo2O4/ZnO with varying metal oxide compositions are successfully synthesized, which are achieved by modifying the ratios of Co2+ and Zn2+ ions in the CoZn bimetallic metal-organic framework (MOF) precursor, followed by a high-temperature oxidative calcination process. Subsequently, a layer of polypyrrole (PPy) is coated onto the composite surfaces, resulting in the formation of core-shell structures known as Co3O4/ZnCo2O4@PPy (CZCP) and ZnCo2O4/ZnO@PPy (ZCZP) composites. The proposed method allows for rapid adjustments to the metal oxide composition within the inner shell, enabling the creation of composites with varying degrees of magnetic losses. The inclusion of PPy in the outer shell serves to enhance the bonding strength of the entire composite structure while contributing to conductive and dielectric losses. In specific experimental conditions, when the loading is set at 50 wt%, the CZCP composite exhibits an effective absorption bandwidth (EAB) of 5.58 GHz (12.42 GHz-18 GHz) at a thickness of 1.53 mm. Meanwhile, the ZCZP composite demonstrates an impressive minimum reflection loss (RLmin) of -71.2 dB at 13.04 GHz, with a thickness of 1.84 mm. This study offers a synthesis strategy for designing absorbent composites that possess light weight and excellent absorptive properties, thereby contributing to the advancement of electromagnetic wave absorbing materials.
Collapse
Affiliation(s)
- Shixuan Feng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hao Zhang
- Technical Center, Xi'an Aerospace Sunvalor Chemical Co., Ltd, Xi'an 710086, PR China
| | - Haowen Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Rui Zhao
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xuan Ding
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Huahua Su
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Futian Zhai
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
2
|
Zhou W, Tang Y, Zhang X, Zhang S, Xue H, Pang H. MOF derived metal oxide composites and their applications in energy storage. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Han MC, Zou MC, Yi TF, Wei F. Recent Advances of ZnCo 2 O 4 -based Anode Materials for Li-ion Batteries. Chem Asian J 2023; 18:e202201034. [PMID: 36346399 DOI: 10.1002/asia.202201034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/06/2022] [Indexed: 11/09/2022]
Abstract
ZnCo2 O4 has been attracted wide research attention as a promising anode material for lithium-ion batteries (LIBs) in recent years based on its high theoretical specific capacity, low toxicity as well as stable chemical properties. However, the further large-scale application of pristine ZnCo2 O4 anode have been impeded because of its undesirable Li+ ion conductivity, low electronic conductivity, and finite stability of electrolytes at high potentials. Recently, optimizing the micro/nano structure, modification with carbonaceous materials, incorporation with metal oxides and constructing a binder-free structure on conductive substrate for ZnCo2 O4 -based materials have been verified as promising effective routes for solving the above problems. In this review, the recent advances in underlying reaction mechanisms, synthetic methods and strategies for improving the performance of ZnCo2 O4 anodes are comprehensively summarized. The factors affecting the electrochemical properties of ZnCo2 O4 -based materials are mainly discussed, and paths to promote the specific capacity and cyclic stability are proposed. Finally, several insights into the future developments, challenges, and prospects of ZnCo2 O4 -based anode materials of LIBs are proposed.
Collapse
Affiliation(s)
- Meng-Cheng Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, 243002, P. R. China
| | - Ming-Ci Zou
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, 243002, P. R. China
| | - Ting-Feng Yi
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Feng Wei
- School of Materials and Chemical Engineering, Chuzhou University, Chuzhou, 239000, P. R. China
| |
Collapse
|
4
|
Wang H, Zheng Y, Peng Z, Liu X, Qu C, Huang Z, Cai Z, Fan H, Zhang Y. Nanocavity-enriched Co 3O 4@ZnCo 2O 4@NC porous nanowires derived from 1D metal coordination polymers for fast Li + diffusion kinetics and super Li + storage. Dalton Trans 2021; 50:7277-7283. [PMID: 33954325 DOI: 10.1039/d1dt00475a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanocavity-enriched Co3O4@ZnCo2O4@NC porous nanowires have been successfully prepared by a two-step annealing process of one-dimensional (1D) coordination polymer precursors. Such unique nanowires with nanocavity-based porous channels can provide a large specific surface area, which allows fast electron/ion transfer and alleviates the volume expansion caused by strain during the charge/discharge processes. While used as the anode material of lithium-ion batteries (LIBs), Co3O4@ZnCo2O4@NC electrodes exhibit outstanding rate capacity and cycling stability, such as a high reversible capacity of 931 mA h g-1 after 50 cycles at a current density of 0.1 A g-1 and a long-term cycling efficiency of 649 mA h g-1 after 600 cycles at 1 A g-1. This coordination polymer template method lays a solid foundation for the design and preparation of bimetal oxide materials with outstanding electrochemical performance for LIBs.
Collapse
Affiliation(s)
- Haibin Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China.
| | - Yongjun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China.
| | - Zilin Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xinlong Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chen Qu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China.
| | - Zhiyin Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zelin Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
The Carbon-Coated ZnCo2O4 Nanowire Arrays Pyrolyzed from PVA for Enhancing Lithium Storage Capacity. Processes (Basel) 2020. [DOI: 10.3390/pr8111501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, ZnCo2O4 nanowire arrays with a uniform carbon coating were introduced when polyvinyl alcohol (PVA) served as the carbon source. The coating process was completed by a facile bath method in PVA aqueous solution and subsequent pyrolyzation. The PVA-derived carbon-coated ZnCo2O4 nanowire array composites can be used directly as the binder-free and self-supported anode materials for lithium-ion batteries. In the carbon-coated ZnCo2O4 composites, the carbon layer carbonized from PVA can accelerate the electron transfer and accommodate the volume swing during the cycling process. The lithium storage properties of the carbon-coated ZnCo2O4 composites are investigated. It is believed that the novel carbon-coating method is universal and can be applied to other nanoarray materials.
Collapse
|