1
|
Bui DT, Ton ANV, Nguyen CTD, Nguyen SH, Tran HK, Nguyen XT, Nguyen HT, Pham GLT, Tran DS, Harrington J, Pham HN, Pham TNV, Cao TA. Pathogenic/likely pathogenic mutations identified in Vietnamese children diagnosed with autism spectrum disorder using high-resolution SNP genotyping platform. Sci Rep 2024; 14:2360. [PMID: 38287090 PMCID: PMC10825208 DOI: 10.1038/s41598-024-52777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Among the most prevalent neurodevelopmental disorders, Autism Spectrum Disorder (ASD) is highly diverse showing a broad phenotypic spectrum. ASD also couples with a broad range of mutations, both de novo and inherited. In this study, we used a proprietary SNP genotyping chip to analyze the genomic DNA of 250 Vietnamese children diagnosed with ASD. Our Single Nucleotide Polymorphism (SNP) genotyping chip directly targets more than 800 thousand SNPs in the genome. Our primary focus was to identify pathogenic/likely pathogenic mutations that are potentially linked to more severe symptoms of autism. We identified and validated 23 pathogenic/likely pathogenic mutations in this initial study. The data shows that these mutations were detected in several cases spanning multiple biological pathways. Among the confirmed SNPs, mutations were identified in genes previously known to be strongly associated with ASD such as SLCO1B1, ACADSB, TCF4, HCP5, MOCOS, SRD5A2, MCCC2, DCC, and PRKN while several other mutations are known to associate with autistic traits or other neurodevelopmental disorders. Some mutations were found in multiple patients and some patients carried multiple pathogenic/likely pathogenic mutations. These findings contribute to the identification of potential targets for therapeutic solutions in what is considered a genetically heterogeneous neurodevelopmental disorder.
Collapse
Affiliation(s)
- Duyen T Bui
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam.
- Gene Friend Way Inc, San Francisco, USA.
| | - Anh N V Ton
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
- Hue University of Medicine and Pharmacy, Thua Thien Hue, Vietnam
| | - Chi T D Nguyen
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Son H Nguyen
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Hao K Tran
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Xuan T Nguyen
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Hang T Nguyen
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Giang L T Pham
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Dong S Tran
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Jillian Harrington
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| | - Hiep N Pham
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Tuyen N V Pham
- Pediatric Center Hue Central Hospital, Hue City, Thua Thien Hue, Vietnam
| | - Tuan A Cao
- Genetica Research Foundation, National Innovation Center, Hanoi, Vietnam
- Gene Friend Way Inc, San Francisco, USA
| |
Collapse
|
2
|
Qiu S, Qiu Y, Li Y, Zhu X, Liu Y, Qiao Y, Cheng Y, Liu Y. Nexus between genome-wide copy number variations and autism spectrum disorder in Northeast Han Chinese population. BMC Psychiatry 2023; 23:96. [PMID: 36750796 PMCID: PMC9906952 DOI: 10.1186/s12888-023-04565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a common neurodevelopmental disorder, with an increasing prevalence worldwide. Copy number variation (CNV), as one of genetic factors, is involved in ASD etiology. However, there exist substantial differences in terms of location and frequency of some CNVs in the general Asian population. Whole-genome studies of CNVs in Northeast Han Chinese samples are still lacking, necessitating our ongoing work to investigate the characteristics of CNVs in a Northeast Han Chinese population with clinically diagnosed ASD. METHODS We performed a genome-wide CNVs screening in Northeast Han Chinese individuals with ASD using array-based comparative genomic hybridization. RESULTS We found that 22 kinds of CNVs (6 deletions and 16 duplications) were potentially pathogenic. These CNVs were distributed in chromosome 1p36.33, 1p36.31, 1q42.13, 2p23.1-p22.3, 5p15.33, 5p15.33-p15.2, 7p22.3, 7p22.3-p22.2, 7q22.1-q22.2, 10q23.2-q23.31, 10q26.2-q26.3, 11p15.5, 11q25, 12p12.1-p11.23, 14q11.2, 15q13.3, 16p13.3, 16q21, 22q13.31-q13.33, and Xq12-q13.1. Additionally, we found 20 potential pathogenic genes of ASD in our population, including eight protein coding genes (six duplications [DRD4, HRAS, OPHN1, SHANK3, SLC6A3, and TSC2] and two deletions [CHRNA7 and PTEN]) and 12 microRNAs-coding genes (ten duplications [MIR202, MIR210, MIR3178, MIR339, MIR4516, MIR4717, MIR483, MIR675, MIR6821, and MIR940] and two deletions [MIR107 and MIR558]). CONCLUSION We identified CNVs and genes implicated in ASD risks, conferring perception to further reveal ASD etiology.
Collapse
Affiliation(s)
- Shuang Qiu
- grid.64924.3d0000 0004 1760 5735Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021 Jilin China ,grid.64924.3d0000 0004 1760 5735Department of Laboratory Medicine, Jilin University Hospital, Changchun, 130000 Jilin China
| | - Yingjia Qiu
- grid.415954.80000 0004 1771 3349China-Japan Union Hospital, Jilin University, Changchun, 130033 Jilin China
| | - Yong Li
- grid.64924.3d0000 0004 1760 5735Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021 Jilin China
| | - Xiaojuan Zhu
- grid.27446.330000 0004 1789 9163The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, 130021 Jilin China
| | - Yunkai Liu
- grid.430605.40000 0004 1758 4110Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, 130021 Jilin China ,Key Laboratory for Cardiovascular Mechanism of Traditional Chinese Medicine, Changchun, 130021 Jilin China ,grid.430605.40000 0004 1758 4110Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Yichun Qiao
- grid.64924.3d0000 0004 1760 5735Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021 Jilin China
| | - Yi Cheng
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, 130021, Jilin, China. .,Key Laboratory for Cardiovascular Mechanism of Traditional Chinese Medicine, Changchun, 130021, Jilin, China. .,Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Ding H, Ouyang M, Wang J, Xie M, Huang Y, Yuan F, Jia Y, Zhang X, Liu N, Zhang N. Shared genetics between classes of obesity and psychiatric disorders: A large-scale genome-wide cross-trait analysis. J Psychosom Res 2022; 162:111032. [PMID: 36137488 DOI: 10.1016/j.jpsychores.2022.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 10/31/2022]
Abstract
AIMS Epidemiological studies demonstrate an association between classes of obesity and psychiatric disorders, although little is known about shared genetics and causality of association. Thus, we aimed to investigate shared genetics and causal link between different classes of obesity and psychiatric disorders. METHODS We used genome-wide association study (GWAS) summary data range from 9725 to 500,199 sample sizes of European descent, conducted a large-scale genome-wide cross-trait association study to investigate genetic overlap between the classes of obesity and anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, schizophrenia, anxiety disorders and Tourette syndrome. We conducted transcriptome-wide association study analysis (TWAS) to identified variants regulated gene expression in those related disorders. Finally, pathway enrichment analysis to identified major pathways. RESULTS In the combined analysis, we replicated 211 previously reported loci and discovered 58 novel independent loci that were associated with all three classes of obesity and related psychiatric disorders. Functional analysis revealed that the identified variants regulated gene expression in major tissues belonging to exocrine/endocrine, digestive, circulatory, adipose, digestive, respiratory, and nervous systems, such as DCC, NEGR1, INO80E. Mendelian randomization analyses suggested that there may be a two-way or one-way causal relationship between obesity and psychiatric disorders. CONCLUSION This large-scale genome-wide cross-trait analysis identified shared genetics and potential causal links between classes of obesity and psychiatric disorders (attention deficit hyperactivity disorder, autism spectrum disorder, anorexia nervosa, major depressive disorder, schizophrenia, and obsessive-compulsive disorder). Such shared genetics suggests potential new biological functions in common among them.
Collapse
Affiliation(s)
- Hui Ding
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Mengyuan Ouyang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Jinyi Wang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Minyao Xie
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Yanyuan Huang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Fangzheng Yuan
- School of Psychology, Nanjing Normal University, Nanjing 210023, China
| | - Yunhan Jia
- School of Psychology, Nanjing Normal University, Nanjing 210023, China
| | - Xuedi Zhang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Na Liu
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| | - Ning Zhang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
4
|
Li Y, Sun C, Guo Y, Qiu S, Li Y, Liu Y, Zhong W, Wang H, Cheng Y, Liu Y. DIP2C polymorphisms are implicated in susceptibility and clinical phenotypes of autism spectrum disorder. Psychiatry Res 2022; 316:114792. [PMID: 35987071 DOI: 10.1016/j.psychres.2022.114792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Disco-interacting protein 2 C (DIP2C) has recently been reported as a new susceptibility gene for autism spectrum disorder (ASD) in a genome-wide association study. METHODS We evaluated associations between single nucleotide polymorphisms (SNPs) of DIP2C and ASD susceptibility in a case-control study (715 ASD cases and 728 controls) from Chinese Han. RESULTS We identified a significant association between SNPs (rs3740304, rs2288681, rs7088729, rs4242757, rs10795060, and rs10904083) and ASD susceptibility. Of note, rs3740304, rs2288681, and rs7088729 are positively associated with ASD under inheritance models; moreover, haplotypes with any two marker SNPs (rs3740304 [G], rs2288681 [C], rs7088729 [T], rs4242757 [C], rs10795060 [G], and rs10904083 [A]) are also significantly associated with ASD. Additionally, rs10795060 and rs10904083 are associated with "visual reaction" phenotypes of ASD. CONCLUSIONS DIP2C polymorphisms sort out the susceptibility and clinical phenotypes of autism spectrum disorder.
Collapse
Affiliation(s)
- Yan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; Department of Epidemiology, School of Public Health, Beihua University, Jilin 132013, China; Institute of Health Sciences, China Medical University, Shengyang 110000, China
| | - Chuanyong Sun
- Northeast Asian Studies Center, Jilin University, Changchun 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Shuang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Yunkai Liu
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun 130021, China
| | - Weijing Zhong
- Chunguang Rehabilitation Hospital, Changchun, Jilin 130021, China
| | - Hedi Wang
- Department of Epidemiology, School of Public Health, Beihua University, Jilin 132013, China
| | - Yi Cheng
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Cheung JP, Tubbs JD, Sham PC. Extended gene set analysis of human neuro-psychiatric traits shows enrichment in brain-expressed human accelerated regions across development. Schizophr Res 2022; 246:148-155. [PMID: 35779326 DOI: 10.1016/j.schres.2022.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
Human neuropsychiatric disorders are associated with genetic and environmental factors affecting the brain, which has been subjected to strong evolutionary pressures resulting in an enlarged cerebral cortex and improved cognitive performance. Thus, genes involved in human brain evolution may also play a role in neuropsychiatric disorders. We test whether genes associated with 7 neuropsychiatric phenotypes are enriched in genomic regions that have experienced rapid changes in human evolution (HARs) and importantly, whether HAR status interacts with developmental brain expression to predict associated genes. We used the most recent publicly available GWAS and gene expression data to test for enrichment of HARs, brain expression, and their interaction. These revealed significant interactions between HAR status and whole-brain expression across developmental stages, indicating that the relationship between brain expression and association with schizophrenia and intelligence is stronger among HAR than non-HAR genes. Follow-up regional analyses indicated that predicted HAR-expression interaction effects may vary substantially across regions and developmental stages. Although depression indicated significant enrichment of HAR genes, little support was found for HAR enrichment among bipolar, autism, ADHD, or Alzheimer's associated genes. Our results indicate that intelligence, schizophrenia, and depression-associated genes are enriched for those involved in the evolution of the human brain. These findings highlight promising candidates for follow-up study and considerations for novel drug development, but also caution careful assessment of the translational ability of animal models for studying neuropsychiatric traits in the context of HARs, and the importance of using humanized animal models or human-derived tissues when researching these traits.
Collapse
Affiliation(s)
- Justin P Cheung
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Justin D Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Associations between genetic loci, environment factors and mental disorders: a genome-wide survival analysis using the UK Biobank data. Transl Psychiatry 2022; 12:17. [PMID: 35017462 PMCID: PMC8752606 DOI: 10.1038/s41398-022-01782-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
It is well-accepted that both environment and genetic factors contribute to the development of mental disorders (MD). However, few genetic studies used time-to-event data analysis to identify the susceptibility genetic variants associated with MD and explore the role of environment factors in these associations. In order to detect novel genetic loci associated with MD based on the time-to-event data and identify the role of environmental factors in them, this study recruited 376,806 participants from the UK Biobank cohort. The MD outcomes (including overall MD status, anxiety, depression and substance use disorders (SUD)) were defined based on in-patient hospital, self-reported and death registry data collected in the UK Biobank. SPACOX approach was used to identify the susceptibility loci for MD using the time-to-event data of the UK Biobank cohort. And then we estimated the associations between identified candidate loci, fourteen environment factors and MD through a phenome-wide association study and mediation analysis. SPACOX identified multiple candidate loci for overall MD status, depression and SUD, such as rs139813674 (P value = 8.39 × 10-9, ZNF684) for overall MD status, rs7231178 (DCC, P value = 2.11 × 10-9) for depression, and rs10228494 (FOXP2, P value = 6.58 × 10-10) for SUD. Multiple environment factors could influence the associations between identified loci and MD, such as confide in others and felt hated. Our study identified novel candidate loci for MD, highlighting the strength of time-to-event data based genetic association studies. We also observed that multiple environment factors could influence the association between susceptibility loci and MD.
Collapse
|
7
|
Como DH, Stein Duker LI, Polido JC, Cermak SA. Oral Health and Autism Spectrum Disorders: A Unique Collaboration between Dentistry and Occupational Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E135. [PMID: 33375475 PMCID: PMC7795681 DOI: 10.3390/ijerph18010135] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Children with autism spectrum disorders (ASD) are at risk for oral health disparities. With the dramatic rise in ASD prevalence to 1 in 54 children, it is likely that an increasing number of dental practitioners will encounter or be asked to treat children with ASD. This paper reviews explanations related to the increasing prevalence of ASD, provides reasons why children with ASD are at increased risk for poor oral health, and discusses unique interprofessional collaborations between dental practitioners and occupational therapists. Occupational therapists and dentists can work together to plan modifications to the dental environment or adapt dental protocols to reduce some of the barriers encountered by those with ASD, provide desensitization strategies before the clinic visit, or help a child with emotional regulation during clinical treatments.
Collapse
Affiliation(s)
- Dominique H. Como
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA; (L.I.S.D.); (S.A.C.)
| | - Leah I. Stein Duker
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA; (L.I.S.D.); (S.A.C.)
| | - José C. Polido
- Children’s Hospital Los Angeles and Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Sharon A. Cermak
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA; (L.I.S.D.); (S.A.C.)
| |
Collapse
|
8
|
Comment on “Association Between DCC Polymorphisms and Susceptibility to Autism Spectrum Disorder”. J Autism Dev Disord 2020; 50:3810. [DOI: 10.1007/s10803-020-04519-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Reply to Comment on “Association Between DCC Polymorphisms and Susceptibility to Autism Spectrum Disorder”. J Autism Dev Disord 2020; 50:3811-3812. [DOI: 10.1007/s10803-020-04585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|